0

0
0

文字

分享

0
0
0

甲烷大氣的交替

陸子鈞
・2012/03/20 ・342字 ・閱讀時間少於 1 分鐘 ・SR值 535 ・七年級

大約24億5千萬年前,地球和泰坦看起來可能很像。一則發表在《自然‧地球科學》(Nature Geoscience)的研究指出,地球曾經和土星最大的衛星-泰坦一樣,具有朦朧又富含甲烷的大氣。科學家分析從南非收集的,26億5千萬至25億年前的沈積土,試圖了解古代大氣和海洋的化學性質。令他們訝異的是,地球的大氣並非萬古不變,而是在「有機薄霧」(organic haze,或稱「碳氫化合霧」-hydrocarbon smog)和「無霧」(haze-free)之間交替。研究人員表示,這樣的循環交替,是海洋中的甲烷生成菌導致。部分氧氣由其他海洋微生物產生,但只有很少比例釋放到大氣中。不到一億年後,我們熟知的藍綠菌(cyanobacteria)大量繁衍,生成大量氧氣釋入大氣,使大氣成為現在我們看到的樣子。

資料來源:ScienceShot: An Atmospheric Flip-Flop [18 March 2012]

文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

4
2

文字

分享

0
4
2
迷航的中國氣球怎麼飄到美國?其實早能預測飛行路徑?
PanSci_96
・2023/02/14 ・2263字 ・閱讀時間約 4 分鐘

日前,在距離美國海岸線一萬八千公尺的領空,飛彈 AIM-9X 擊中了一顆大型高空氣球;美國與加拿大國防部公開聲明,該氣球來自中國。

這顆氣球在被擊落之前經歷了一段相當漫長的旅程,從中國出發後,沿途經過日本、阿拉斯加、加拿大、美國本土,最後才在大西洋外海被擊落。

如何推算飛行路線

該飛行路徑是由美國國家海洋暨大氣總署(NOAA)使用 HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory)模型計算出的。

HYSPLIT 為一計算模型,可模擬在 100 公里內大氣環境中,任何位置釋放煙霧等粒子後,其隨著大氣傳播和轉移的軌跡;常用於森林大火、工業區廢氣的擴散,如:加州大火、福島核災等事件,以模擬污染物擴散軌跡,確保其不會進入人口密集區。

若將 HYSPLIT 反向應用,就可透過計算擴散軌跡回推污染傳播路徑,以定位污染源位置。而此次的氣球事件,就是分析大氣氣流方向回推其可能路徑,最終推測出飛行起點位於中國。

氣球為何往東飛

氣球從太平洋西岸飛往東岸,原因不僅僅是為了要避開其他國家的領空,還因為這條「高空航線」只向東開放。在北半球的大氣環境中,風的方向通常是由副熱帶高壓帶吹向極地區域,加上科氏力影響,在中緯度高空會形成一條相當寬的「西風帶」;可想而知,也就成為了氣球環遊世界的最佳航線。西風帶會持續向東移動,對於颱風、洋流以及全球氣候系統都有深遠的影響。

中緯度盛行西風(藍色箭頭)。圖/維基百科

既然氣球乘西風飛翔,為何氣球走的不是直線,而像是繞遠路呢?難道它真的利用自主動力,繞開敏感地區嗎?

打開空中地圖來看,這顆氣球在進入加拿大後,一路向南抵達美國本土,這與「空中快速道路」——噴射氣流的路徑高度相似,因此很可能氣球就是搭著這股氣流前行。噴射氣流通常位於對流層頂部,因巨大的氣壓與溫度差,流速每小時可高達 200 至 300 公里;過去就有人利用噴射氣流降低航空器的油耗,甚至嘗試用來發電。

既然它是搭乘噴射氣流移動,所以它應該就沒有動力囉?也不一定。目前無法知道這顆探測氣球的確切規格,其搭載的太陽能板除了提供儀器電力外,也可能在某種程度上提供動力。

由於氣候影響很大,釋放氣球也得要考量季節。在冬季的降溫下,西風帶會變得更加寬廣,風速也較為強勁;等到了夏天北半球漸暖後,西風帶就會變得狹窄且緩慢。因此,不論是過去的日本氣球炸彈,還是這次的探測氣球,都選擇在冬季釋放。

然而,氣球的路程並沒有一路大順暢。就正常情況而言,氣球在兩天內就該飄離,但這趟旅程就這麼剛好地遇到了平流層突然變暖,使得西風帶減弱,造成氣球的飄移速度下降,也就在美國本土多滯留了幾天。

究竟飛多高

這顆氣球在離開美國時,高度預計在一萬八千公尺以上。

一般民航機飛行高度約為一萬一千公尺。圖/Envato Elements

民航機通常會選擇在一萬一千公尺的高度飛行,這剛好是大氣對流層與平流層的分界,平流層的氣流穩定性,使航程不那麼顛頗,而越往上空氣也會越稀薄,飛機越難取得足夠的爬升力。就氣球的一萬八千公尺而言,在美國現役的戰機中僅有 F-22 能上升到兩萬公尺,在安全距離內破壞氣球。

那為什麼不是以飛機用機槍將氣球射下呢?有必要用到要價 40 萬美金的響尾蛇飛彈嗎?過去加拿大也曾有氣象氣球失控朝著俄羅斯領空飛去,然而高速飛行的飛機不僅難以瞄準氣球,靠著打出的幾個小洞也無法將其擊落,只能盯著它慢慢洩氣,最後墜落。

這次美國等到氣球離開陸地再一次性擊落,在能掌握情況的前提下,可能為最佳方式了。

氣球比你想像得還要有用

氣球能上到一般航空器到不了的高度,充分展現了其戰略價值。

而能上到兩萬五千公尺以上的探空氣球,同步串聯全球大氣資料,各國氣象研究單位藉此分析出完整資料。探空氣球的任務就是在緩緩上升的過程中,紀錄每個高度的溫度、濕度、氣壓、風向、風速、GPS 訊號等變化,做到大氣垂直方向上最精細的測量。

全球的探空氣球會統一在格林威治時間 0 點與 12 點釋放,台灣當然也沒缺席,同時間也就是台灣早晚八點,會從彭佳嶼、新店、花蓮、馬公機場、屏東機場、綠島、東沙島等地釋放探空氣球,遇到特殊天氣,下午兩點還會再多放一次。

探空氣球攜帶無線電遙測儀器,進入大氣層測量各種參數。圖/維基百科

商業氣球還能用來做什麼?其實在馬斯克的星鏈計畫之前,Google 也有類似計畫——Project Loon,要讓全世界偏遠地區都能上網;Project Loon 使用的就是可上升至兩萬公尺的網路氣球,而這項技術早在 2013 年 6 月於紐西蘭實驗成功。雖然 Google 已於 2021 年放棄該計畫,但這種概念並沒有因此消失,可作為發生天災、或遭遇戰事時,便宜、方便的重要通訊替代方案。

這次的氣球漂流記,撇除牽扯到兩大強權國的政治角力,讓全球民眾見證了,看似不起眼的氣球,能完成超高難度的移動。

PanSci_96
1207 篇文章 ・ 1889 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

4
1

文字

分享

1
4
1
臺灣的空污問題與眾不同,如何使空污預報更精確?先瞭解大氣邊界層和感測物聯網吧!
研之有物│中央研究院_96
・2022/10/16 ・6113字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/陳儀珈
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

你以為的大氣,不是真實的大氣!

大氣邊界層是人類的生活範圍,也是大部分空氣污染物存在的地方。然而,傳統氣象學模擬的大氣邊界層結構並不符合臺灣的真實情況,因此真實的空氣污染現象和理論的模擬預測間往往存在顯著的差異,導致污染防制策略缺乏精確的指引。

中央研究院「研之有物」專訪院內環境變遷研究中心研究員兼空氣品質專題中心執行長周崇光,他是建立空品專題中心的主要推手,研究團隊從大氣結構出發,試圖改善臺灣空氣品質的診斷及預報,這項計畫集結了來自民生公共物聯網國家高速網路與計算中心環境保護署等跨部門的資源,以下讓我們一起看周崇光怎麼說。

中研院環變中心研究員兼空品專題中心執行長周崇光。圖/研之有物

根據國際貨幣基金組織(IMF) 2021 年的報告,臺灣位列全球第 22 大經濟體,這個只有 3.6 萬平方公里的小小島國,一年內卻可以創造出高達 7,855.89 億美元的市場價值。

在美國國家航空暨太空總署(NASA)公布的地球夜景照中,我們彷彿可以看見,高樓一棟棟升起、工廠一座座建成、百貨一間間林立,在又長又窄的西半邊,從北到南形成臺北、臺中和高雄三大都會區。

西部臨海,東部靠山,這個寬度可能不到 100 公里的窄長地區,不僅聚集了臺灣 2,300 萬人的極大多數人口,凝聚出商業與工業的巨大產能,更集結了大量、複雜的「空氣污染物」。中研院「研之有物」專訪周崇光研究員,請他從空氣品質與都市氣象學的角度,細細剖析空污議題在這座海島上的獨特之處。

ASA 在 2016 年 12 月 31 日拍攝的夜景照,可看出臺灣有北、中、南三大亮區。圖/NASA

臺灣雖然小,但空汙問題好複雜!

臺灣國土面積僅有 3.6 萬平方公里,以大氣尺度來看非常的小,然而,我們在空氣污染面臨的挑戰卻異常艱鉅。

臺灣不僅處於許多境外污染源的下風處,接受來自各方的空氣污染物,各大都會區也因為地形的關係吃足了苦頭,整個中西部更是在窄長的地域中,面臨來自山、海的多重影響。

以下圖的臺中都會區為例,臺中位處於中央山脈西側的中央,本身是一個有數個開口的盆地,被多重大氣動力機制所影響,包含季風、海陸風、山谷風以及熱島環流,形成極度複雜的區域環流。

盆地內的空氣污染物原本就不容易擴散,再加上複雜的大氣環流和大氣化學反應,讓臺中的空氣品質狀況非常、非常的複雜,無法使用現有的大氣理論進行簡單的描述,使得大氣科學家極為不易於觀測和研究臺中的空污情形。

「這裡就像是巫婆煉湯一樣。」周崇光這麼說。

臺中位處於中央山脈西側的中央,本身是一個有數個開口的盆地,被多重大氣動力機制所影響,包含季風、海陸風、山谷風以及熱島環流,形成極度複雜的區域環流。圖/研之有物(資料來源/周崇光)

臺灣在東北風的影響下,不適合傳統的高煙囪理論

周崇光笑著說,到處觀察「煙囪」是他的職業病。

大陸環境的大氣結構相對簡單,自歐洲工業革命開始,傳統大氣科學的理論都告訴人們:越高、風越大,只要把煙囪建得高高的,就可讓風把污染物吹散、吹到很遠的地方。

平坦的大陸環境中,把煙囪建高可以讓煙流擴散及傳輸至很遠的地方。圖/rawpixel

「到了大陸國家,你會發現他們煙囪排出來的煙,經常是非常穩定的水平煙流,可以飄得很遠,這種煙流挾帶著空氣污染物飛到 10 幾公里外都不是問題!」,然而反觀臺灣的煙囪,卻很少出現這樣的水平煙流。

中研院空品專題中心對臺中火力發電廠的煙流觀測顯示,傳統高煙囪設計反而容易讓煙流進入「污染累積區」,在高度 450~800 公尺左右,橘色區域的空氣層風速僅有 0.5~3 公尺/秒。不同折線表示有兩個時段,分別是觀測當天凌晨 1 點到 3 點(紅線),以及晚上 19 點到 21 點(黃橘線)。圖/研之有物(資料來源/周崇光)

根據中研院空品專題中心對火力發電廠的煙流觀測資料,如果臺灣的煙囪蓋得跟大陸國家一樣高,有時候反而容易造成空氣污染物的累積。

從上圖可知,當臺灣處在微弱東北風的大氣環境之中,西部沿海風速最快的大氣區域(藍底),大約落在 200~400 公尺高之間,此區的風速大約為 5~6 公尺/秒左右,以東北風為主,是空氣污染物的「最佳擴散區」。

若是再往上,到了 450~800 公尺左右,風速驟然下降(橘底),僅有 0.5~3 公尺/秒。這個區域的大氣就像是被下層的東北風與上層的南風「夾擊」一樣,在兩個不同方向的風的對切之下,形成一個風速很低的「污染累積區」。

因此,若臺灣真的按照傳統的大氣理論建造高煙囪時,反而會讓煙囪的高溫煙流進入污染累積區;換個做法,如果煙囪低一點,才可以被強風吹散。

不過周崇光話鋒一轉:低煙囪設計要相當謹慎,也很難推行。高溫煙流排出去會有很明顯的白煙(水蒸氣凝結),一般人都不喜歡看到白煙離居住地太近,因此實務上還會特別做加熱設計,讓煙流先往上浮,再擴散,等於加高了煙囪的高度,這在工程上稱為「有效煙囪高度」。降低煙囪高度除了有視覺污染的問題,污染排放點離民眾越近,當工廠發生緊急異常排放時,異常事件的衝擊風險也會越大。

和傳統理論不一樣?那就做出臺灣自己的資料吧!

這麼經典的高煙囪理論,為什麼不能用在臺灣?

周崇光表示,大氣科學的理論大都源自於美國、歐洲,使得傳統大氣理論都更適用於大陸環境之下,因此難以直接應用於臺灣地狹人稠的海島結構,而中研院空品專題中心的目標之一,就是發展出屬於臺灣的「空污氣象學」。

周崇光提到:「臺灣跟大陸國家的空間條件實在差太多,所以我們必須要更精確知道,臺灣空氣污染物的高度分布到底長什麼樣子,才能更有效的管制並改善空品狀況。」

既然臺灣無法參考大陸型國家的大氣狀況,那麼小一點的、近一點的國家呢?韓國、日本的有沒有參考的價值?

周崇光笑著說,「你知道嗎?臺中盆地也才 10 幾公里,但是外圍的中央山脈高達 3,000 公尺以上!」就算是韓國、日本,它們的地理空間也比臺灣大多了,而且地形也沒有這麼複雜。

臺中盆地的衛星空照圖。圖/Wikipedia

當這麼多的工廠、車輛都擠在這小小的區域,究竟會對臺灣的空氣品質造成多嚴重的後果?某種程度來說,這也許是個細思極恐的問題呀。

因此,為了國內空污氣象學的發展,搞懂臺灣的大氣邊界層(Atmospheric boundary layer)是刻不容緩的工作。

大氣邊界層除了是人類的生活範圍,也是大部分的空氣污染物存在的地方,又被稱為行星邊界層(Planetary boundary layer)。在氣象學中,大氣邊界層指的是「直接受到地表作用影響」的大氣,高度從地表一直到數百至數千公尺不等,是大氣層中最靠近地球表面的部分。

然而,傳統氣象學所模擬出來的大氣邊界層結構並不符合臺灣的真實情形,因此,大氣科學家必須釐清大氣邊界層的氣象參數、動力機制,未來才能夠更精準的找到影響都市氣象以及空氣品質的關鍵因子。

但周崇光也感慨的說,「坦白講,目前臺灣還沒有辦法很『系統化』的改善邊界層的模擬條件,但我們仍然不斷的在努力,透過很多很多的調查、研究、模擬參數,漸漸地發展出半經驗、半理論的結構,最終的目標是歸納成一個系統性的成果,作為臺灣空污氣象學最扎實的理論基礎。」

從大規模的調查研究、積極補足知識的缺口、重新建立理論模型,到回頭檢視國家的空污防制策略,大氣科學家必須腳踏實地的、一步一步的,藉由大氣科學研究的力量,才能讓空氣品質管制更上一層樓。面對迫切的空氣污染防制議題、空污氣象學理論的不足,「空氣品質專題中心」也應運而生。

中研院在「大氣物理與化學」的研究群早已相當成熟,有著極為厚實的研究經驗和基礎,然而為了讓研究目標更明確、進一步聚集研究能量並進行跨部門的合作,中研院以提出空污議題的科學解釋與建議對策為目標, 2021 年 1 月在環境變遷研究中心之下成立空氣品質專題中心,成為全國規模最大的空氣品質專業研究機構。

除了宣示中研院對空污議題的重視之外,如此一來,研究預算的匡列、人力的評估,都有更紮實、更有架構的基礎。擺脫以往研究員們「自動自發」的空品研究,在中心的管理之下,空污的學術研究更能夠產生聚焦效果。

更精確的空氣品質預報

如果大家點入行政院環保署的空氣品質監測網,可以發現,目前來自中央監測的空氣品質預報的解析度並不高,由於空品狀況站數僅有 85 站,只能以「北部」、「竹苗」、「宜蘭」、「花東」、「中部」、「雲嘉南」、「高屏」等大範圍空品區進行未來三日的預報,尚無法以「縣市」或更小的區域為單位提供精準的預報。

全國空氣品質指標的測站點位圖,可看出共有 85 個測站。圖片資訊日期為 2022 年 9 月 13 日。圖/空氣品質監測網
未來三日空品區預報,目前僅能呈現大範圍空品區預報。圖片資訊日期為 2022 年 9 月 13 日。圖/空氣品質監測網

因此,為了提供更先進的空氣品質預報,致力掌握國內 PM2.5 及 O3 等空氣污染物濃度變化情形的「高解析度空氣品質診斷與預報模式發展計畫」,是空品專題中心相當關鍵的研究計畫之一,此計畫是行政院前瞻基礎建設中「民生公共物聯網數據應用及產業開展計畫」的一個分支,集結了中研院、國家高速網路與計算中心、環保署等跨部門資源。

該計畫預計發展一套 1 km*1 km 高解析度的 72 小時空氣品質預報模式,並描繪空氣污染物的 3D 空間分布,預期能夠對臺灣地區 PM2.5 及 O3 生成與傳輸過程進行更精確的模擬,進而應用於空氣污染事件的預報和成因診斷。

周崇光將這個計畫比喻為一個「神經系統」,由環保署統合高達 10,000 個感測器,就像是神經系統中的神經元,負責感知大氣環境中的變化,並透過民生公共物聯網提供的神經網路,將資訊傳輸至國家高速網路中心的超級電腦,而超級電腦就像是大腦一樣,提供強大的運算力,使得空污模式得以統合氣象條件、污染物排放量、以及感測器提供的環境變化狀況,計算和預報未來幾天空氣品質的可能變化。

雖然感測器來源不一,不同層級的靈敏度也有所落差,但隨著近年技術的進步和突破,微型感測器對 PM2.5 的監測資料已經具有足供參考的準確度,目前各縣市大約都有 100 個以上的微型感測器,環保署已經在全臺灣佈建了約 10,000 個感測器,透過高密度的監測數據進行資料分析,有效掌握全臺各地的空品狀態。

環保署已佈建約 1 萬個微型感測器,可監測各地 PM2.5 狀態。圖片資訊日期為 2022 年 9 月 13 日。圖/air 空氣網

此外,此研究計畫也希望藉由感測器的大量需求,協助推動臺灣感測器的產業,與經濟部、工研院合作推動感測器的國產化。目前工研院的技術已經技轉給國內廠商,國產感測器在環保署監測網的佔有率已達將近 3 成,未來會持續輔導相關廠商。

研究計畫一邊發展預報系統,也一邊透過微型感測器資料即時驗證預報的成效。就像是如果寫考卷時,我們可以一填答就馬上得知正確答案時,就可以隨時檢討自己的計算流程到底哪裡出了問題,不斷修正,找出最正確的解方。

同理,拜微型感測器遍布全臺之賜,大氣科學家逐漸能夠快速驗證空氣品質預報的模擬結果,有朝一日,國內空污的物理化學機制以及關鍵污染源,將不再是讓人頭痛的黑盒子。目前由於 PM2.5 的感測器已相對成熟且數量足夠,因此中研院空品專題中心已成功驗證 3 km*3 km 解析度之 PM2.5 預報資料,最終目標是精確到 1 km*1 km。

影/YouTube
中研院周崇光團隊已成功驗證高解析度 72 小時 PM2.5 預報資料,每小時可模擬 3 km*3 km 空間解析度,最終目標是精確到 1 km*1 km。圖片預報日期為 2021 年 12 月 18 日~2021 年 12 月 20 日。圖/研之有物(資料來源/周崇光)

如何讓空氣品質變好,又不影響現有的生活?

在中研院環變中心周崇光研究員帶領下的空品專題中心,其中一個核心精神,就是要對社會關鍵議題有貢獻。

專注發表學術論文是科學研究的本質,也是科學進步的動力,不過進行社會議題相關的科學研究通常會更辛苦,往往會花費極大的心力與時間。

做空氣污染防制就像是「精準醫療」的概念一樣,如何讓藥物只攻擊癌細胞而不對身體的其他地方造成太大的副作用?經過科學研究的探索後,如何讓臺灣的空氣品質更好而不衝擊社會文化和經濟?

空污管制並非是一味阻擋臺灣經濟和工業發展,空品專題中心希望可以藉由科學的力量,更精準、更沒有副作用的改善臺灣空氣品質。

除了大氣科學理論和空氣污染排放清單有所不足之外,像是能源政策、交通規劃、國土計畫都需要重頭思考。周崇光說:「一路研究下去,我們開始疑惑,當初為什麼我們都傻傻的,把這麼多的大型污染源擺在海邊,讓海風把污染物往內陸帶?為什麼臺灣的國土利用那麼集中?」這一些命題,都是一環扣一環。

最後周崇光強調,「空氣品質絕對是應用導向的研究,因此,我們除了做科學,也要讓這些研究結果有願景、有視野,讓臺灣變得更好。」

所有討論 1
研之有物│中央研究院_96
290 篇文章 ・ 3073 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

4

32
4

文字

分享

4
32
4
別用愛了,用冰發電吧!——可燃冰的發現、應用及油氣能源的未來
Chih-Chen Huang_96
・2022/02/23 ・6224字 ・閱讀時間約 12 分鐘

能源與環保間的平衡在全球一直都是十分火熱的議題。火力發電、核分裂發電等高效率的發電方式,或許會對環境及生物造成永久危害;風力發電、大陽能電池等綠能,受限於天候而無法廣泛應用;乾淨又有效率的核融合發電仍在開發階段,還不到可以商用的程度。那麼,通往乾淨能源的這條路,是否就這樣被插上此路不通的標示牌呢?當然不!因為可燃冰為我們另闢了一條蹊徑。

圖一 :正在燃燒的可燃冰。圖/參考文獻 1

那麼,可燃冰究竟是什麼呢?是否如同字面上,是一種可以燃燒的冰?如果是,是何種機制會使冰能被點燃;如果不是,那麼它是怎麼形成冰晶狀態的呢?若你好奇的話,請讀下去吧!本篇會從可燃冰本身、其應用與開採問題,全面地介紹這種新能源。

可燃冰的性質

可燃冰又稱為「天然氣水合物」,其中,甲烷氣體若佔總天然氣的 99%,則稱為「甲烷水合物」。直接觀察它被點燃的樣子,就像是一塊能燃起火焰的冰塊,這也是「可燃冰」一稱的由來。然而,確切來說,這顆「冰塊」其實是水和甲烷氣體在低溫高壓下混合形成的類冰物質。也就是說,可燃冰其實不是冰,而是由水分子組成的一個個「水籠」。如圖二,籠中包含大量的甲烷氣體,因此便不難理解它被稱為「甲烷水合物」的原因。或許你十分好奇水籠的模樣,不過在那之前,我們必須先談談組成水籠的柵欄——氫鍵。

圖二:可燃冰是由水分子組成的一個個「水籠」。圖/參考文獻 2

(一)、氫鍵

氫鍵為組成可燃冰結構舉足輕重之角色,而為介紹水籠及避免混淆重點,氫鍵概念皆舉水(簡式 H2O)為例。顧名思義,氫鍵是一種以「已結合 1 個氧原子的氫原子」為中心,與另一個氧原子所形成的「作用力」。沒錯,氫鍵並沒有產生實際的鍵結,本質上反而是一種電磁力。這個概念或許有點抽象,不過我們可以用小朋友吃蛋糕的例子來理解。

現在,老師分蛋糕給一群小朋友,高年級的小朋友可以分到比較多塊且口味不同的蛋糕,而低年級的小朋友則只有一塊蛋糕。分完蛋糕後,低年級的小朋友會跑去坐在大哥哥旁邊吃蛋糕,因為當他拿出一半的蛋糕分享時,大哥哥也會分享一半的蛋糕給他,如此一來,他們都能吃到 2 種口味的蛋糕。若低年級的小朋友還想再和別人分享一次,他就必須擁有第二塊蛋糕。然而,我們都知道他已經沒有多的蛋糕了,所以他會跑到另一個擁有蛋糕的大哥哥旁邊看著他,希望這個大哥哥能和他分享蛋糕。

看完這個故事,我們可以把蛋糕替換成電子、低年級生替換成氫(價電子數為 1),而擁有很多蛋糕的大哥哥即為擁有許多電子的氧(價電子數為 6)。因此,如圖三(A)所示,當氫和氧各提供 1 個電子時,便會形成共價鍵。同時,已將電子用光的氫,會與另一顆帶有 2 個多餘電子——或稱作「孤電子對」(lone pair)——的氧形成氫鍵。

圖三(A):氫鍵結構。圖/黃之辰繪

其形成原因則如圖三(B),當氫用掉唯一的電子後,部分氫原子相對帶正電,會與另一個擁有孤電子對的原子互相吸引,故部分原子帶負電的氧原子互相吸引。這個吸引力就是氫鍵,並且由於其成因,我們可以說氫鍵就是一種電磁力。

圖三(B):氫鍵形成原理。圖/黃之辰繪

(二)、水籠

當許多個水分子以氫鍵結合時,水籠便形成了。

圖四:水分子間的氫鍵。圖/參考文獻 3

事實上,水籠分為許多種類,有結構 Ⅰ 型水合物、結構 Ⅱ 型水合物以及結構 H 型水合物。如下方圖五,在以單位晶格的尺度下觀察,結構 Ⅰ 型為的水合物是以 2 個五角十二面體(512)的小籠,和 6 個十四面體(51262)的大籠所組成。

這時,你可能會好奇:為什麼是這個組合呢?讓我們來想想拼圖。當我們拿起一塊拼圖,會發現它會有凸出、凹陷,或是平平的不凸出也不凹陷等 3 種樣式的「邊」,或許是 4 個凸出、3 個凸出 1 個凹陷、2 個凸出 2 個凹陷,或是 1 個平平的邊加上 3 個凹陷……。這時,如果我們拿起一塊有「4 個凸出」的拼圖,那麼我們能把另外一塊也是 4 個凸出的拼圖拼在原本的那塊上嗎?

顯然無法。因此,如果我們要將拼圖拼起來,就需要拿出另外 4 片有凹陷的拼圖,各接在原本那塊拼圖上,才能逐漸將這副拼圖拼完。這個「拼拼圖」的概念也就是為什麼水籠結構會需要不同的立體形狀組成了,因為這些不同的形狀負責「鑲嵌」彼此,從而形成一個完整的、沒有空隙的拼圖,也就是這個堅固的水籠。

接下來讓我們繼續介紹另外 2 種結構。結構 Ⅱ 型則以 16 個五角十二面體,加上另一種十六面體(51264)的大籠結合而成;結構 H 型則分別由 2 種小籠—— 3 個五角十二面體,及 2 個十二面體(435663)——與二十面體(51268)大籠組成。其中,不論是大籠或小籠,每個籠中皆包含 1 個甲烷分子。

值得注意的是,甲烷水合物屬於結構 Ⅰ 型水合物,且其分子式為 CH4·8H20。理論上來說,一單位晶格內應含有 8 個甲烷分子與 64 個水分子。然而,由於可燃冰晶體中的水可與鄰近的 2 個水籠共用,因此一單位晶格內實際上只有 46 個水分子,而這也是當我們將可燃冰轉化後,可以產生大量天然氣的原因。

圖五:各類水籠結構及組成。圖/參考文獻 4

二、可燃冰的誕生

上文有提到水和甲烷能在低溫高壓之下生成可燃冰。那麼,是什麼環境才會包含大量的水、足夠的天然氣,同時又有低溫高壓的特性呢?沒錯,就是海洋!現在,我們已經有足夠多的水了,但要如何在海中找到大量的甲烷呢?以大西洋的布雷克海脊(Blake Ridge)為例,含有甲烷的沉積物稱為「氣水化合物穩定帶」(GHSZ,GasHydrate Stability Zone),大約厚 300 至 500 公尺,且位於約 190 公尺至 450 公尺的中深度範圍海域[參考文獻 5]。在這些沉積物的孔隙中,有許多以溶解狀態存在的甲烷。那麼,問題又來了,這些深海礦床是怎麼產生甲烷的呢?答案就是——細菌!

在深海中存在著 2 種細菌:好氧細菌和厭氧細菌。從他們各自的名字來看,很明顯可以知道好氧細菌會進行有氧呼吸,也就是它們會以氧的化學反應來獲得能量。反之,厭氧細菌不用以有氧呼吸來生存,意即它們可以生存在沒有氧的環境中。

在深海礦床中,沉積物孔隙中的水在幾公分的深度便是缺氧狀態的,且由於這個區域的水域包含了沉澱率高、有機碳含量豐富、環境酸鹼值適中等條件,厭氧細菌便會開始作用在這些沉積物的有機碳物質上,並產生甲烷。 

事實上,大陸地區也可以生成可燃冰,但是蘊含量極少,大約只有 1% 的可燃冰儲存在陸域[參考文獻 9]。其原因或許和組成陸地的砂石成分有關,因為科學家採樣之後的結果顯示,這些生成於陸域的甲烷水合物僅會存在於深度 800 公尺以下的砂岩或粉沙岩岩床中。同時,存在於砂石縫隙中的化合物,會被熱力或微生物分解;然而,重量較重的烴類——也就是組成天然氣的原料,卻會在較輕的化合物被分解完之後,才有機會被分解[參考文獻5]。可以看出大陸生成甲烷水合物的條件極為苛刻,因此,以這種方式形成的可燃冰,目前只存在於西伯利亞和阿拉斯加的永凍土中。

三、能源議題的救世主?

可燃冰在近幾十年突然出現在人們的面前,一躍成為炙手可熱的能源議題新寵兒。事實上,人類早在 1810 年就已經於實驗室中發現天然氣水合物這種物質,只不過受限於當時的時空背景以及科學發展進程,1934 年才在美國的輸氣管道中,發現天然的甲烷水合物這種「可以燃燒的冰塊」。直到 1968 年,蘇聯科學家才終於在西伯利亞發現了天然氣水合物礦藏[參考文獻 6],而在此期間,人們普遍認為天然氣水合物大多只會出現在太陽系外圍的低溫區[參考文獻5]

那麼,這種神祕的、甚至連科學家都還沒完全搞清楚生成機制的化合物,究竟是怎麼在這場能源大賽中「殺出重圍」的呢?這和可燃冰的轉化率、蘊藏量、能源危機,甚至人類環保意識的提升都有不可或缺的關係,可謂是天時地利人和的結果。

然而,目前可燃冰離完全商用仍有很長的一段路要走。先不提這個,我們來談談轉化率,顧名思義就是「可燃冰轉換成天然氣的效率」。前面有提到,當可燃冰轉化後,即可產生大量天然氣,而若我們精確地看數字,就可以發現 1 立方公尺的可燃冰分解後,可釋放出大約 164 立方公尺的天然氣[參考文獻 6]

這個轉化率著實驚人,因為若拿同等體積的天然氣和可燃冰相比,可燃冰能產出的能量是天然氣的 150 至 180 倍!所以,若可燃冰能順利轉為商用,無疑能使「運輸天然氣加蓋地下管線」、「天然氣存量減少以致價格上漲」等問題迎刃而解。 

不過,某種能源能是否能順利轉為商用,還有一個重要的條件——蘊藏量。目前,人類就正在面臨石化燃料存量枯竭的問題,然而人們的生活早已和石化燃料密不可分,小至織品原料,大至交通工具,或許都會面臨一場重大的革新,而這些無疑會造成經濟動盪,故這是十分棘手且嚴峻的狀況。

那麼,可燃冰的蘊藏量究竟能供人類使用多久呢?根據美國的天然氣需求量來看,僅開發美國本土外海的天然氣水合物,就足以供美國人使用 2000 年[參考文獻 9]!而台灣在西南海域發現的存量,可以供台灣使用約 40 年[參考文獻 10]!科學家也預估,可燃冰的天然存量大約是天然氣的 2 至 10 倍[參考文獻 5]

由於可燃冰驚人的轉化率、龐大的蘊藏量,再加上燃燒後不會產生殘渣等特性,造成的汙染相較於現今正在使用的各種燃料來說減少許多。在人類盡力追求經濟產能與環保平衡的今天,無疑是救世主一般的存在。

四、如何開採可燃冰

可燃冰看似是目前能源議題的最佳解,但我們對它的瞭解仍遠遠不夠,因為我們還不知道如何快速、安全且大量開採。自 40 年前第一次發現礦藏至今,科學家不斷探索、採集並分析可燃冰這種新興燃料,即使瞭解仍十分有限,但也已經發展出一些鑑別以及開採的方法。除了以前傳統、直觀(但是相對來說更低效且粗魯)的加熱法及減壓法以外,甚至有了更新型的開採方法。不過,在介紹新型方法前,我們可以先從較傳統的方法開始,以便更加瞭解開採可燃冰最基本的模型與原理。由於此種方法較為直觀,篇幅會較為簡短。

以下分別介紹 3 種傳統與新型開採方法:

(一)、傳統——加熱法與減壓法

加熱法,顧名思義就是將可燃冰層以對流法、電磁加熱法[參考文獻 6]等直接升溫,將可燃冰分解為天然氣與水,並且直接以管線收集天然氣。減壓法則是以管線導出可燃冰層下方的氣體或流體,使可燃冰層的壓力變小。此時,可燃冰中的「冰」就會因為壓力下降而液化成為水,使得天然氣被釋放。

(二)、新型——二氧化碳置換開採法

這個方法可說是傳統加熱法的進化型態,兩者都是以同樣的原理運作,即:使可燃冰升溫,讓水合物中的天然氣釋放出來,並加以收集。那麼,二氧化碳置換法為什麼是進階版的加熱法呢?原因就在於這種方法能在開採可燃冰的同時,將一部份的二氧化碳轉為水合物,封存在海底。以環保的角度來說,簡直可以稱得上是高收益。

此方法的核心概念是利用天然氣水合物和二氧化碳水合物保持穩定時的壓力差進行開採,意思就是,當我們把壓力控制在特定範圍下,天然氣水合物就會分解,而適合這個壓力的二氧化碳水合物就會形成[參考文獻 6]。圖六是二氧化碳置換法的示意圖,圖六(A)是開發前蘊藏可燃冰礦藏的海床。開採時,如圖六(B)所示,我們需要在可燃冰礦層的上方及下方都注入二氧化碳,下方那一層是主要運作的區域,而上方則用以阻隔並穩定海床。

接著,因為壓力被控制在適合二氧化碳水合物生成的範圍,因此當這種水合物逐漸生成並放熱時,最靠近底層的可燃冰就會被這些熱量分解,轉化出大量甲烷。此時如圖六(C),這些甲烷會被導管收集,所以下方的二氧化碳就會上移、填補空缺,然後持續生成二氧化碳水合物,使更多的可燃冰分解、釋放甲烷。在這種連鎖反應下,我們就可以達到在不斷釋放可燃冰中甲烷的同時,不斷(以水合物的形式)封存注入至海床中的二氧化碳[參考文獻 11]

圖六:以二氧化碳封存置換甲烷氣示意圖。圖/參考文獻 11

(三)、新型——固體開採法

最初的固體開採法是直接採集可燃冰固體,並將可燃冰固體移至淺水海域後加以分解,因為若是以物理或化學方法就地分解,會產生消耗能源,而且經費昂貴。之後,固體開採法也衍生出了另一種更進階的方式,稱為「混合開採法」。這種方法是將可燃冰就地轉為固體、液體混合的狀態,再將包含了可燃冰固體、液體及氣體的「泥漿」以導管傳輸至海平面上作業,藉此取得天然氣[參考文獻 6]。這種不用再將礦產運送至淺水區的方式顯然更加方便操作,且以導管運輸的方式能進一步減少可燃冰的損耗。

五、台灣的可燃冰及各式能源之比較

相對於其他科技、科學競賽來說,台灣在可燃冰的發展上,雖然起步較晚,仍然有相當亮眼的成績。2018 年,科技部的第二期能源國家型科技計畫(NEP-II)就在臺灣西南外海採集到天然氣水合物。而誠如主導計畫的中央大學地科系許樹坤教授所說:「台灣因沒有自主能源,更顯珍貴。」教授說:「台灣是一個能源缺乏的島嶼,99% 的能源都仰賴進口。科學的新發現,若能配合工程技術開發,就能帶來新契機。台灣西南海域蘊藏豐富,預估可用上 40-50 年,目前日本和中國大陸都已試開採[參考文獻 17]。」若是台灣能成功開採並使用可燃冰,或許便能在這場白熱化的能源議題中,找到一線生機。

各式能源之比較表。資料來源/參考文獻 16

參考文獻

  1. Frozen Heat: Exploring the Potential of Natural Gas Hydrates.(2017, May).Office of Fossil Energy and Carbon Management.
  2. Sara E. Harrison. Natural Gas Hydrates. Physics 240, Stanford University, Fall 2010.
  3. Model of hydrogen bonds (1) between molecules of water. Wikipedia.
  4. Juwon Lee and John W. Kenney III. Clathrate Hydrates. IntechOpen.
  5. 甲烷水合物,維基百科。
  6. 可燃冰,百度百科。
  7. Kenneth C. Janda. Gas Hydrate Structure.
  8. 冰與火戰歌,經濟部石化產業高值化推動辦公室簡報。
  9. 解開可燃冰封印,科學人雜誌。
  10. 西南海域可燃冰若開採學者:可供台灣使用逾40年,國立中央大學。
  11. 以二氧化碳封存置換甲烷氣示意圖,中央地質調查所。
  12. 超流體,維基百科。
  13. 固液共存,百度百科。
  14. Coal – Types, Uses and Formation
  15. Table 8.2. Average Tested Heat Rates by Prime Mover and Energy Source, 2010 – 2020,SAS Output (eia.gov)
  16. 各式發電比較,國立交通大學。
  17. 重大突破!中大地科團隊首次在台灣海域鑽獲「可燃冰」,國立中央大學。
所有討論 4