0

0
0

文字

分享

0
0
0

從合力為零到乘著風的旅程:怎麼溜滑梯才能安全又好玩呢?

活躍星系核_96
・2018/05/11 ・3365字 ・閱讀時間約 7 分鐘 ・SR值 497 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者 / 特公盟(還我特色公園行動聯盟)、葉于莉*
日本沖繩|特公盟李玉華提供

幾乎每個公園都有滑梯,長的、短的、曲折的、筆直的、中途平緩再直落的,多種形式與不同難易程度的滑梯,等著喜愛溜滑梯的人們來挑戰。然而在公園溜滑梯時,為什麼有的人會飛出去蹬屁股而有的人不會?為什麼有的滑梯會讓人煞不住車而有的又不會呢?到底有什麼因素會影響溜滑梯的過程?

從頂端開始的溜滑梯旅程

圖/pxhere

我們先來談談從滑梯頂端滑下來時這一系列的物理現象。

當一個人坐在滑梯入口時,他的速度是零,是處於靜止狀態。

當一個人坐在滑梯入口時,他的速度是零,是處於靜止狀態。在平面時重力的作用無法抵抗靜摩擦力。圖/作者提供。

當人往前移動到達斜面時,因為角度的傾斜,重力作用在非平面造成人會往下滑動。地球的重力會對地球上的所有物體產生向下的作用力。因此當你坐在滑梯的頂端時,就是重力使你向下滑動。

重力作用在非平面造成人往下滑動,滑動的同時摩擦力也在作用,摩擦力作用的方向和滑動方向相反,兩個方向相反的作用力互相抵銷後的淨作用力,繼續帶動他持續加速下滑。圖/作者提供。
  • 編按:此圖為更新版本,原始刊登版本其分力繪製有誤,特此更正。(2018/10/26)

如果沒有了重力,我們就無法體驗溜滑梯的樂趣了!

因為重力會讓人開始滑動,不過滑動的同時摩擦力也在作用;摩擦力是指當兩個物體相互摩擦時發生的力,例如滑梯和人的臀部或背部。摩擦力可以抵消重力的作用,減緩人在滑梯上下滑的速度,如果沒有摩擦力,下滑的速度會過快而導致有受傷的可能 ; 反之,摩擦力越大,滑梯就越不滑。摩擦力作用的方向和滑動方向相反,兩個方向相反的作用力互相抵銷後的淨作用力,繼續帶動他持續加速下滑。

而當人下滑至滑梯最底端滑出段之前,速度到達一個最大值,依據慣性定律,滑梯上的人將以這個速度進入平坦的滑出段。

當人下滑至滑梯最底端滑出段之前,速度到達一個最大值,依據慣性定律,滑梯上的人將以這個速度進入平坦的滑出段。圖/作者提供。

在物理學中,慣性的定義為物體抵抗其運動狀態被改變的性質,也就是物體會持續以現有的速度運動,除非有外力迫使改變其速度,在這個例子中的外力就是出段的摩擦力。由於滑出段是一個平面,此時重力的作用不再造成他的加速,假設滑出段的摩擦係數與滑道相同,那麼如果滑出段夠長的話,他終將會因為摩擦力而停下來不再繼續滑動。

滑不動、或是讓人撲街滑梯是怎麼一回事?

德國慕尼黑|特公盟李玉華提供

當然,廠商在製作溜滑梯時,通常不會精準計算需要多長的滑出段才足夠使人完全停止,一般只會要求長度符合法規來設計即可 (依照CNS12642,滑出段長度應為28公分以上)。所以,當你來到一個設有筆直型滑梯,且材質為磨石子或不鏽鋼的公園,你會發現你的孩子或你在溜下滑梯時往往是煞不住車地衝出滑梯,最後結果通常是以下這幾種:

  1. 雙腳成功著地,完美起身。
  2. 臀部直接落地。
  3. 腳著地但雙手和膝蓋也跟著著地呈跪姿或趴姿。
  4. 往前翻滾一兩圈才停止。

如果很不幸的是後面三者,疼痛程度會依據不同舖面材質而各異。

根據許多人的經驗發現,跌在鬆散材質的舖面 (例如:沙、木屑、礫石) 會比跌在橡膠材質舖面來得不痛,這是因為掉落在鬆散材質上會產生較大的變形或移位,而能吸收衝擊能量,再加上變形過程中產生更多的緩衝點也利於衝擊動能的吸收,這也是為什麼我們一直不斷推行鬆散材質舖面的原因之一。

圖/pixabay

走訪過許多公園的人可能也會發現,有些磨石子或不鏽鋼材的筆直型滑梯比較不會讓人飛出去,可能原因有這幾種:

  1. 斜度不大 (滑梯角度較平緩)。
  2. 摩擦力較大 (滑梯較不滑)。
  3. 滑出段較長。
  4. 滑出段終點高度趨近於零 (出口端貼地或幾乎貼地)。

當孩子在溜前面兩種滑梯時可能會跟你抱怨「滑梯不滑」、「滑梯根本溜不動」,因此我們可以得知滑梯在設計上若是斜度過緩、表面不夠光滑,就會變成一個溜不動、不有趣的滑梯。

關於第三點在文章前面已經有提過,如果滑出段夠長的話,會使滑下的人停住;反之如果過短,例如低於法規要求的28公分,在設計上會有很大的瑕疵,導致使用者溜下時沒有足夠的反應時間而衝出滑梯,使得發生意外的可能性相對升高。

對於最後一點大家可能就產生了疑惑:

既然滑梯出口的高度落差會讓人有蹬屁股的可能,那為何還要這樣設計呢 (為何滑出段要有終點高度呢) ?

這裡要談到「遊戲場設備規範」,很多人以為,滑梯的出口與地面有落差,是「設計不良」而會造成危險。其實並非如此,在遊戲場的安全規範中,滑梯的出口必須留有高度,目的在讓溜下來的人可以雙腳著地起身,以便能加速離開滑梯出口,才不至於被後方溜下的人撞上。此法規中提到:滑梯高度若是在122公分以下,滑出段終點高度距離防護舖面需小於28公分;滑梯高度若是大於122公分,滑出段終點高度距離防護舖面需18~38公分。

能平穩溜下滑梯的關鍵是什麼?

丹麥哥本哈根|特公盟李玉華提供

溜滑梯時先在滑梯頂端入口處坐穩,做好下滑的預備動作及心理準備,開始下滑後軀幹上半部稍微往後傾斜,預期滑動時的衝力,並將雙腿膝蓋繃直、將足踝作足背屈曲(dorsiflexion)的動作,讓腳跟稍微抬離滑梯面,並提前準備著陸,拿捏好著陸的時間。

溜滑梯的過程需要針對環境需求做出適當的動作反應,亦即是動作計劃的能力。

據筆者自身與孩子的經驗來說,溜過幾個非常滑的磨石子滑梯,頭一次滑下來幾乎都是屁股蹬地,但是經過兩三次後就能掌握並習慣速度感,並且習得下滑時身體重心的調整,最終便能雙腳著地成功起身。

北海道國營瀧野鈴蘭丘陵公園的熔岩滑梯。圖/⟪蓉蓉 Enjoys Life⟫提供

溜滑梯很有趣,但安全也同樣重要!值得留意的一點是,不論是大孩子或小小孩,都不建議由大人抱著一起溜滑梯。根據研究顯示,家長將孩子抱在腿上一起溜時,過程中可能會發生孩子的腳被卡住的情形而導致受傷。

當遇上高度大於150公分的滑梯時,不建議讓三歲以下孩童獨自滑溜,陪伴者可協助衡量孩童個別身心能力發展狀態,由較低矮的滑梯開始練習,陪伴在側輔助其姿勢,或是在滑梯出口端等待,以便在發生重心不穩滾落或飛出時能及時接住孩子;大一點的孩子如果擔心害怕可由大人陪伴,適時給予協助與鼓勵,等他準備好了就可以放手讓他自行練習,相信不久他也能掌握其中的訣竅,並且還會創造出自己的各式玩法,享受與風競速的刺激與樂趣。

下次當你又帶著孩子去公園溜滑梯時,請注視著他爬上滑梯,走到滑槽入口,屁股坐穩,調整姿勢,接著深呼吸,咻~準備迎接溜滑梯帶給孩子滿足愉悅的笑聲吧。

台灣新竹|特公盟 授權

*作者介紹:

  • 作者 / 特公盟(還我特色公園行動聯盟)
    為了推廣多元特色的兒童遊戲空間,讓孩子能在專屬自己的空間中長成自己,特公盟這一群認真自學的媽爸及成員,除了把相關的法條和 CNS 國家標準中相關規定研究透徹,還進一步開始解構剖析設計相關各種細節,讓每一位公民參與的親子,都能成為兒童遊戲空間的專家。
  • 葉于莉
    大學化工系畢業後,卻以電腦工程師踏入職場,但仍心繫生物、動物學及化學等領域。成為全職媽媽後,轉而全心投入孩子,一天 24 小時相處下來,發現孩子可以不吃但不能不玩,原來遊戲對其身心發展無比重要,於是加入特公盟一起爭取兒童遊戲權、翻轉兒童遊戲場。
文章難易度
活躍星系核_96
752 篇文章 ・ 96 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

1

2
0

文字

分享

1
2
0
金魚的記憶才不只 7 秒!記憶力怎麼回事?好想要超大記憶容量
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/01 ・2720字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 美光科技 委託,泛科學企劃執行。

你是不是也有過這樣的經驗?本來想上樓到房間拿個東西,進到房間之後卻忘了上樓的原因,還完全想不起來;到超巿想著要買三四樣東西回家,最後只記得其中兩樣,結果還把重要的一樣給漏了;手機 Line 群組裡發的訊息,看過一轉身回頭做事轉眼就忘了。

發生這種情況,是不是覺得很懊惱:明明才想好要幹嘛,才不過幾秒鐘的時間就全部忘記了?吼呦!我根本是金魚腦袋嘛!記憶力到底是怎麼回事啊?要是能擁有更好的記憶力就好了!

明明才想好要幹嘛,一轉眼卻又都忘記了。 圖/GIPHY

金魚的記憶才不只 7 秒!

忘東忘西,我是金魚腦?!無辜地的金魚躺著也中槍!被網路流傳的「魚只有 7 秒記憶」的說法牽累,老是被拖下水,被貼上「記憶力不好、健忘」的標籤,金魚恐怕要大大地舉「鰭」抗議了!魚的記憶只有 7 秒嗎?

根據研究顯示,魚類的記憶可以保持一到三個月,某些洄游的魚類都還記得小時候住過的地方的氣味,甚至記憶力可以維持到好幾年,相當於他們的一輩子。

還有科學家發現斑馬魚在經過訓練之後,可以很快學會如何走迷宮,根據聲音信號尋找食物。但是當牠們壓力過大時會記不住東西,注意力分散也會降低學習效率,而且記憶力也會隨著衰老而逐漸衰退。如此看來,斑馬魚的記憶特點是不是跟人類有相似之處。

記憶力到底是怎麼回事?

為什麼魚會有記憶?為什麼人會有記憶?記憶力跟腦袋好不好、聰不聰明有關係嗎?這個就要探究記憶歷程的形成源頭了。

依照訊息處理的過程,外界的訊息經由我們的感覺受器(個體感官)接收到此訊息刺激形成神經電位後,被大腦轉譯成可以被前額葉解讀的資訊,最終會在我們的前額葉進行處理,如果前額處理後認為是有意義的內容就有可能被記住。

在問記憶好不好之前,先了解記憶形成的過程。圖/GIPHY

根據英國神經心理學家巴德利 Alan Baddeley 提出的工作記憶模式,前額葉處理資訊的能力稱為「短期工作記憶」,而處理完有意義、能被記住的內容則是「長期記憶」。

你可能會好奇「那記憶能被延長嗎」?只要透過反覆背誦、重覆操作等練習,我們就有機會將短期記憶轉化為長期記憶了。

要是能有超大記憶容量就好了!

比如當我們在接聽客戶電話時,對方報出電話號碼、交辦待辦事項,從接收訊息、形成短暫記憶到資訊篩選方便後續處理,整個大腦記憶組織海馬迴區的運作,如果用電腦儲存區來類比,「短期記憶」就像隨機存取記憶體 RAM,能有效且短暫的儲存資訊,而「長期記憶」就是硬碟等儲存裝置。

從上一段記憶的形成過程,可以得出記憶與認知、注意力有關,甚至可以透過刻意練習、習慣養成和一些利用大腦特性的記憶法來輔助學習,並強化和延長記憶力。

雖然人的記憶可以被延長、認知可以被提高,但當日常生活和工作上,需要被運算處理以及被記憶理解的事物越來越多、越來越複雜,並且需要被快速、大量地提取使用時,那就不只是記憶力的問題,而是與資訊取用速度、條理梳理、記憶容量有關了!

日常生活中需要處理的事務越來越多,那就不只是記憶力的問題,而是有關記憶力容量的問題了……。圖/GIPHY

再加上短期記憶會隨著年齡增加明顯衰減,這時我們更需要借助一些外部「儲存裝置」來幫我們記住、保存更多更複雜的資訊!

美光推出高規格新一代快閃記憶體,滿足以數據為中心的工作負載

4K 影片、高清晰品質照片、大量數據、程式代碼、工作報告……在這個數據量大爆炸的時代,誰能解決消費者最大的儲存困擾,並滿足最快的資料存取速度,就能佔有這塊前景看好的市場!

全球第四大半導體公司—美光科技又領先群雄一步!除了推出 232 層 3D NAND 外,業界先進的 1α DRAM 製程節點可是正港 MIT,在台灣一條龍進行研發、製造、封裝。日前更宣布推出業界最先進的 1β DRAM,並預計明年於台灣量產喔! 

美光不久前宣布量產具備業界多層數、高儲存密度、高性能且小尺寸的 232 層 3D NAND Flash,能提供從終端使用者到雲端間大部分數據密集型應用最佳支援。 

美光技術與產品執行副總裁 Scott DeBoer 表示,美光 232 層 3D NAND Flash 快閃記憶體為儲存裝置創新的分水嶺,涵蓋諸多層面創新,像是使用最新六平面技術,讓高達 232 層的 3D NAND 就像立體停車場,能多層垂直堆疊記憶體顆粒,解決 2D NAND 快閃記憶體帶來的限制;如同一個收納達人,能在最小的空間裡,收納最多的東西。

藉由提高密度,縮小封裝尺寸,美光 232 層 3D NAND 只要 1.1 x 1.3 的大小,就能把資料盡收其中。此外,美光 232 層 NAND 存取速度達業界最快的 2.4GB/s,搭配每個平面數條獨立字元線,好比六層樓高的高速公路又擁有多條獨立運行的車道,能緩解雍塞,減少讀寫壽命間的衝突,提高系統服務品質。

結語

等真正能在大腦植入像伊隆‧馬斯克提出的「Neuralink」腦機介面晶片,讓大腦與虛擬世界溝通,屆時世界對資訊讀取、儲存方式可能又會有所不同了。

但在這之前,我們可以更靈活地的運用現有的電腦設備,搭配高密度、高性能、小尺寸的美光 232 層 NAND 來協助、應付日常生活上多功需求和高效能作業。

快搜尋美光官方網站,了解業界最先進的技術,並追蹤美光Facebook粉絲專頁獲取最新消息吧!

參考資料

  1. https://pansci.asia/archives/101764
  2. 短期記憶與機制
  3. 感覺記憶、短期記憶、長期記憶  
  4. 注意力不集中?「利他能」真能提神變聰明嗎?

文章難易度
所有討論 1

0

4
1

文字

分享

0
4
1
【2022 年搞笑諾貝爾工程學獎】旋鈕大小與手指數之間的完美關係:轉動音量鈕需要用到幾根手指?
linjunJR_96
・2022/09/29 ・1644字 ・閱讀時間約 3 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

旋鈕多大才好轉?誰知道啊!

有些問題是生活中不斷遇到,卻從來不會加以思索的。像是當你在開車時調整車上的冷氣溫度,還有聽音樂時調整藍芽音響的音量與音色。此時,指尖所操控的旋鈕該做多大,才是最好轉的呢?

「誰知道啊!」你心裡這麼想。

這種日常體驗的問題看似微不足道,但其實就是產品設計和工業設計這類領域最關注的焦點,甚至能幫你贏得搞笑諾貝爾獎!

本年度的搞笑諾貝爾獎頒獎典禮在線上舉辦,表揚世界各地的研究者如何用專業能力探討奇妙的問題。今天要介紹的工程學獎,頒給了日本千葉工業大學的松崎元教授,以及他扎實的研究論文《如何用手指操控柱狀旋鈕》。透過實驗室中的實際測量,松崎教授紀錄了人們使用各種大小的旋鈕時,如何下意識地將不同手指放在不同位置來操作。

圖/Pexels

當我們看見一顆旋鈕,我們會透過目測其大小,來決定該用怎麼樣的手勢轉它。如果是直徑一公分左右的小旋鈕,我們會選擇只用拇指和食指來操作,更多的手指只會徒增不便;但如果是快十公分的大旋鈕,就需要動用四五根手指。這個決定不單純只是個人偏好,而是跟人類手掌和手指的構造有關聯。只有某種握法才是最舒服方便的。

此外,通常看到旋鈕就直接給它轉下去了,不會在旋鈕上面嘗試並修正來達成「最佳觸感」。也就是說,這個決策過程從小多次練習後,已經完全變成下意識的過程,只能透過實際測試結果來描繪。

下意識的選擇,只有做實驗才知道

在實驗室中,松崎教授的透明桌面上平放一個白色的圓形旋鈕,並請 32 名受試者順時針旋轉這個旋鈕,並從桌面下的攝影機捕捉人們手指的位置。旋鈕的直徑從七毫米到十三公分,總共 45 種。結果顯示,當旋鈕越大,動用的手指數量越多(一如預期)。只要旋鈕直徑超過五公分,大多數受試者便會開始使用五根手指。

根據所有受試者的統計結果,松崎教授整理出了上方這個十分優雅的圖表。標靶一般的同心圓代表各種大小的旋鈕。圖下半的粗黑直線是基準線,所有測試結果的拇指位置統一對齊這條線,以利進行比較。上方的四條曲線,由左到右分別是食指到小指的位置,虛線則是統計標準差(當然,實際上的實驗結果應該是一個一個離散的點,這裡簡單地用二次曲線進行擬合,比較好看)。

圖/參考資料 3

這張圖總結了不同旋鈕大小的情況下,人們手指位置如何變化。有趣的是,隨著旋鈕變大,四根手指的位置並非簡單地輻射向外,而是呈現螺旋狀。猜測是跟手掌張開並旋轉的方式有關。這種細微的趨勢不做實驗還真猜不到。

不是為了搞笑,每份研究都超認真

這份研究其實在 1999 年就已經發表,時隔二十多年獲得搞笑諾貝爾獎。儘管中文翻譯是「搞笑」諾貝爾獎,但是包括松崎教授在內的所有獲獎者,可是從來沒有要搞笑,而是以非常專業的態度在做他們的工作,這些研究成果也都發表在正式的期刊。自 1999 年的旋鈕研究之後,松崎教授又相繼研究了提袋握把和雨傘握把,可說是精通抓握之道的男人。

雖然得到搞笑諾貝爾獎,但研究內容都是超認真。 圖/GIPHY

松崎教授表示,他很樂見這個獎項讓更多人開始關注設計工程的領域。這門學問專注於探索人與物品之間的關係,並藉此創造最舒適的使用體驗,打造出實用的工業產品。

更多有趣的研究,請到【2022 搞笑諾貝爾獎】

參考資料

  1. Japanese professor wins Ig Nobel prize for study on knob turning
  2. Japanese researchers win Ig Nobel for research on knob turning
  3. 松崎元, 大内一雄, 上原勝, 上野義雪, & 井村五郎. (1999). 円柱形つまみの回転操作における指の使用状況について. デザイン学研究, 45(5), 69-76.
linjunJR_96
31 篇文章 ・ 542 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

2

3
2

文字

分享

2
3
2
燕麥奶為什麼這麼好喝?如牛奶般微甜、絲滑的口感是怎麼來的?——解析燕麥奶的加工原理
Evelyn 食品技師_96
・2022/09/25 ・3649字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

你喝過燕麥奶了嗎?相信很多人第一時間都會想到 Oatly,它原先流行於歐美咖啡界,後來因全球興起植物性飲食,加上具有健康、永續等訴求,使得燕麥奶的風潮也迅速吹進臺灣來。

燕麥奶背後代表的健康與永續等訴求,讓風潮在這幾年間快速傳開。 圖/GIPHY

現在知名連鎖咖啡店星巴克與 Cama 的燕麥奶拿鐵皆使用 Oatly 製作;路易莎與 85 度 c 則採用愛之味研發的咖啡師燕麥奶;後來連鎖超商的現煮咖啡也紛紛跟進,如今「燕麥奶拿鐵」已成為咖啡廳菜單上必喝的飲品之一。

但是你有沒有想過,充滿膳食纖維的燕麥,做成飲料感覺應該是口感稠厚,並且有顆粒和渣渣感,然而這個新型態的植物飲品燕麥奶,喝起來卻有如牛奶一般,具有微甜、絲滑的口感,到底是如何辦到的呢?

燕麥有多營養?內含 β-葡聚醣幫助保健

那麼就先從「燕麥」這個原料開始談起。

燕麥(Avena sativa L.),因其果實外穎先端芒尖分叉如燕尾狀而得名,為溫帶地區一年生的作物[1]

燕麥果實外穎先端芒尖分叉如燕尾狀。圖 / 參考資料 1

燕麥穀粒結構一般可簡單分成胚芽(germ)、胚乳(endosperm)及麩皮(bran)三個部分,胚乳主要成分是碳水化合物與蛋白質,也是製造成燕麥奶最主要的來源;纖維主要存在於麩皮;而礦物質及維生素多存在於胚芽及麩皮中[2]

燕麥營養價值高,為蛋白質和膳食纖維的良好來源,其蛋白質含量約為 15-20%,燕麥球蛋白(avenalin)是最主要的蛋白質(約佔 70-80%),在穀類中被視為優良蛋白質的來源之一[3]

而 β-葡聚醣( β-glucan)是燕麥最具保健功效的水溶性膳食纖維,在遇水後會膨脹,形成人體無法吸收的膠狀體。故可延緩食物消化吸收的速度,延長飽足感,也具有降低血液中的低密度脂蛋白膽固醇(low density lipoprotein-cholesterol ; LDL-C)與血糖含量等益處[4]

燕麥穀粒結構。 圖 / 參考資料 3

改善燕麥糊化後變稠的關鍵——酵素水解

燕麥的主要由澱粉組成,具有高溶脹(high-swelling)的特性,在加熱過程中會快速吸水膨潤,於攝氏 44.7-73.7 度間(糊化溫度)糊化產生高黏稠性米白色漿體,甚至可達到如凝膠狀態的稠度[2]

這樣不但限制燕麥的添加比例,也增加製造過程中的操作與清洗難度。為了讓它保持流動性,有一道「酵素水解」的程序(酵素又稱為酶),可將澱粉分解成小分子以提升流動性,在加工過程中就能夠順利流動[2]

延伸閱讀:烘焙系動畫利用米做麵包——淺談米的科學與應用

而燕麥因澱粉含量高,需使用澱粉酶(amylase)進行水解,一般廣泛應用於澱粉水解的酵素有兩種,為 α-澱粉酶與 β-澱粉酶。

α-澱粉酶(α-amylase)是一種內切型葡萄糖苷酶,可任意切斷 α-1,4 糖苷鍵(glycosidic bond),生成大小不一的分子,包括直鏈和支鏈寡糖、麥芽糖、葡萄糖及糊精等產物,因反應完後產物黏度會急劇下降,故又稱「澱粉液化酶」。

β-澱粉酶(β-amylase為外切型葡萄糖苷酶,從澱粉的非還原端逐次以一分子麥芽糖為單位,切斷 α-1,4 糖苷鍵,產物為麥芽糖、少量糊精或葡萄糖,因此又稱「澱粉糖化酶」[5]

另外有研究指出,燕麥在水解過程中若單一使用 α-澱粉酶或 β-澱粉酶,無法使燕麥水解液兼具黏度降低與產生麥芽糖的優點,兩者混合使用的效果最佳[2]

微甜又絲滑的燕麥奶是怎麼來的?

既然澱粉酶是製造燕麥奶的關鍵,那到底是如何加工的?

首先,將燕麥加水浸泡軟化,研磨成燕麥漿,接著升溫至澱粉酶適合的作用溫度,加入澱粉酶進行水解。燕麥漿會從濃稠狀逐漸轉變為流動狀,並產生許多麥芽糖或少量葡萄糖等,甜度也會因此而提高。

水解結束後,將燕麥漿加熱至攝氏 90 度以上使澱粉酶失去活性(即蛋白質變性),然後進行過濾,去除無法水解的纖維和殘渣,獲得澄清的米白色液體,為燕麥水解液[2]

再將燕麥水解液與水、植物油、食鹽、磷酸鹽類或是其他營養成分混合,例如:可添加碳酸鈣,彌補燕麥奶缺乏鈣質的缺點;添加膠體以提升飲品穩定性;或是添加香料來增添風味。

將上述原料混合後進行均質(homogenization)[注 1],形成質地穩定的飲品,這樣就完成微甜(來自麥芽糖或葡萄糖等)又絲滑(來自植物油)的燕麥奶,即可進行殺菌、包裝來販售囉!

如此一來,我們熟悉的好喝燕麥奶就完成了。 圖/envato.elements

β-葡聚醣不見後,燕麥奶又為什麼能打成奶泡?

然而這樣的加工方式有個遺憾的缺點,那就是在後段進行過濾去除殘渣時,容易造成 β-葡聚醣損失。

因 β-葡聚醣大部分存在於大粒徑的殘渣中(麩皮),這些殘渣多為不溶性膳食纖維,故不會被澱粉酶水解[2],所以若想要補充 β-葡聚醣,建議直接沖泡燕麥片來食用會較容易達到保健的效果。

此外,燕麥奶之所以能打成綿密的奶泡,是因為燕麥含有的「蛋白質」具有起泡性。

燕麥奶打入空氣後,蛋白質展開,吸附到氣體與液體之界面處包住氣泡,蛋白質的疏水端隨之移動到氣泡內,親水端則移到氣泡外,與液體相互作用形成液體膜層,氣泡就被這個膜保留住,形成綿密的奶泡。

而起泡性會受到 pH 值、離子強度和糖質種類的影響,一般而言,添加鹼性材料可增加泡沫體積;添加糖質可增加泡沫安定性[5]

故一般市售燕麥奶均會添加磷酸鹽類(鹼性材料);糖質來自燕麥水解液本身的產物,即麥芽糖或葡萄糖等,就不需再額外添加。

燕麥奶本身含有的蛋白質,與添加磷酸鹽類,都可以幫助燕麥奶打出綿密的奶泡。(本圖僅供示範,請勿浪費食物!) 圖/GIPHY

為什麼燕麥奶的成份表沒有標出「酵素」?

不過,仔細看市面上燕麥奶的成份標示,似乎都沒有標出「酵素」或「澱粉酶」等字樣,依《食品添加物使用範圍及限量暨規格標準》,酵素屬於食品添加物[注 2],不是應該要標示出來嗎?

因為法規特別規定,食品添加物若在食品加工製造使用,在終產品完成前,經過中和、去除或以其他方法使其失去活性,對終產品無功能者,得免予標示[注 3]

上述分享了這麼多燕麥奶的小知識,是因為隨著友善環境與健康意識的抬頭,植物基產品已成為現代人的食尚新選擇,而「燕麥奶」便是新型態植物基飲品的最佳代表。

燕麥奶不但能打發出綿密細緻的奶泡,適合搭配咖啡或茶,最近還發展出更多元的料理方式,像是製作成燕麥奶吐司、燕麥奶甜點,甚至還能入菜,做成燉飯或是燕麥奶火鍋等,提供素食者更多友善低負擔的美味餐點[8]

相信未來會有愈來愈多人來一同響應這股蔬食趨勢,甚至成為新的飲食型態。

相信未來會有愈來愈多人喜歡上這股新形態的飲食風潮。  圖/GIPHY

註解

1. 均質(homogenization),利用高壓所產生的剪切力,將大小不一的脂肪球撞碎成大小均一且細小的脂肪球,使脂肪球能均勻散佈在水中,形成穩定且均勻飲品,才不會產生油水分離的現象。

2. 酵素在《食品添加物使用範圍及限量暨規格標準》中,被歸於第 (十七) 其他類別的食品添加物[6]

3. 食品安全衛生管理法施行細則第九條第二項指出,食品添加物若對終產品無功能者,得免標示之[7]

參考資料

1. 莊溪,2000。燕麥。認識植物。

2. 陳愉婷,2020。燕麥應用於植物性飲品之研究開發。食品工業 52:07,49-54。

3. Chu, Y. and Blatner, D. J. 2016. The Whole Grain Picture: Sharing the Science Behind Oats. International Journal of Food Science and Nutrition 1: 6 1-10.

4. Deswal, A., Deora, N. S. and Mishra, H. N. 2013. Optimization of Enzymatic Production Process of Oat Milk Using Response Surface Methodology. Food and Bioprocess Technology 10.1007/s11947-013-1144-2

5. 顏國欽,2020。最新食品化學。臺中市:華格那出版有限公司。

6. 食品藥物管理署,2022。食品添加物使用範圍及限量暨規格標準。衛生福利部。

7. 食品藥物管理署,2017。食品安全衛生管理法施行細則。衛生福利部。
8. 經濟日報 新聞部編輯中心,2021。台灣首發「燕麥奶入菜」 美味復「蔬」計劃正式啟動。聯合報系。

所有討論 2
Evelyn 食品技師_96
16 篇文章 ・ 13 位粉絲
一名食品技師兼研發專員,對食品科學充滿熱忱。有鑒於近年發生許多食安風暴,大眾對於食品安全的關注越來越高,網路上卻充斥著不實資訊或謠言。希望能貢獻微薄之力寫些文章,讓更多人有機會認識食品科學的正確知識!想獲得更多食品營養資訊可追蹤作者的粉絲專頁喔!https://www.facebook.com/profile.php?id=100066016756421