Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

公民科學家發現銀河系裡的大小泡泡

臺北天文館_96
・2012/03/18 ・1130字 ・閱讀時間約 2 分鐘 ・SR值 523 ・七年級

一個由志工組成的團隊,利用史匹哲太空望遠鏡(Spitzer Space Telescope)紅外觀測資料,在銀河系盤面中發現超過5,000個氣泡狀結構,這些氣泡狀結構多半是年輕熾熱的恆星向外吹出的恆星風將周圍的氣體塵埃向外推擠所形成的,換言之,這類氣泡狀結構通常是新生恆星形成之地的特徵。

這個由35,000多名「公民科學家」組成的志工團隊,在英國牛津大學天文學家Robert Simpson的帶領下,仔細地篩檢史匹哲太空望遠鏡「銀河系計畫(Milky Way Project)」的線上資料,尋找各式各樣的氣泡狀結構;最後結果出爐後,發現的氣泡狀結構是先前已知10倍以上,整個銀河盤面就像冒著泡泡的香檳一般,到處是氣泡狀結構,讓這些市民科學家們喜出望外。這些氣泡狀結構既然代表新恆星形成之地,那麼所發現的數量如此龐大,顯示銀河系中的恆星形成比先前認為的還活躍許多。

利用電腦程式自動判別氣泡狀結構的工作,至今成效仍不佳;但是人眼加人心,對這種判別工作而言就是的絕妙組合,只需瞧見一部份氣泡狀結構的弧狀物質,不需瞧見完整的環狀,或是對付層層疊疊的泡泡,都能準確的將氣泡狀結構「揪」出來。因此銀河系計畫就是集合眾人智慧,每個氣泡狀結構都得通過5個人以上的鑑識才予以確認,編入目錄。這些志工利用一種特殊的精細繪圖工具,將史匹哲紅外影像中可能為氣泡狀結構的部分標示出來。

銀河系計畫使用史匹哲太空望遠鏡的GLIMPSE(Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire)和MIPSGAL多波段光度相機(Multiband Imaging Photometer for Spitzer Galactic)等巡天計畫的資料來進行分析。這些巡天資料涵蓋約130度寬、2度高、沿著銀盤的天空視野。

-----廣告,請繼續往下閱讀-----

公民科學家的志工們所找到的氣泡狀結構,大小與形狀的差異頗大,這是因為受到距離和氣泡狀構造周圍局部氣體雲限制的關係。這些搜尋結果將可幫助天文學家確認整個銀河系的恆星形成概況。此研究下的其中一個主題就是被觸發的恆星形成狀況,因為大質量恆星誕生而形成並向外擴張的氣泡狀結構,或壓縮鄰近的星際氣體而引發新一波的恆星形成,就像是骨牌效應一樣,所以銀河系計畫中常發現大一點的氣泡狀結構邊緣散佈著小一點的氣泡狀結構。

這些氣泡狀結構不同型態分佈現象其實可勾勒出銀河系的構造。例如:在某處找出大量的氣泡狀結構,很可能與旋臂有關。而或許這個計畫最大的驚喜是發現銀心各向邊緣上的氣泡狀結構數量驟降,與先前認為銀心附近因氣體密度高、恆星形成數量應該更多的印象不同。

除了氣泡狀結構的工作仍持續不斷外,銀河系計畫的志工團也捕捉到其他現象,例如星團、暗星雲、氣體的「綠色團塊(green knot)」和模糊的紅色天體(fuzzy red object)。對銀河系計畫或市民科學家相關計畫有興趣者,可拜訪下列網站:www.milkywayproject.org,或https://www.zooniverse.org/

資料來源:Citizen Scientists Reveal a Bubbly Milky Way[2012.03.07]

-----廣告,請繼續往下閱讀-----

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
7

文字

分享

0
3
7
油炸的聲音學:水滴在油鍋中的三種爆炸方式
linjunJR_96
・2022/12/28 ・2397字 ・閱讀時間約 4 分鐘

廚房小秘訣:用竹筷試油溫,原理是什麼?

傳統的烹飪智慧告訴我們,要判別油鍋的溫度不需要溫度計,只要插入油鍋的竹筷周圍開始浮現細小的氣泡,便表示油鍋溫度已達,可以開始放入食材。另外,煎牛排或是炒菜時,如果在食材下鍋的當下沒有聽到美味的滋滋聲,通常便表示溫度太低,無法做出漂亮的料理。

在廚房中,我們時常可以靠耳朵來測量溫度。這些氣泡和相應的 嗶啵聲來自於筷子(或食材)中的水分碰到滾燙的油鍋時,瞬間蒸發產生的微小爆炸。

傳統的烹飪智慧告訴我們,要判別油鍋的溫度不需要溫度計。圖/pexels

猶他州立大學機械航太工程系的木山景仁(Akihito Kiyama)對這個現象很有興趣,拿起高速攝影機和麥克風紀錄了竹筷插入熱油中的事件,希望能仔細觀察熱油中的劇烈反應。出乎意料的是,他發現油鍋中的水滴在爆破時有三種主要的型態,各個所產生的氣泡形狀及爆破聲音都非常特別。

做為一個初步實驗,他首先直接將浸過水的竹筷插入高溫油鍋內。下圖可以看到氣泡的數量和大小都明顯和溫度成正相關,看來流傳許久的廚房秘訣沒有讓我們失望。

-----廣告,請繼續往下閱讀-----
可以看到氣泡的數量和大小都明顯和溫度成正相關。圖/作者提供

此外,他也觀察到氣泡數量和筷子中的含水量有明顯的關聯,沒有事先浸水的竹筷產生的氣泡少很多。另一方面,若是改用乾燥的金屬筷則不會觀察到任何氣泡,因為當中幾乎沒有任何水分。

顯然的,水分多寡是重點。但由於每雙竹筷的組成與含水量較難控制,研究團隊改用一條兩端懸掛的U形鐵絲,浸水後連著底部沾黏的水珠一同緩緩放入熱油中,等同於是在油炸一顆水珠,將實驗聚焦在水滴帶來的氣泡爆破。

氣泡的三種型態

利用每秒一萬張的高速攝影以及近距離收音的麥克風,研究團隊企圖進一步觀察爆破過程的細節以及產生的聲音特性。

根據爆炸時的不同深度,他觀察到三種氣泡型態:

-----廣告,請繼續往下閱讀-----

第一種是爆破型氣泡。當水滴幾乎一接觸到油面就蒸發膨脹,引發一個凸出油面的圓形氣泡。最後在破裂時噴濺出大量的油滴。

爆破型氣泡。影/作者提供

第二種的拉長型氣泡在較深的位置才開始膨脹,因此沒有造成液面破裂,反而是朝上射出高高的柱狀熱油,同時氣泡則向下延伸形成一個長形的空氣室。

拉長型氣泡。影/作者提供

爆破型和拉長型氣泡的聲音雖然聽起來不太一樣,但是頻率特徵基本上大同小異,都是 1400 的赫茲清脆爆破聲響。值得一提的是,在這兩種情況下爆破聲響都不是來自油面上可見的泡泡破裂。從高速影像和錄音結果的比對可以發現,聲音的最大值明顯出現在泡泡破掉前的膨脹階段。此時的高溫蒸氣快速膨脹,劇烈壓力改變帶來空氣震波,基本上和空氣中炸彈發聲的原理一模一樣。因此說這些氣泡正在「爆炸」可是一點都不誇張。

除了上面兩種氣泡之外,當水珠意外從鐵絲上滑落掉入熱油中,研究人員發現了第三種與眾不同的表現:震盪型氣泡。由於掉落速度較快,水珠一直到較深的位置才開始汽化膨脹,並在液體表面下進行每秒數百次的膨脹收縮,過程持續了幾毫秒,最後消散成數個小氣泡。

-----廣告,請繼續往下閱讀-----
震盪型氣泡。影/作者提供

儘管沒有明顯的噴濺或爆破,震盪型氣泡仍然會引發聲響,但聽起來似乎和前面兩者不太一樣,持續時間也較久。仔細一看,聲響的主要頻率竟然和高速影片中氣泡膨脹收縮的頻率不謀而合,都在 800 赫茲左右。研究人員因此推測,震盪型氣泡產生的聲響其實是來自於油面下的高速震盪。

研從上到下分別是爆破型、拉長型、震盪型氣泡。
圖/作者提供

關於震盪行為的起源,研究人員沒有提出直接的解釋。不過他們同時觀察到另一個有趣的現象:氣泡在下方高速震盪時會對熱油表面造成擾動,讓某些原本浮在油面相安無事的小氣泡破裂並噴濺。這顯示熱油表面的氣泡對於物理擾動十分敏感,可能也是造成廚房中熱油噴濺的主要原因之一。

這三種型態,不限於油鍋

說到這,有一個重要的問題還沒問:這三種氣泡的形態和油溫高低有沒有關係呢?也就是,我們能不能用不同的氣泡型態或爆炸音高來判別油溫高低?研究人員嘗試了 170 度到 220 度的常見油溫,發現三種氣泡型態在各種溫度都有機會出現。油溫的最佳判準,或許還是簡單的一根竹筷。

這次研究的眼光也不僅止於家中的廚房。大自然中的液面噴濺,例如海邊拍打的浪花還有火山爆發時的熔岩,會產生懸浮於空中的液體微粒,也就是氣溶膠(Aerosol)。不論是天然還是人工製造氣溶膠,都對環境有很大的影響。來自海浪的海洋氣溶膠主宰了全球氣候,而人為排放的氣溶膠則是我們看到灰濛濛的空氣汙染。

-----廣告,請繼續往下閱讀-----

木山景仁和他的團隊希望透過這次研究辨明不同的氣泡種類與相對應的聲音特徵,用於發展音訊偵測技術來監控熱油噴濺或是氣溶膠形成的過程。

下方是研究團隊製作的精華影片,收錄了各種溫度下的竹筷氣泡以及三種氣泡型態的聲響,讓讀者親耳體驗油炸食物的美妙聲響。

各種溫度下的竹筷氣泡以及三種氣泡型態的聲響。影/Youtube

-----廣告,請繼續往下閱讀-----

0

12
5

文字

分享

0
12
5
活躍黑洞的炙熱遺跡:費米泡泡
EASY天文地科小站_96
・2022/04/29 ・4611字 ・閱讀時間約 9 分鐘

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星
圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team.

你看過銀河嗎?

如果你在晴朗的夏日午夜旅行到沒有光害的山上,將會看到天上有一條淡淡的、若有似無的亮帶,好像一條薄薄的雲橫跨夜空,它正是我們所居住的星系 ── 銀河系(Milky Way)的盤面。在數位相機的加持之下,我們還能看到這薄薄的盤面上,其實布滿恆星、星雲、以及塵埃帶,複雜、深邃而美麗。

美麗的銀河。圖/陳子翔(CC BY-NC-ND 4.0)拍攝於清境。

但如果,你有一雙能夠看到「伽瑪射線」的眼睛,你將看到兩個視角高 50 度、寬 40 度的巨大橢圓形「泡泡」,矗立於銀河盤面兩側。它們名為「費米泡泡 Fermi Bubbles」,是銀河系中巨大且神祕的結構之一。

費米泡泡的起源,以及存在的意義,一直是過去十多年來,天文學家相當關注的研究主題。

費米泡泡示意圖。圖/NASA’s Goddard Space Flight Center

最近(2022 年 3 月),一篇刊登於《自然天文學》(Nature Astronomy)的研究顯示,壯闊的費米泡泡很可能源自兩百多萬年前,銀河系中心超大質量黑洞的一次能量爆發。

-----廣告,請繼續往下閱讀-----

費米泡泡的發現

當我們一聽到「費米泡泡」這個詞,腦海中浮現的第一個問題往往是:

「費米是誰?這個泡泡跟他有什麼關係?」

在物理界,恩里科.費米(Enrico Fermi)這個名字可謂家喻戶曉。他是 20 世紀初最重要的物理學家之一,曾參與曼哈頓計畫,設計與建造世上第一個核子反應爐和原子彈;並且在量子力學、核子物理、粒子物理和統計力學都貢獻卓越。後世以他命名的物理概念、研究計畫不計其數。這之中,就包含「費米伽瑪射線太空望遠鏡 Fermi Gamma-ray Space Telescope」。

費米太空望遠鏡。圖/NASA

正如其名,費米是一座專門用於觀測伽瑪射線的太空望遠鏡,它於 2008 年發射升空,是軌道上最好的伽瑪射線太空望遠鏡之一。比起前輩們,費米擁有更大的視野、更高的靈敏度和空間解析度,可以看得更廣、更暗、更清楚。

它的主要任務,是不斷的掃視整片天空,繪製伽瑪射線的全天地圖(all sky map),研究黑洞、中子星、超新星等宇宙中最高能的天體。

費米太空望遠鏡的十週年科學成果紀念海報。圖片中橢圓形的區域,就是費米拍攝的伽瑪射線全天圖,以等面積投影法投影成二維的圖。中間的水平亮帶源自銀河盤面上的氣體,上下兩個泡泡狀結構就是費米泡泡的示意圖。圖/NASA

費米太空望遠鏡升空短短兩年後,天文學家就從觀測資料中發現,如果我們將費米的全天伽瑪射線圖中已知的星體(比如銀河系的瀰散氣體、中子星、其他星系等)全部扣除,將會看到銀河中心的上下兩側,各有一對高 50 度、寬 40 度的巨大橢圓形區域,而這是從未發現過的銀河系新結構!

-----廣告,請繼續往下閱讀-----

天文學家於是將它命名為「費米泡泡 Fermi Bubble」,以紀念費米太空望遠鏡的重要貢獻。

相對於銀河系中的瀰散氣體,費米泡泡的亮度其實並不高。因此天文學家必須先小心翼翼的將其他伽瑪射線的來源建模並扣除,才能看到這巨大但黯淡的構造。影/NASA Video

而除了在伽瑪射線看到的費米泡泡之外,天文學家也在微波和 X 射線波段看到了相似的結構。

在微波波段,威爾金森微波各向異性探測器(WMAP)和普朗克衛星(Planck)都在費米泡泡的位置觀測到兩片橢圓形的明亮區域,天文學家稱之為「微波薄霧 microwave haze」。而在 X 射線波段,2019 年才昇空的義羅西塔(eROSITA)衛星則發現了與費米泡泡相似,但是更大的泡泡狀結構,被稱為「eROSITA 泡泡」。

另外,在紫外線波段,雖然沒辦法直接看見泡泡狀的結構,但天文學家藉由遙遠天體通過費米泡泡中的稀薄氣體時產生的吸收譜線,可以計算出費米泡泡的膨脹速率,大約是每秒數百到數千公里的等級。

綜合以上資料,天文學家認為費米泡泡應該是源自數百萬至一千萬年前,銀河系中心的一次巨大爆炸。這場爆炸大約釋放了 1048 – 1049 焦耳的龐大能量(相當於太陽終其一生釋放的能量,再乘以 10000 倍以上),並加熱了銀河系中心的氣體,使其以每秒數千公里的速度劇烈膨脹。百萬年後的今天,就成為了橫跨數萬光年巨大泡泡。

-----廣告,請繼續往下閱讀-----

但是,這張錯綜複雜的拼圖,還缺少了最核心的一塊:

這麼龐大的能量,究竟是從何而來?

超新星爆發還是黑洞噴流?費米泡泡的身世之謎

費米泡泡剛被發現不久,天文學家就對驅動費米泡泡的核心引擎,提出了兩位候選人:

第一種觀點,認為銀河系中心在數千萬年前可能曾有大量的恆星形成,其中年輕的恆星由於壽命短暫,很快的就走完它的一生,並發生超新星爆炸,釋放出巨大的能量。

另一種觀點,則認為銀河系中心的超大質量黑洞在數百萬年前可能短時間內吃進了大量氣體,並在過程中將能量以噴流(jet)或外流(outflow)的形式釋放出來。

-----廣告,請繼續往下閱讀-----

兩種說法聽起來都頗有可能,而且天文學家都有在其他星系看過類似的現象,那該怎麼知道哪邊才是對的呢?這時,天文學家們就兵分兩路,觀測學家們繼續對費米泡泡進行更多觀測,尋找更多可能的隱藏線索;理論學家則利用電腦模擬,嘗試在電腦中重現出觀測結果。

劇烈的超新星爆發(如左圖的 M82)與黑洞噴流(如右圖的 Centaurus A)都可能產生類似費米泡泡的結構。圖/NASA, ESA, CXC, and JPL-CaltechNASA/CXC/SAO, Rolf Olsen, JPL-Caltech, NRAO/AUI/NSF/Univ.Hertfordshire/M.Hardcastle

早年,兩派假說各有各的優勢,也有各自難以解釋的弱點。但隨著觀測資料的不斷累積,天文學家漸漸發現黑洞的噴流假說似乎更符合觀測結果,因此更具說服力。但即使如此,想要在電腦模擬中一次重現費米泡泡所有的觀測特徵,仍是相當困難的挑戰。

三個願望,一次滿足

然而今(2022)年三月,清大天文所楊湘怡教授利用三維磁流體力學電腦模擬(MHD Simulation),就一次重現了費米泡泡、義羅西塔泡泡與微波薄霧三個重要的觀測特徵。

他們假設銀河系中心的超大質量黑洞,在 260 萬年前曾經朝著銀河系盤面的上下兩側噴出兩道噴流。噴流帶有 1050 焦耳的強大能量,其中含有大量以接近光速運動的高能電子。當這些高能電子與低能量的光子碰撞時,電子會將能量傳遞給光子,就好像被保齡球打到的球瓶一樣,讓光子從低能量的可見光,變成高能量的伽瑪射線。這個被稱為「逆康普頓散射 Inverse Compton Scattering」的機制,讓我們能在伽瑪射線看到費米泡泡。

-----廣告,請繼續往下閱讀-----

與此同時,這些高能電子在銀河系的磁場中運動時,會以「同步輻射 Synchrotron Radiation」的方式放出微波與無線電波,形成我們看到的微波薄霧。最後,強大的噴流在撞擊銀河系中的氣體時,會產生以每秒數千公里高速移動的震波(Shock Wave)。震波所到之處,受到壓縮而加溫的氣體就會釋放出 X 射線,成為我們看到的義羅西塔泡泡。而且氣體運動的速度,也與紫外線觀測的結果相符。

這個研究結果,將伽瑪射線、X 光、紫外線到微波的所有觀測結果,用黑洞噴流漂亮的一次重現,這無疑是我們對費米泡泡理解的一大進展。

將理論模擬的費米泡泡投影到銀河系的可見光影像上。圖中可以清楚的看到費米泡泡(Cosmic rays)、義羅西塔泡泡(Shocks)以及它們跟太陽到銀河系中心的距離(28000 光年)的大小比較。圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team

未來展望

那麼,費米泡泡的身世之迷,就此蓋棺論定了嗎?

嗯⋯⋯還沒這麼快。

-----廣告,請繼續往下閱讀-----

無論多麼精細的模擬,終究是對真實世界的近似與簡化,理論學家永遠可以繼續考慮更多的物理機制,計算出更精細的結果。觀測天文學家也會不斷拿出更多、更好的儀器,挑戰模擬的結果。

更宏觀的看,如果銀河系中心的超大質量黑洞在兩百多萬年前真的曾經如此活躍,它釋放出的龐大的能量,是否曾對銀河系造成其他的影響?我們是否能夠從中學到更多關於銀河系的歷史,以及黑洞跟星系間複雜的共同演化機制?這些都有待天文學家的持續探索。

費米泡泡的故事,仍未完結。

銘謝

感謝論文第一作者、清大天文所楊湘怡老師對本文的指導與建議。

參考資料(學術論文)

-----廣告,請繼續往下閱讀-----
  1. Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole | Nature Astronomy
  2. Unveiling the Origin of the Fermi Bubbles – NASA/ADS
  3. X-Ray and Gamma-Ray Observations of the Fermi Bubbles and NPS/Loop I Structures – NASA/ADS
  4. Fermi Gamma-ray Space Telescope: High-Energy Results from the First Year

延伸閱讀(報導與科普文章)

  1. 本次研究相關
  2. 費米泡泡相關
  3. 其他相關天文物理科普文章
-----廣告,請繼續往下閱讀-----
EASY天文地科小站_96
23 篇文章 ・ 1578 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事