Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

無重力狀態下的那些事:生物超展開?慕斯更好吃?在地球又該如何模擬無重力呢?

Peggy Sha/沙珮琦
・2018/03/22 ・4169字 ・閱讀時間約 8 分鐘 ・SR值 519 ・六年級

當我們在看電影時,常常會見到角色英勇地飛向宇宙,當他們衝破大氣層的那一刻,就會突然「抽離身體放開自己」,漂浮在半空中。這時,我們就會知道「啊……他們進入無重力的狀態了」。

奇異博士就曾上演過這麼一段「抽離身體放開自己」。圖/《奇異博士》劇照@IMDb

不過,難道「無重力」就是這樣簡單?只要上了太空就可以隨意「漂向前方,別問我家鄉……」了嗎?

失重失重,進到太空就會失去體重?

為了解開這個謎題,讓我們先來看看「無重力」究竟是什麼意思:無重力就是「失重」(Weightlessness),如果單照字面上的意思來看,很容易會讓人家聯想到「失去重量」……等等,這是不是代表我一飛向宇宙就可以變成輕飄飄的小仙女了?

當然不是!我們在任何地方的質量都是不變的(胖子牽到太空還是胖子),只是在失重狀態下我們會「感覺不到自己的體重」。一般來說,當我們站在地面上時,地球用它的重力(也就是地心引力)拉著我們,給了我們一個向下的重力加速度,卻也同時提供了一個等同於我們體重的向上支撐力,好讓我們穩穩地站在地面上。而當這個支撐力發生變化時,我們所「感受到的重力」也會隨之產生變化,有時我們在電梯之中會感受到一瞬間的漂浮,正是由於這個原因。

-----廣告,請繼續往下閱讀-----

說到了電梯,就讓我們來假設有座電梯以 9 m/s的加速度向下運動,而當地的重力加速度是 10 m/s2。這時,人和電梯的相對加速度就是 1 m/s2,如此一來,人對電梯之間的壓力相當於人站在地面上的 1/10,就會開始產生了輕飄飄的感覺。而如果更進一步假設有座電梯以重力加速度 g 向下加速,人對電梯壓力就會等於零,這時,我們就可以電梯中漂浮起來啦!

等等,我們要飄起來了嗎~ 圖/By Adam Kliczek [CC BY-SA 3.0] via Wikimedia

所以說,失重的感覺其實是源自於人對支持物品的壓力變化。雖然我們在宇宙間仍然有受到重力,卻無法在茫茫宇宙間找到一個獨立的支持物,在這時,我們對於支持物的壓力小於自身所受到的重力,身體就會感受到無重力的假象。

無重力的世界,無奇不有

在無重力的世界裡,可以觀察到許多有趣的現象,比如說:所有的物品都會飄浮在空中,液體將成完全球型,而氣泡在液體中並不會上浮。想像一下,當你在太空中想要喝一罐可樂,卻看見它在半空中變成一顆咖啡色的球,而所有的泡泡都被包在球裡面,是不是突然就少了點平常的那種 fu?

液體在無重力下會成為完全球型。圖/ NASA @Wikimedia

而在無重力的狀態下,植物的生長方式也會和在地球時大不相同,美國俄亥俄州立大學(Ohio State University)的生物學教授 Fred Sack 分別於 1997 年和 2003 年時,在哥倫比亞太空梭(space shuttle Columbia)裡培養苔蘚類植物「角齒蘚」(Ceratodon purpureus)的原絲體(Protonema),結果發現:角齒蘚的原絲體在太空失重的黑暗環境中會逐漸形成順時針螺旋狀。

-----廣告,請繼續往下閱讀-----
小立碗蘚(Physcomitrella patens)的原絲體。在地球上有光線有重力的環境下,苔蘚的原絲體會長成有綠色絲狀。圖/By Anja Martin, Labor Ralf Reski – Reski Lab, University of Freiburg, CC BY-SA 1.0
角齒蘚的原絲體在太空中(黑暗環境下)長成順時針螺旋狀;原始在地球環境下原絲體會呈顯逆重力、向光線的生長模式。圖/By Fred Sack @livescience

原絲體是苔蘚生命最早期的階段,在地球上時,它的成長會受到重力與光線的影響,在地表會呈現遠離地心、朝向光線的趨向生長。不過,太空中幾乎沒有重力的干擾,科學家又提供了完全黑暗的生長環境,最後便長成了上圖中螺旋狀散開的模樣。

美好泡泡,盡在太空

無重力的研究也為我們帶來許多美好生活的可能,與我們最切身相關的,可能是它會讓咖啡更好喝(?)為了讓大家吃到更完美的食物,歐洲太空總署(ESA)微重力(microgravity)研究的重點研究項目之一,就是泡沫狀飲食和飲料中的科學。愛吃的人就知道,食品中的泡沫可是十分重要的,有些食品中的泡沫需要長時間存在,比如巧克力慕斯蛋糕,但你就不會想要在冰淇淋中吃到一堆泡泡。

不,他們研究的並不是這個泡泡。圖/《飛天小女警》劇照 @Wikimedia

不過,為什麼要特別在無重力的環境中鑽研泡泡呢?這是因為在地表上,比較大的氣泡會浮在較小的氣泡上,但在無重力狀態下,泡泡則會均勻散布,讓機構更能研究出符合商品需求的泡沫。

只是,這種泡沫研究可不簡單,食品公司必須使用 ESA 拋物線飛機飛行(parabolic flight),先讓飛機爬升、而後下降,在這個過程中,飛機就像是經歷了自由落體,會讓機內的人感受到大約 22 秒接近無重力的短暫瞬間。而在這短暫的時間內,研究者必須使用電磁動力活塞持續拍打液體以產生泡沫。費了如此大的功夫,科學家就得以在不增加原料的情形下製造出更加穩定的泡沫,以延長食品的效期。

-----廣告,請繼續往下閱讀-----
在飛機由上升轉為下降的過程中,會短暫經歷 20 秒左右的類失重狀態。圖/ NASA @Wikimedia

「789 我們私奔到月球~」無重力真的能讓人談場無憂的戀愛嗎?

天啊,無重力的空間是如此讓人飄然欲仙,還能產生出美好綿密的泡泡,那我們還不趕快一起私奔到太空,來場電影般的史詩級戀愛?別傻了朋友,無重力的環境還真不是個適合談情說愛的地方。

「123 牽著手,456 抬起頭,789 我們私奔到月球。讓雙腳去騰空,讓我們去感受,那無憂的真空,那月色純真的感動~~」聽起來好浪漫!但想來場無重力戀愛可不是件易事。圖/geralt @Pixabay

為什麼這麼說呢?首先,有 45% 的人在剛剛進入太空的最初幾小時內會經歷「太空適應綜合症」(space adaptation syndrome,SAS),相關的症狀包含噁心、嘔吐、眩暈、頭痛、嗜睡和全身不適,別說接吻了,光是站穩都很不容易。

就你如果有幸能躲過這些症狀,能和情人纏纏綿綿的時間也不可能太長,因為人體的構造本是為了在地球上生存而演化的,在無重力的狀態下,我們的肌肉會萎縮(還好本來就沒有六塊肌),骨質也會因此惡化。此外,缺乏重力會使得心血管系統血流變慢、紅血球減少,甚至導致平衡失調和免疫系統變弱。

而最最最重要的是:在失重的狀態下,就連要繁衍個子孫都非常困難!

-----廣告,請繼續往下閱讀-----

當我們享受在無重力那種讓人飄飄然的美好感覺中,心想著終於可以開始在太空中「創造宇宙繼起之生命」,抱歉,這時小兄弟可能會不太給力,因為無重力會讓它無法順利充血,而假使能藉著濃情蜜意順利完成,液體大概也無法好好地流向它該去的地方。所以說,如果想在無重力狀態下創造出太空公民,這挑戰的等級,實在是難上加難。

不能私奔到太空,我們也能打造無重力小宇宙

好吧好吧,在太空談戀愛可能太過困難,但如果是想體驗看看漂浮在無重力的感覺,科學家們可是有很多辦法的。除了上面提過的拋物線飛機之外,NASA 更打造出了知名的「中性浮力實驗室」(The Neutral Buoyancy Laboratory,NBL),用以模擬外太空的無重力狀態。

大名鼎鼎的「中性浮力實驗室」(The Neutral Buoyancy LaboratoryNBL)。 圖/ivicon

NBL 就像一個巨大的深水游泳池,長 62 公尺、寬 31 公尺,深度則達 12.34 公尺,其中可容納多達 620 萬加侖的水。

在這個實驗室中,太空人會穿上特殊的裝備,並經由精密儀器的協助來進行中性懸浮(neutral-buoyancy diving),體會類似於失重的狀態。在訓練時,太空人會一邊呼吸高氧氣體(Nitrox),一邊完成指定動作。

-----廣告,請繼續往下閱讀-----
太空人會全副武裝在 NBL 內進行訓練。圖/NASA @Wikimedia

為了好好完成太空任務,在中性浮力實驗室中的各項訓練至為關鍵,可說是上太空前最重要的一站,而為了使未來的太空人候選者們獲得見習的機會,「休士頓太空與科學教育協會」(Houston Association for Space and Science Education,HASSE)就特別打造了太空學校,讓學員們能夠好好參觀這個地表最大的類無重力實驗室。

在太空學校的課程裡,可以參觀 NBL,近距離認識太空人的訓練情形。 圖/ivicon

如果你想親眼看看太空人的訓練實況和他們在類無重力狀態下的各種英姿,可別錯過太空學校規劃的精彩課程啦。

至於真太空人到底在無重力狀態下過著怎樣的生活呢?也歡迎看這個特輯、一窺太空人的日常喔:真‧太空人的日常

參考資料

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
螃蟹有痛感嗎?我們是怎麼知道的?
F 編_96
・2025/01/16 ・1669字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live science

螃蟹一直是海鮮美食中的明星,從油炸軟殼蟹到清蒸螃蟹,餐桌上經常見到牠們的身影。有地方也習慣直接將活螃蟹丟沸水煮熟,認為這能保留最多的鮮味。過去人們認為甲殼類缺乏複雜神經結構,不會感受到痛苦,因此不必過度憂心道德問題。但近年來,越來越多研究開始挑戰此一想法,指出螃蟹與龍蝦等甲殼動物可能具備類似疼痛的神經機制。

以前大家相信甲殼類缺乏複雜神經結構,但近期這一認知逐漸受到質疑。 圖 / unsplash

甲殼類是否能感覺到痛?

人類長期習慣以哺乳類的神經構造作為痛覺判斷依據,由於螃蟹沒有哺乳動物那樣的大腦腦區,便被認為只憑簡單反射行動,談不上真正「痛」。然而,新興科學證據顯示包括螃蟹、龍蝦在內的甲殼類,除了可能存在被稱為「nociceptors」的神經末梢,更在行為上展現自我防禦模式。這些研究結果顯示,螃蟹對強烈刺激不僅是本能抽搐,還有可能進行風險評估或逃避策略,暗示牠們的認知或感受方式比我們想像更精緻。

關鍵證據:nociceptors 與自我保護行為

近期實驗在歐洲岸蟹(Carcinus maenas)中觀察到,當研究人員以刺針或醋等刺激手段測量神經反應,牠們顯示與痛覺反應類似的神經興奮;若只是海水或無害操作,則無此現象。此外,透過行為實驗也可看出,寄居蟹在受到電擊時,會毅然捨棄原本的殼子逃離電源,但若同時存在掠食者味道,牠們會猶豫要不要冒著風險離開殼子。這些結果使科學家認為,螃蟹並非單純反射,而可能有對於痛感的判斷。若只是「低等反射」,牠們不會考慮掠食風險等外在因素。

痛覺與保護:實驗結果引發的道德思考

以上發現已在科學界引發廣泛關注,因為餐飲業與漁業中常見「活煮」或「刺穿」處理螃蟹方式,如今看來很可能讓牠們承受相當程度的不適或疼痛。瑞士、挪威與紐西蘭等國已開始禁止活煮龍蝦或螃蟹,要求先以電擊或機械方法使其失去意識,試圖減少痛苦。英國也曾討論是否將甲殼類納入動物福利法保護範圍,最後暫時擱置,但此爭議仍在延燒。

-----廣告,請繼續往下閱讀-----
英國對於是否將甲殼類列入動物福利法的保護範圍,有所爭議。 圖 / unsplash

部分學者保持保留態度,認為雖然甲殼類展現疑似痛覺的行為與神經反應,但與哺乳類相同的「主觀痛感」仍需更多研究證明。大腦與神經系統結構畢竟存在很大差異,有些反射也可能是進化而來的自衛機制,而非真正意義上的感受。然而,科學家普遍同意,既然相關證據已經累積到一定程度,毋寧先採取更謹慎與人道的處理模式,而非輕易推卸為「牠們不會痛」。

海洋生物福利:未來的規範與影響

如果螃蟹被證實擁有痛覺,將牽動更廣泛的海洋生物福利議題,包括鎖管、章魚或多種貝類也可能具有類似神經機制。人類一直以來習慣將無脊椎動物視為「低等生物」,未必給予與哺乳類相同的法律或倫理關注。但若更多實驗持續指出,牠們同樣對嚴重刺激展開避痛行為,社會或終將呼籲修訂漁業與餐飲相關法規。未來可能要求業者在捕撈與宰殺前使用電擊或麻醉,並限制活煮等方式。這勢必對漁業流程與餐廳文化造成衝擊,也引發經濟與文化折衷的爭議。

龐大的實驗數據雖已暗示螃蟹「會痛」,但確鑿的最終定論仍需更多嚴謹研究支持,包括更深入的大腦活動成像與突觸路徑分析。同時,落實到實際操作也需追問:是否存在更快、更人道的宰殺或料理方式?能否維持食材鮮度同時保障動物福利?這種思維轉變既考驗科學進程,也考驗人類對自然資源的態度。也許未來,既然我們仍會食用海產,就該以最小痛苦的方式對待那些可能感受痛苦的生物,為牠們提供基本尊重。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

2
0

文字

分享

0
2
0
一年有幾週?背後竟隱藏著宗教、政治與天文觀測的紛爭?為何決定一年有幾週如此大費周章?
F 編_96
・2025/01/06 ・3256字 ・閱讀時間約 6 分鐘

F 編按:本文編譯自 Live Science

每到歲末或年初時,大家常會打開新的行事曆,做新一年的計畫。從直覺來看,我們常以「一年有 365 天」或「閏年 366 天」的概念衡量時間。如果將 365 天除以 7(每週 7 天),得到的答案約是 52 週又 1 天;若遇到閏年(366 天),則是 52 週又 2 天。換句話說,無論是一般年還是閏年,一年都不可能整除,剛好 52 週,總要多出 1 或 2 天。

對多數人而言,這種「約 52 週加 1 天」似乎是再自然不過的事。然而,實際上人類在訂定「一年幾天」與「多久閏一次」的規則上,一路走來經歷了漫長探索與爭議。自古以來,不同文明先後採用依太陽或月亮運行週期為基準的曆法;儘管最終各國大多轉而採行以太陽週期為主的格里高利曆(Gregorian calendar),但並非一蹴可幾,而是一段包含宗教、政治、天文觀測的故事。

一年感覺很長,其實也就 52 週(+1 或 +2 天)。 圖/unsplash

從洪荒到曆法:人類如何決定時間單位

追溯人類對時間的測量,可遠至一萬多年前:考古發現顯示,澳洲原住民或新石器時代的部落,便會根據太陽、星象的移動,來推算季節變遷與祭典進行。後來,隨著農業興起,區分一年四季並掌握耕作節氣成了首要需求,日曆的概念亦逐漸成型。

  • 宗教推力:古埃及與蘇美等文明常需要在特定時刻進行祭祀或儀式,故對晝夜長短、月相週期乃至每年太陽位置頗為講究。
  • 日月曆法之爭:有些文明依月亮週期(約 29.5 天)為月數基礎,稱「陰曆」;也有採納太陽年度(約 365 日)稱「陽曆」,或折衷稱「陰陽合曆」。

就週數而言,古人或許更關注「每個月有幾天」與「一年有幾個月」,而非「一年到底可以分成幾週」。然而,週的概念在很多宗教與文化裡同樣重要,如猶太教及後來的基督宗教都強調「七天」一週之體系,用於安息日或祈禱輪替。因此,當今的一年分成「52 週多幾天」,也綜合了宗教傳統與太陽年的計算。

-----廣告,請繼續往下閱讀-----

朱利安曆失準?教宗格里高利的關鍵校正

現行國際普及的格里高利曆,最早源自於古羅馬朱利安曆(Julian calendar)。公元前 46 年,凱撒大帝(Julius Caesar)在天文學家蘇西根尼斯(Sosigenes)建議下,設定一年 365.25 天,並每四年加一天作閏年。看似精妙,但實際上太陽年長度約是 365.2422 天,每年多出的 0.0078 天、也就是大約 11 分鐘,雖然聽來微乎其微,卻在一段世紀之後累積成巨大的誤差。

對天主教而言,耶穌受難與復活日期影響了整年眾多教會節日。若曆法逐漸偏移,像復活節等慶典便逐年脫節了季節原意。至 16 世紀末時,朱利安曆已誤差累積多達 10 天。教宗格里高利十三世遂在 1582 年宣佈大刀闊斧改革:10 月 4 日的次日直接跳到 10 月 15 日,並規定「百年年份如若非 400 整除,則不列為閏年」。如此,將一年的平均時長微調至更貼近 365.2422 天。

一些國家如法國、西班牙和義大利等迅速採納「新曆」,但英國則因宗教立場等因素拖延至 1752 年才肯切換。中國雖在 1912 年起算是「正式認可」,但廣泛實施延至 1929 年。這樣因曆制修整所產生的「失落日子」,在各國各時期都曾引發不小民眾抗議與混亂,但如今我們所熟知的「一年 365(或 366)天、每週 7 天」全球大體一致,正是拜此改革所賜。

教宗格里高利十三世的改革,成了日後我們熟知的「一年 365(或 366)天、每週 7 天」。圖/unsplash

一年是 52 週又幾天?

回到主題:基於現在格里高利曆的「年」長度,一般年 365 天,閏年 366 天。因此只要把 365 ÷ 7 = 52 餘 1,或 366 ÷ 7 = 52 餘 2。這樣看來,52 週是某種近似值,再加上 1 或 2 天則填補了週數的縫隙。有趣的是,人們日常生活中往往不深究這些「多一天」會落在哪裡,反而透過各國法定假期、節日分布或企業排班,來靈活因應。

-----廣告,請繼續往下閱讀-----

不管日曆如何安排,七天一週與太陽一年的 365.2422 天本質上不會整除。因而實際執行層面,才衍生「一月有 4 週多幾天」或「一年 52 週多幾天」。而根據格里高利曆規範,每 4 年遇到 2、6 結尾者時通常加閏日;再以百年刪除閏日,唯獨 400 年倍數的百年不刪。如此 400 年中有 97 個閏年,非 100 次,年均值約 365.2425 天,與真實太陽年極為貼近。

再度修正:米蘭科維奇曆與東正教的調整

與此同時,一些東正教教會或科學家,仍曾嘗試做更精準的校調。例如 1923 年出現的「米蘭科維奇曆」,由塞爾維亞天文學家米蘭科維奇(Milutin Milanković)提出:

  • 改進閏年規則:如果該年不是 100 的倍數,則正常計算;若是 100 的倍數,就得看除以 900 所餘下的數是否為 200 或 600,若是,則跳過閏年。
  • 應用範圍:此一方案被視為更貼近天文年,但只有部分東正教教會接納實施,對全球世俗時間並未產生重大影響。

有趣的是,若米蘭科維奇曆被大規模推廣,平均一年長度會更符合真實太陽年,但世界各國基礎已扎根於格里高利曆,也不太可能再冒然重新改革。畢竟,每次曆改都會使官方紀錄、民間活動和宗教節慶產生協調難題,且大眾的社會慣性早已落實在現行制度裡。

時間計算背後宗教、政治與科學的糾纏

我們眼中的「一年 52 週又 1~2 天」其實是長期政治、宗教、科學交互影響的產物。數世紀以來,不同文明為祭祀、政令或貿易往來而反覆調整曆制;伴隨天文觀測與數學演算的精進,人們才一步步從古老的朱利安曆轉到格里高利曆,避免每年多出一些看似微不足道的分鐘數量,卻逐漸累積成整天的時差。在這些爭論、改革中,週數雖非爭議焦點,但它一同被帶入今日世界,最終定型為「一年 = 52 週 +1(或 2)天」。

-----廣告,請繼續往下閱讀-----
儘管目前的曆法存在些許時差,但已是目前全球通用的計日方式。圖/unsplash

另一方面,有些文化或地區在現代仍維持傳統的陰曆、陰陽曆搭配格里高利曆,如中國農曆可見節氣和月相紀錄;穆斯林世界則使用純陰曆,並以其方法計算齋戒月、開齋節等。全球一體化雖使格里高利曆成為主流,但不代表其他紀年方式就此消失。在各種曆法交錯下,「一週幾天,一年多少週」或許並非普世絕對,卻是人類根植於宗教、科學與經濟行為下逐漸形成的共識。

踏入 21 世紀,隨著全球高度互聯與商業活動頻繁,幾乎所有國際公約、金融市場、交通規劃都以格里高利曆為基準。此種高度一致有利經貿往來與跨國協作,但究其根源,私底下仍有一種「不完美但通用」的妥協性質。時至今日,要再度大規模推行新的曆制(比如米蘭科維奇曆)的機率微乎其微。

也許未來某天?

不管你是否每天翻開行事曆查看日期,或是習慣智慧型手機提醒,在全球主流價值裡,「一年 52 週又 1 或 2 天」已成幾乎不容置疑的常識。

也許未來仍有理論家建議以更精準的曆法取代格里高利曆,讓一年日數更貼合天文常數。然而,歷史經驗告訴我們,此種改革勢必付出巨大社會成本,還要面對全球龐雜的政治協調。最終,我們大概仍會安於現在這個略有瑕疵卻普及度最高的制度,繼續說著「一年有 52 週」,並在每年最後那 1 或 2 天裡,慶祝跨年、增添慶典。

-----廣告,請繼續往下閱讀-----

不論如何,時間的運行永不止息;地球仍舊繞著太陽旋轉,帶給我們四季遞嬗與新的挑戰。或許最重要的並非究竟一年「整除」了多少週,而是我們如何在這既定框架下規劃生活,在有限的時間裡,拓展出新的生活軌跡。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。