0

0
0

文字

分享

0
0
0

除了太陽和行星,那些太陽系間的愉快小夥伴們──《宇宙必修課》

天下文化_96
・2018/01/08 ・3635字 ・閱讀時間約 7 分鐘 ・SR值 528 ・七年級

行星外的漆黑等於空無一物嗎? 圖/Valera268268 @Pixabay

從遠處看過來,我們的太陽系彷彿空空如也。

如果你用圓球包住太陽系,這圓球大到能容下行星中最外圍的海王星軌道;那麼太陽、所有行星和它們的衛星占住的體積,只比圓球體積的 1 兆分之 1 要多一點點。

不過,太陽系也並不是真的如此空曠,行星之間的空間還有許多岩塊、小圓石、冰球、塵埃、成群的帶電粒子和多艘在遠方飛航的探測船。除此之外,太陽系空間裡,也到處都是強大的重力場和磁場。(太陽系最外圍的行星不再是冥王星了,請接受這個事實。)

多不勝數的固定班底:大大小小的星際碎片

行星際空間其實雜物繁多,所以我們的地球以每秒 30 公里的速率在軌道上行進時,每天都會掃起數百噸的流星體,其中尺寸多半小於沙粒。這些流星體高速衝撞地球大氣產生的熱,會造成它們的表面汽化,於是大部分直接焚毀在地球的高層大氣裡。地球脆弱的物種有賴於這層大氣保護罩,才得以繁衍演化。較大的流星體,除了表面會被燒焦,基本上會相當完整的抵達地球表面。

看似漆黑無物的太陽系,實際上飛著各式物質。 圖/NASA

你或許認為經過了 46 億次的繞行太陽之旅之後,地球應該已經清掉了軌道上的所有碎片,但答案是:還沒有。不過和地球過去的遭遇比起來,現在的情況顯然大有改善。大約在太陽和行星形成 5 億年之後,有多到難以想像的碎片不停掉落到地球上,產生的撞擊熱不斷累積,導至大氣熾熱無比,地殼也完全熔融。

其中一顆非常大的碎片,導致了月亮的形成。在分析阿波羅探月計畫太空人帶回來的樣本後,發現月球的鐵和較重元素的含量意外的少,這表示火星大小的迷途原行星和地球發生擦撞後,那些從地球缺鐵的地殼和地函迸發出去;繞著地球運行的碎片,後來可能聚合成我們低密度的美麗月亮。

從地球缺鐵的地殼和地函迸發出去;繞著地球運行的碎片,後來可能聚合成我們低密度的美麗月亮。 圖/NASA

除了這個特別重大的事件,嬰孩時期的地球經歷的重轟炸期並不獨特,因為太陽系的其他行星和大型天體也都經歷過。大家也都受到類似的重大破壞,不過只有缺乏大氣的月球和水星,大致保存了這個時期的撞擊紀錄。

太陽系不但受到形成時留下的廢料撞擊,在近行星際空間裡還散布著火星、月亮和地球受到高速撞擊後,從表面彈出的大大小小岩石。流星體撞擊的電腦模擬證明,撞擊區附近的表岩噴飛的速率,高到可以掙脫天體的重力束縛。我們從地球上火星隕石的發現率,可以推斷出每年約有 1 千噸的火星岩石掉到地球上;而每年或許也有大約等量的月岩掉到地球上。回想起來,我們其實用不著特地飛到月球去拿月球岩石,地球上就多得是。只不過,我們沒辦法挑精撿瘦,而且在阿波羅計畫年代,我們也不知道有這回事。

地球上就撿得到月球岩石?!但你認得出哪顆是來自月球的石頭嗎…… 圖/NASA

可能會讓物種滅絕的狠角色「小行星」

大部分太陽系的小行星分布在火星與木星間,形狀扁平的小行星主帶上。在傳統上,小行星的發現者有命名權,高興用什麼來命名都可以。通常在畫家描繪的圖示裡,小行星帶是太陽系盤面上一個散布著凌亂崎嶇岩塊的區域。

小行星帶的總質量不到月球質量的 5%,月球的質量則只比地球的 1% 要多一點點而已。雖然小行星的質量不大,但它們的軌道不斷受到擾動,因此形成了一群大約數千顆特別危險的近地小行星,它們的扁平軌道會和地球軌道交錯。簡單的計算指出,它們大部分會在 1 億年內撞上地球。尺寸大於 1 公里的小行星在撞上地球時,產生的能量會高到嚴重破壞地球的生態系統,可能使大部分的陸地物種滅絕

這當然是糟透了。

小行星並不是唯一會危害地球生物的外太空天體。在海王星之外的柯伊伯帶(Kuiper Belt),帶寬大約和海王星與太陽的距離相當,其中成員包括了冥王星,是一個滿布彗星的環形區域。遠在六十多年前,荷蘭裔美國天文學家柯伊伯(Gerard Kuiper)就指出,在海王星軌道外頭的寒冷深空裡,藏著從太陽系形成時期殘存下來的冰質天體。由於這附近沒有大質量行星來吸收這些彗星,於是大部分彗星就靜靜的繞太陽運行了數十億年。

就如同小行星帶一樣,部分柯伊伯帶天體的軌道極扁平,並會和其他行星軌道相交。例如冥王星和同軌道的那群冥族小天體,它們較靠近太陽時軌道區會和海王星軌道交錯。另外還有一些柯伊伯帶天體的軌道會深入太陽內圍,放肆的穿過許多行星軌道;在這群天體中,最著名的是哈雷彗星。

在柯伊伯帶後方很遠的地方,大約在前往最鄰近恆星的半途上,有一個稱為歐特雲的彗星儲存庫,它呈現球形分布,名字來自首先推斷出它存在的荷蘭天文物理學家歐特(Jan Oort)。

歐特雲(Oort Clude)是長週期彗星的源頭,這類彗星的軌道週期比人類生命還要長。與柯伊伯帶彗星有別的是,歐特雲彗星可以從任何方向,以任何軌道傾角進入太陽系內圍。1990 年代最明亮的海爾─波普彗星(Comet Hale-Bopp)及百武彗星(Comet Hyakutake),都是源自歐特雲,而且在短時間內都不會再度回歸。

海爾─波普彗星。 圖/NASA

有大氣層真好:太陽風極光

太陽風與地球磁場相接想像圖。 圖/NASA @wikipedia

太陽表面每秒會散失超過 1 百萬噸的質量,而形成的物質流稱為太陽風,太陽風主要的成分是帶電的高能粒子。太陽風粒子時速最高可達 1 千公里,粒子以這種高速向外泛流成群穿過太空,只有遇到行星磁場時才會轉向。

太陽風的部分粒子以螺旋軌跡掉向行星的磁北極和磁南極時,會撞擊氣體分子,激發大氣發出多彩多姿的極光。哈伯太空望遠鏡已在土星及木星的極區發現極光,而出現在地球上的北極光及南極光,時不時的提醒我們:有大氣層的保護真好。

我們通常說,地球的大氣層從地球表面向上延伸數十公里。而低軌道上的衛星,在 100 公里到 400 公里高的軌道上,大約 90 分鐘會繞地球一圈。

你雖然無法在這種高度呼吸,不過這個區域仍有不少大氣分子存在,摩擦力已足以讓衛星慢慢失去軌道能量而下墜。為了要對抗這種阻力,低軌道的衛星偶爾要重新提升軌道高度,免得掉回地球,焚毀在大氣中。

大氣層邊界的另一種定義為:「地球氣體分子的壓力」和「行星際氣體分子壓力」相等之處。根據這種定義,地球大氣層的範圍有數千公里。在這個高度上方的 36,800 公里處(大約是地球與月亮距離的 1/10),是通訊衛星的國度。在這個特殊的高度,地球大氣的影響無關緊要,衛星的速率也很低,並且恰好和地球的自轉速率相同,所以衛星每天剛好繞地球一圈。相對於地面,這種衛星看似一直飄浮在正上空,是理想的訊號中繼站,能為地表不同的區域轉傳訊號。

謝謝「重力盾牌」木星,為地球擋下危險

牛頓重力定律指出,雖然你若距離行星愈遠,受到行星重力的影響也愈弱,但這個影響並不會降到零。木星用它強大的重力場,把很多原先會在太陽系內圍造成重大破壞的彗星趕開。所以對地球而言,木星就像重力盾牌,也像在保護地球的粗壯大哥,讓地球享有長達億年,相對平安和寧靜的時期。如果沒有木星提供的保護,地球生命除了很難演化成更有趣的複雜生命,也會活在可能受到致命撞擊而滅絕的危險環境中。

探索土星的卡西尼號探測船(Cassini–Huygens)。 圖/NASA

我們一直在利用行星的重力場為太空探測船提供能量。就以前往探索土星的卡西尼號探測船為例,它受到許多行星的重力協航,其中金星兩次、地球(由金星返回時)和木星各一次。探測船在多顆行星間輾轉飛航,以酷似撞球檯上撞球的路徑行進,是很常見的操作方式。如果不這樣,火箭提供的飛行速率和能量,不足以讓我們的小探測船前往目的地。

眾多命名不盡的小行星

我現在對太陽系的行星際碎片有些許責任了。2000 年 11 月,由李維(David Levy)和舒梅克(Carolyn Shoemaker)發現的主帶小行星 1994KA,後來命名為「13123– 泰森(13123 Tyson)」來向我致敬。我雖然享有這個殊榮,但其實也沒有什麼好自大的,因為還有許多類似的小行星,以喬笛、哈洛特和湯瑪斯等常見的名字命名。還有一些小行星的名字叫梅林、龐德和聖誕老人。

目前發現的小行星,數量已將近數十萬顆,可能很快就會對我們命名的能力產生挑戰。不管這種時日是否會來臨,我覺得相當欣慰的是,以我命名的那個宇宙碎片在行星間遊蕩時,並非孤苦無依,而是有一大堆以真人和虛構人物為名的其他天體為伴。

此刻讓我更高興的是,我的小行星並沒有直衝地球而來。

 

 

本文摘錄自《宇宙必修課:給大忙人的天文物理學入門攻略》,天下文化出版。

 

 

 

 

 

文章難易度
天下文化_96
132 篇文章 ・ 615 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
原住民祖先見過明亮的南方之星?傳說是真的,而且超過一萬年!
寒波_96
・2023/11/08 ・2777字 ・閱讀時間約 5 分鐘

有些故事代代相傳之下,經歷非常漫長的時光。過去很久以後,五百年、三千年或一萬年,都已經是「很久很久以前」,難以判斷到底多久。2023 年發表的一項研究認為,澳洲南方的塔斯馬尼亞島,有個故事似乎能追溯到超過一萬年前。

塔斯馬尼亞的祖傳故事

大英帝國的調查隊抵達塔斯馬尼亞初期,估計島上約六千到八千位居民;原住民們統稱為「palawa」,不過又能分成多個有所區別的族群。英國人在公元 1803 年建立第一個殖民地,然後,不意外地起爭議。

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

殖民者與原住民的衝突加劇後,1823 到 1832 年間導致約兩百位殖民者及九百位原住民身亡。有些英國人希望能和平解決問題,最終勸誘加上強迫,1829 到 1835 年間將島上的原住民,都成功遷移到位於塔斯馬尼亞和澳洲之間,巴斯海峽的弗林德斯島(Flinders)。

英國人認為這是一次「友善」的轉移任務。以當時狀況而言,確實算是相對和平的收場,但是慘遭強制搬遷的原住民依然損失慘重,人口以外,他們脫離原本的家園「Lutruwita」,文化、語言幾乎喪失殆盡。

遷徙計畫中,英國人魯賓遜先生(George Augustus Robinson)可謂關鍵角色。他走訪塔斯馬尼亞各地,說服原住民搬家,也對當地風俗文化非常好奇,留下大量紀錄。

這些 1830 年代的紀錄,就像塔斯馬尼亞傳統文化的切片。後來有些原住民重返塔斯馬尼亞,試圖擺脫殖民時,英國殖民者當初搜集原汁原味的資料,也成為重建傳統的材料之一。

魯賓遜等人搜集的紀錄來自多位原住民的說法,其中一個故事相當費解,至少當年魯賓遜無法理解,新問世的論文總算揭開奧秘。

情節湊不上,是因為發生在太久之前

祖先的遷徙故事,提到他們來自一片大陸;後來大陸被海水淹沒,當時岸邊附近有冰山漂浮。那時望向南方的天空,可以見到一顆很亮的星。

塔斯馬尼亞與澳洲之間的地形。兩地之間原本存在陸橋,海水上升後形成巴斯海峽。圖/參考資料1

塔斯馬尼亞原住民一代一代仰望星空,也建立一些自己的天文學知識,被魯賓遜忠實收錄。那顆南方大星星卻令人費解,因為星空中根本沒有符合描述的那顆星。最可能的對象是老人星(Canopus),也稱為船底座α(α Carinae)。

星空中最亮的是天狼星,第二就是老人星,顯然它非常顯眼,可是位置明顯有差。是原住民唬爛,還是魯賓遜唬爛,或是魯賓遜紀錄錯誤呢?新的分析指出,他們都是正確的,因為一萬兩千年前的星空,老人星確實處於故事中的那個位置。

首先,故事提到祖先前來的道路被大海淹沒,冰山在岸邊漂浮。對照現代科學知識,能輕易推論這講的是冰河時期結束,海平面上升,淹沒澳洲與塔斯馬尼亞之間的陸橋,形成巴斯海峽,讓塔斯馬尼亞成為一個四面環海的島。

接著是星空為什麼不同?從地球表面仰望夜空,星星的分布位置會由於「歲差」緩慢改變。回溯調整成一萬多年前的星空,老人星的確就在那兒。

地表很多位置都能見到南方明亮的老人星,不同民族、文化各有自己的想像。台灣人即使沒有親眼注意過,也肯定知道老人星,因為這就是福祿壽中的「壽星」,形象化叫作南極仙翁。

有趣的是,中文名字叫老人星,英文名字 Canopus 則來自特洛伊戰爭傳說中的一位年輕人,他是航海家,後來不幸在埃及被毒蛇咬死……所以中國想像這顆星是老人,歐洲卻想像是年輕小夥。

回溯塔斯馬尼亞 1831 年 8 月 1 日,凌晨 5 點時的星空。圖/參考資料1

難以理解的時候,先忠實紀錄

考慮到魯賓遜紀錄的日期是 1830 年代,更加深故事的真實感,因為當時英國人還不知道「冰河時期結束導致海面上升」。阿加西(Louis Agassiz)首度宣稱冰川歷史的想法要等到 1837 年,更多年後取得較多支持,十九世紀後期才廣為人知。

魯賓遜等歐洲人對聽到的故事內容難以理解,他們或許會聯想到聖經的大洪水,但是完全想像不到冰河時期。所以這些內容,大概更能免於印象或偏好影響,反映忠實的紀錄。

據此推敲,塔斯馬尼亞祖傳故事講的是:「大約 1.2 萬年前海水上升之際,明亮的老人星在那個位置」。如果推論正確,這便是傳承 1.2 萬年的口述歷史,堪稱全人類罕見的文化遺產。

有人或許會好奇,一些研究認為早在四萬年前,已經有人穿過澳洲,抵達塔斯馬尼亞。可是島上原住民的祖先故事,卻是一萬多年前?

我想可能是因為,記憶對於愈久遠的事情常常會愈壓縮,把更早發生的事情疊加到比較近期,印象很深的事件中。或許原住民的祖先很早就過去,但是海水上升淹沒陸橋令人印象太過深刻,就變成故事的素材。

另一件啟示是,世界上不知道的事情太多了,當你不太理解聽到什麼的時候,不要試著腦補,就照聽到的忠實紀錄下來!

延伸閱讀

參考資料

  1. Hamacher, D., Nunn, P., Gantevoort, M., Taylor, R., Lehman, G., Law, K. H. A., & Miles, M. (2023). The archaeology of orality: Dating Tasmanian Aboriginal oral traditions to the Late Pleistocene. Journal of Archaeological Science, 105819.
  2. Rising seas and a great southern star: Aboriginal oral traditions stretch back more than 12,000 years
  3. GEORGE AUGUSTUS ROBINSON
  4. 老人星名字來源神話人物 Canopus 維基百科

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 927 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

0
0

文字

分享

1
0
0
【成語科學】以管窺天:視野狹隘才看得清楚!「窺管」是怎麼幫助古人觀測星空的?
張之傑_96
・2023/09/29 ・1018字 ・閱讀時間約 2 分鐘

這個成語出自《莊子》秋水篇。戰國時,公孫龍自認學問、口才高人一等,可是聽到莊子的言論卻大惑不解。他的一位朋友說,是他眼界狹小,有如用管子看天,只能看到天空的一小部分,以為天空就這麼小。

後來「以管窺天」演變成一個成語,比喻見識淺薄狹窄。談到這裡,讓我們造兩個句吧。

沒讀幾本書,就說自己了解明史,猶如以管窺天,所知太有限了。

這篇討論新冠肺炎的論文,只是以管窺天,並沒看到問題的全貌。

成語「以管窺天」,常和「以蠡測海」並用。蠡,指用葫蘆做的瓢。用瓢測量海水,能測得完嗎?以蠡測海,也是比喻見識淺薄狹窄。

成語「以蠡測海」,純粹是個比喻,沒什麼科學意義。成語「以管窺天」則不然,原來用來窺天的「管」,是古人的天文觀測儀器啊!

古時沒有望遠鏡,只能用肉眼觀看星空。用肉眼觀測大範圍的天象尚能應付,觀測細微的天象就不敷需要了,所以古人想出一個辦法,用竹管的管孔來縮小觀測範圍,這種觀測天象的管子,特稱「窺管」。

窺管。圖/Wikimedia

窺管能「窺」出什麼呢?首先,能夠消除側光的影響,一些較暗的星,看起來就變亮了。小朋友可以做個實驗,用手握出個孔洞,湊近一隻眼睛,望向遠處目標,是不是看得更清楚了。

窺管除了可以增加亮度,還可以觀測星星的經度和緯度,這就得談談古代的天文觀測儀器渾儀。大約西元前 1 世紀,古人發明了渾儀。渾儀由 1 至 3 重的金屬環構成,外重是固定的,內重可以轉動,窺管嵌於其中。後來環數加多,構造變得複雜,但基本原理是一樣的。

自古以來,天文學家就假想「天」是個球體——天球,做為觀察星空的依據。假想中的天球,是以地球為中心、向外擴充的無限大球面。地球的南北極,向外擴充,就成為天球南北極;地球的赤道,向外擴充,就成為天球赤道。地球有經緯度,天球也有經緯度,稱為赤經、赤緯。

北京古觀象台的渾儀。圖/Wikimedia

根據《隋書.天文志》,當時渾儀上的窺管,長 8 尺,有直徑 1 寸的圓孔。觀測時,轉動內層的環,將窺管導向某一星星,經過微調,根據環上的刻度,就可以定出這顆星星在天球上的座標,也就是它的經緯度。

所有討論 1
張之傑_96
103 篇文章 ・ 221 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

7
0

文字

分享

0
7
0
造訪危險鄰居:歐西里斯的貝努採樣返回任務
EASY天文地科小站_96
・2023/09/23 ・3760字 ・閱讀時間約 7 分鐘

  • 謝承安/現就讀臺大物理系,因喜愛動畫《戀愛小行星》而喜好小行星
  • 林彥興/現就讀清大天文所,努力在陰溝中仰望繁星

2016 年 9 月 8 日,歐西里斯探測器(OSIRIS-REx)由擎天神五號火箭發射升空,追隨著前輩們 ── 隼鳥號隼鳥二號 ── 的腳步,前往近地小行星貝努(101955 Bennu),執行人類史上第三次的小行星取樣任務。

經過兩年多的飛行,歐西里斯號於 2018 年底成功抵達貝努,並在幾個月後成功採集樣本,預計在今年 9 月 24 號返回地球。透過採集小行星上的原始樣本,科學家將能夠推論 46 億年來太陽系的演變歷史,但除此之外,歐西里斯探測器也在環繞貝努的過程中進行了眾多觀測,也為小行星研究貢獻許多,現在就讓我們回顧歐西里斯號的浩瀚之旅!

歐西里斯基本介紹

歐西里斯想像圖。圖/NASA’s Goddard Space Flight Center Conceptual Image Lab

要了解歐西里斯號的觀測目標,我們只需要把他的英文全名攤開來看:

Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer

翻譯作太陽系起源、光譜解析、資源識別、安全保障、小行星風化層探索者。其縮寫歐西里斯,是埃及神話中的冥神。儘管你可能無法了解各個專有名詞,但在看過那麼長的名字後,應該也能知道歐西里斯探測器的任務可不僅是採集樣本而已。

歐西里斯號的目標是小行星 101955 號「貝努」。

這是一顆於 1999 年由林肯近地小行星研究小組(LINEAR)發現的近地小行星。之所以選擇貝努作為觀測目標,是因為貝努的軌道與地球十分接近,有撞擊地球的潛在風險,另一方面距離近,也可以讓探測器在較短的時間內抵達。

值得一提的是,「貝努」這個名字源自古埃及神話的神鳥,同時也是引領前往冥界的諸神之嚮導。同時,貝努小行星上的各式地形或是地點,也都是以不同神話中的鳥類來命名。

貝努的表面地圖,圖中的地名皆與鳥類神話有關。如 Strix 來自羅馬神話中的條紋鳥、Simurgh 則來自波斯神話中的西摩格鳥。圖/NASA/Goddard/University of Arizona

在發射後過了兩年,2018 年,歐西里斯號逐漸接近貝努,並以相機模組中的 8 吋望遠鏡(Polycam)不斷進行觀測,直至十二月成功抵達貝努。

而抵達後的第一項任務,就是詳細繪製全小行星的地圖,過去科學家曾經透過金石太陽系雷達來(GSSR)來探測貝努的模樣,但地面上的雷達雖然可以看到貝努的大致形狀,解析度卻仍不足以窺見小行星上詳細的地形起伏,也就無法事先決定採集樣本的地點但藉由探測器上攜帶的雷射測高儀(OSIRIS-REx Laser Altimeter, OLA),歐西里斯號得以透過發射雷射訊號與接收的時間差, 像是測量海底深度的聲納一樣,繪製全小行星的地形高度圖。另外其配載的高解析度相機(MapCam),也可以讓科學家一覽高解析度的貝努影像。

雷射測高儀測量過程示意圖。圖/NASA/Goddard/University of Arizona
NASA 哥達德太空中心以歐西里斯號製作的貝努表面導覽。影/Youtube

除了解地形以外,決定採樣地點時,另一項重要的考量是採樣地礦物或化學組成。正如同地球上各處的岩石化學組成不盡相同,不論是含水量、顆粒粗細程度以及有機物的有無,皆是採樣任務執行時需要考量的情況。於是,歐西里斯號使用了三種方法來探測小行星表面上的礦物。

第一種方法是透過風化層 X 射線成像光譜儀(Regolith X-Ray Imaging Spectrometer, REXIS)來觀測 X 射線光譜。讀者或許會想,X 射線多用來觀測高能天體的輻射,像是黑洞、超新星爆發等事件,並且小行星本身也不會發出 X 射線,為何要攜帶這樣的探測儀器?

事實上,當元素吸收到宇宙射線或太陽所發出的 X 射線時,內層的電子會吸收能量並游離,而外層的電子便會向下躍遷,補上原本內層電子的位置,更外層電子又再補上外層電子的位置。在這一連串的過程中,便會發出 X 射線。而由於每個元素的能階都是獨一無二的,藉由觀測X射線的光譜,我們便能了解小行星上各處的元素豐度。

這樣的分析方式被稱作 X 射線螢光分析(X-ray fluorescence, XRF),是一種非破壞性的元素鑑定方式,地質考察、考古甚至是博物館文物鑑定都常利用此方式進行探測。

REXIS 儀器。圖/REXIS Team / The planetary society

另外,歐西里斯號上還配戴可見光與紅外線分光儀(OVIRS),也能夠獲取小行星可見光與紅外線波段的光譜來辨別來辨別礦物或是有機物的種類。並且由於不同礦物的熱導率差異,歐西里斯還可以藉由熱輻射光譜儀(OSIRIS-REx Thermal Emission Spectrometer, OTES)掃描全小行星的熱輻射地圖來了解礦物與化學豐度。

熱輻射儀也可以更進一步用於研究小行星上的熱量傳輸問題。當小行星吸收太陽光後將以輻射的方式將能量釋放時,其光壓會給予小行星一個微小的作用力。在經年累月的作用下,便會對其軌道產生改變,此現象稱之為亞爾科夫斯基效應(Yarkovsky effect)。

由於亞爾科夫斯基效應的強弱會受到小行星的反照率、表面材質甚至是地形而影響,如果對小行星不夠了解,那預測小行星軌道的難度將大幅提升。因此歐西里斯號的近距離探測,對精準預測貝努的軌道非常重要。

樣本採集:歐西里斯與貝努的零距離接觸

在近兩年的搜集數據後,歐西里斯號便開始執行此次任務的最終目標:採集樣本。

一開始,科學家們有四個候選地點:夜鷺(Nightingale),此處位於年輕的隕石坑上,且具有最細顆粒的礦物;翠鳥(Kingfisher)為新的隕石坑並具有豐富的含水量;魚鷹(Osprey)具有較低反照率的岩石樣本;鷸(Sandpiper)位於兩個隕石坑之間,可能含有水合礦物。

在科學家掙扎的選擇後,最終決定在名為「夜鷺」的地點進行採樣。因為此處較年輕的地質特性,能夠讓我們採集到貝努更原始的樣本,以此探討貝努在太陽系闖蕩時所遺留的痕跡,再加上較細的礦物也能讓執行任務時能有較高的成功率。至於其他候選地點,只能說後會有期了。

NASA所選定的四個樣本採集地點之照片。圖/NASA/Goddard/University of Arizona

2020年10月20號,歐西里斯號伸出他的機器手臂,名為 Touch-And-Go Sample Acquisition Mechanism(TAGSAM),顧名思義便是碰一下小行星表面後便離開。其運作原理,是在碰觸到小行星表面時釋放加壓氮氣產生爆炸,再搜集飛散出來的碎屑樣本。

說起來雖然簡單,但降落在微小重力的且未知內部構造的小行星上其實非常困難,科學家們需要考量到所有可能影響的作用力,甚至是太陽光所造成的輻射壓都必須考慮進去。

現在,想像你是個科學家,坐在任務的控制室中,透過相機模組中的 SamCam,望著歐西里斯號逐漸靠近小行星,3,2,1⋯⋯,碰!(狀聲詞,事實上,太空中是沒有聲音的。)

Touch-And-Go任務的執行過程。圖/NASA/Goddard/University of Arizona

採集任務看似十分成功,歐西里斯號將 TAGSAM 的頂端放入樣品返回艙(Sample Return Capsule, SRC)中,SRC 也使用了眾多隔板將散落在太空中的碎屑放入其中,兩天後,歐西里斯號回傳了樣本採集艙的影像,確認歐西里斯號已搜集足夠的樣本,但此時卻發現了些意外,由於採集的樣本太大顆,艙門無法完全緊閉,導致有部分樣本散逸至太空中,還好這不影響任務的完成,算是有驚無險。

小行星的樣本從樣品返回艙中散逸。圖/NASA/Goddard/University of Arizona

2021 年 4 月 7 日,歐西里斯號展開他的最後一次飛越任務,此次他以超近距離(約 3.5 公里)觀測「夜鷺」在採集後的模樣,可以清楚看見採樣任務前後的區別,中心區域產生了一個深度超過45公分的凹痕! 周圍的岩石也因此錯位。

過去天文學家們透過眾多觀測數據推論,大多數的小行星比起堅硬的石頭,更像是散亂的碎石堆。後來科學家們也透過此次採樣任務確認貝努表面並非像是地殼般的堅硬固體,而比較像是流體般,才產生如此大的凹痕。

「夜鷺」在採樣任務前後的差異。圖/NASA/Goddard/University of Arizona

在做完惜別任務後,2021 年 5 月 10 號,歐西里斯號啟動了他的主引擎,開始返回地球的旅程。預計在今(2023)年 9 月 24 號,裝載著貝努樣本的樣本返回艙將與歐西里斯號脫離,並以秒速 12 公里的高速衝入地球大氣層,並著陸於猶他州的沙漠中,由研究人員回收後取出樣本進行更近一步的分析。

然而歐西里斯號的旅程仍尚未結束。

接下來它將在 2029 年對另一個有潛在撞擊地球風險的小行星 99942 阿波菲斯(APophis)進行觀測。就讓我們歡迎冥神與他所攜帶的樣本歸來,以及期待未來科學上的重大發現吧!

延伸閱讀

EASY天文地科小站_96
23 篇文章 ・ 1234 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事