0

0
0

文字

分享

0
0
0

除了太陽和行星,那些太陽系間的愉快小夥伴們──《宇宙必修課》

天下文化_96
・2018/01/08 ・3635字 ・閱讀時間約 7 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

行星外的漆黑等於空無一物嗎? 圖/Valera268268 @Pixabay

從遠處看過來,我們的太陽系彷彿空空如也。

如果你用圓球包住太陽系,這圓球大到能容下行星中最外圍的海王星軌道;那麼太陽、所有行星和它們的衛星占住的體積,只比圓球體積的 1 兆分之 1 要多一點點。

不過,太陽系也並不是真的如此空曠,行星之間的空間還有許多岩塊、小圓石、冰球、塵埃、成群的帶電粒子和多艘在遠方飛航的探測船。除此之外,太陽系空間裡,也到處都是強大的重力場和磁場。(太陽系最外圍的行星不再是冥王星了,請接受這個事實。)

多不勝數的固定班底:大大小小的星際碎片

行星際空間其實雜物繁多,所以我們的地球以每秒 30 公里的速率在軌道上行進時,每天都會掃起數百噸的流星體,其中尺寸多半小於沙粒。這些流星體高速衝撞地球大氣產生的熱,會造成它們的表面汽化,於是大部分直接焚毀在地球的高層大氣裡。地球脆弱的物種有賴於這層大氣保護罩,才得以繁衍演化。較大的流星體,除了表面會被燒焦,基本上會相當完整的抵達地球表面。

看似漆黑無物的太陽系,實際上飛著各式物質。 圖/NASA

你或許認為經過了 46 億次的繞行太陽之旅之後,地球應該已經清掉了軌道上的所有碎片,但答案是:還沒有。不過和地球過去的遭遇比起來,現在的情況顯然大有改善。大約在太陽和行星形成 5 億年之後,有多到難以想像的碎片不停掉落到地球上,產生的撞擊熱不斷累積,導至大氣熾熱無比,地殼也完全熔融。

-----廣告,請繼續往下閱讀-----

其中一顆非常大的碎片,導致了月亮的形成。在分析阿波羅探月計畫太空人帶回來的樣本後,發現月球的鐵和較重元素的含量意外的少,這表示火星大小的迷途原行星和地球發生擦撞後,那些從地球缺鐵的地殼和地函迸發出去;繞著地球運行的碎片,後來可能聚合成我們低密度的美麗月亮。

從地球缺鐵的地殼和地函迸發出去;繞著地球運行的碎片,後來可能聚合成我們低密度的美麗月亮。 圖/NASA

除了這個特別重大的事件,嬰孩時期的地球經歷的重轟炸期並不獨特,因為太陽系的其他行星和大型天體也都經歷過。大家也都受到類似的重大破壞,不過只有缺乏大氣的月球和水星,大致保存了這個時期的撞擊紀錄。

太陽系不但受到形成時留下的廢料撞擊,在近行星際空間裡還散布著火星、月亮和地球受到高速撞擊後,從表面彈出的大大小小岩石。流星體撞擊的電腦模擬證明,撞擊區附近的表岩噴飛的速率,高到可以掙脫天體的重力束縛。我們從地球上火星隕石的發現率,可以推斷出每年約有 1 千噸的火星岩石掉到地球上;而每年或許也有大約等量的月岩掉到地球上。回想起來,我們其實用不著特地飛到月球去拿月球岩石,地球上就多得是。只不過,我們沒辦法挑精撿瘦,而且在阿波羅計畫年代,我們也不知道有這回事。

地球上就撿得到月球岩石?!但你認得出哪顆是來自月球的石頭嗎…… 圖/NASA

可能會讓物種滅絕的狠角色「小行星」

大部分太陽系的小行星分布在火星與木星間,形狀扁平的小行星主帶上。在傳統上,小行星的發現者有命名權,高興用什麼來命名都可以。通常在畫家描繪的圖示裡,小行星帶是太陽系盤面上一個散布著凌亂崎嶇岩塊的區域。

-----廣告,請繼續往下閱讀-----

小行星帶的總質量不到月球質量的 5%,月球的質量則只比地球的 1% 要多一點點而已。雖然小行星的質量不大,但它們的軌道不斷受到擾動,因此形成了一群大約數千顆特別危險的近地小行星,它們的扁平軌道會和地球軌道交錯。簡單的計算指出,它們大部分會在 1 億年內撞上地球。尺寸大於 1 公里的小行星在撞上地球時,產生的能量會高到嚴重破壞地球的生態系統,可能使大部分的陸地物種滅絕

這當然是糟透了。

小行星並不是唯一會危害地球生物的外太空天體。在海王星之外的柯伊伯帶(Kuiper Belt),帶寬大約和海王星與太陽的距離相當,其中成員包括了冥王星,是一個滿布彗星的環形區域。遠在六十多年前,荷蘭裔美國天文學家柯伊伯(Gerard Kuiper)就指出,在海王星軌道外頭的寒冷深空裡,藏著從太陽系形成時期殘存下來的冰質天體。由於這附近沒有大質量行星來吸收這些彗星,於是大部分彗星就靜靜的繞太陽運行了數十億年。

就如同小行星帶一樣,部分柯伊伯帶天體的軌道極扁平,並會和其他行星軌道相交。例如冥王星和同軌道的那群冥族小天體,它們較靠近太陽時軌道區會和海王星軌道交錯。另外還有一些柯伊伯帶天體的軌道會深入太陽內圍,放肆的穿過許多行星軌道;在這群天體中,最著名的是哈雷彗星。

-----廣告,請繼續往下閱讀-----

在柯伊伯帶後方很遠的地方,大約在前往最鄰近恆星的半途上,有一個稱為歐特雲的彗星儲存庫,它呈現球形分布,名字來自首先推斷出它存在的荷蘭天文物理學家歐特(Jan Oort)。

歐特雲(Oort Clude)是長週期彗星的源頭,這類彗星的軌道週期比人類生命還要長。與柯伊伯帶彗星有別的是,歐特雲彗星可以從任何方向,以任何軌道傾角進入太陽系內圍。1990 年代最明亮的海爾─波普彗星(Comet Hale-Bopp)及百武彗星(Comet Hyakutake),都是源自歐特雲,而且在短時間內都不會再度回歸。

海爾─波普彗星。 圖/NASA

有大氣層真好:太陽風極光

太陽風與地球磁場相接想像圖。 圖/NASA @wikipedia

太陽表面每秒會散失超過 1 百萬噸的質量,而形成的物質流稱為太陽風,太陽風主要的成分是帶電的高能粒子。太陽風粒子時速最高可達 1 千公里,粒子以這種高速向外泛流成群穿過太空,只有遇到行星磁場時才會轉向。

太陽風的部分粒子以螺旋軌跡掉向行星的磁北極和磁南極時,會撞擊氣體分子,激發大氣發出多彩多姿的極光。哈伯太空望遠鏡已在土星及木星的極區發現極光,而出現在地球上的北極光及南極光,時不時的提醒我們:有大氣層的保護真好。

-----廣告,請繼續往下閱讀-----

我們通常說,地球的大氣層從地球表面向上延伸數十公里。而低軌道上的衛星,在 100 公里到 400 公里高的軌道上,大約 90 分鐘會繞地球一圈。

你雖然無法在這種高度呼吸,不過這個區域仍有不少大氣分子存在,摩擦力已足以讓衛星慢慢失去軌道能量而下墜。為了要對抗這種阻力,低軌道的衛星偶爾要重新提升軌道高度,免得掉回地球,焚毀在大氣中。

大氣層邊界的另一種定義為:「地球氣體分子的壓力」和「行星際氣體分子壓力」相等之處。根據這種定義,地球大氣層的範圍有數千公里。在這個高度上方的 36,800 公里處(大約是地球與月亮距離的 1/10),是通訊衛星的國度。在這個特殊的高度,地球大氣的影響無關緊要,衛星的速率也很低,並且恰好和地球的自轉速率相同,所以衛星每天剛好繞地球一圈。相對於地面,這種衛星看似一直飄浮在正上空,是理想的訊號中繼站,能為地表不同的區域轉傳訊號。

謝謝「重力盾牌」木星,為地球擋下危險

牛頓重力定律指出,雖然你若距離行星愈遠,受到行星重力的影響也愈弱,但這個影響並不會降到零。木星用它強大的重力場,把很多原先會在太陽系內圍造成重大破壞的彗星趕開。所以對地球而言,木星就像重力盾牌,也像在保護地球的粗壯大哥,讓地球享有長達億年,相對平安和寧靜的時期。如果沒有木星提供的保護,地球生命除了很難演化成更有趣的複雜生命,也會活在可能受到致命撞擊而滅絕的危險環境中。

-----廣告,請繼續往下閱讀-----
探索土星的卡西尼號探測船(Cassini–Huygens)。 圖/NASA

我們一直在利用行星的重力場為太空探測船提供能量。就以前往探索土星的卡西尼號探測船為例,它受到許多行星的重力協航,其中金星兩次、地球(由金星返回時)和木星各一次。探測船在多顆行星間輾轉飛航,以酷似撞球檯上撞球的路徑行進,是很常見的操作方式。如果不這樣,火箭提供的飛行速率和能量,不足以讓我們的小探測船前往目的地。

眾多命名不盡的小行星

我現在對太陽系的行星際碎片有些許責任了。2000 年 11 月,由李維(David Levy)和舒梅克(Carolyn Shoemaker)發現的主帶小行星 1994KA,後來命名為「13123– 泰森(13123 Tyson)」來向我致敬。我雖然享有這個殊榮,但其實也沒有什麼好自大的,因為還有許多類似的小行星,以喬笛、哈洛特和湯瑪斯等常見的名字命名。還有一些小行星的名字叫梅林、龐德和聖誕老人。

目前發現的小行星,數量已將近數十萬顆,可能很快就會對我們命名的能力產生挑戰。不管這種時日是否會來臨,我覺得相當欣慰的是,以我命名的那個宇宙碎片在行星間遊蕩時,並非孤苦無依,而是有一大堆以真人和虛構人物為名的其他天體為伴。

此刻讓我更高興的是,我的小行星並沒有直衝地球而來。

-----廣告,請繼續往下閱讀-----

 

 

本文摘錄自《宇宙必修課:給大忙人的天文物理學入門攻略》,天下文化出版。

 

 

 

 

 

文章難易度
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
秋季星空中一抹光亮:北落師門殘屑盤的觀測史——《科學月刊》
科學月刊_96
・2024/01/19 ・4118字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 謝承安/ EASY 天文地科團隊成員,因喜愛動畫《戀愛中的小行星》開始研究小行星,現就讀臺大物理系。
  • 林彥興/清大天文所碩士, EASY 天文地科團隊總編輯,努力在陰溝中仰望繁星。
  • Take Home Message
    • 殘屑盤是恆星周遭的盤狀結構,由於北落師門殘屑盤離地球僅 25 光年,數十年來天文學家時常會藉由觀測它以了解殘屑盤的特性。
    • 去(2023)年韋伯望遠鏡的觀測結果與過去不同,顯示北落師門殘屑盤其實分成多個部分,更讓他們相信北落師門中有多個行星環繞。
    • 韋伯望遠鏡提供的影像還揭露許多來源未知的構造及現象,例如內側殘屑盤與內側裂縫等,都有待繼續探索。

北落師門(Fomalhaut)又稱南魚座 α 星,是秋季星空中著名的亮星之一。去年 5 月,以美國亞利桑那大學(University of Arizona)天文學家加斯帕(András Gáspár)為首的研究團隊在《自然天文學》(Nature Astronomy)期刊上發表,他們藉由詹姆士.韋伯太空望遠鏡(James Webb Space Telescope, JWST,簡稱韋伯望遠鏡),在北落師門周圍殘屑盤(debris disk)中首次發現了「系外小行星帶」的存在。韋伯望遠鏡拍下美麗的照片,也瞬間席捲各大科學與科普媒體的版面(圖一)。

圖一:韋伯望遠鏡在波長約 25 微米(μm)的中紅外線拍攝的北落師門影像,首次呈現北落師門殘屑盤中的三層結構。(NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

天文學家選擇北落師門作為目標並非偶然。半個世紀以來,北落師門一直是天文學家研究殘屑盤時的首選目標之一。韋伯望遠鏡的新影像為我們帶來什麼新發現?過去與現在的觀測方式又有什麼差異?本文將帶著大家一起回顧北落師門殘屑盤的觀測史。

行星相互碰撞後的殘屑盤

殘屑盤是環繞在恆星周遭,由顆粒大小不一的塵埃所組成的盤狀結構。如果讀者們聽過行星形成的故事,也知道行星是從恆星四周、由氣體與塵埃組成的「原行星盤」(protoplanetary disk)中誕生,那你或許會認為殘屑盤可能就是行星形成後剩下的塵埃。但實際上並非如此,在恆星形成初期的數百萬年間,原行星盤中的氣體和塵埃會被恆星吸積或是吸收恆星輻射的能量後蒸發,同時也會聚集成小型天體或行星,這些原因都會使原行星盤消散。而殘屑盤則是由盤面上的小行星等天體們互相碰撞後,產生的第二代塵埃組成(圖二)。

圖二:殘屑盤想像圖(NASA/JPL-Caltech)

這些塵埃發光的機制主要有兩種。第一,塵埃本身可以散射來自母恆星的星光,從而讓天文學家能在可見光與近紅外波段看到它們。第二,塵埃在吸收來自恆星的星光之後,以熱輻射的形式將這些能量重新釋放。由於恆星的光強度與距離成平方反比,愈靠近恆星,塵埃的溫度就愈高,因此發出的輻射以近紅外線為主;反之,愈是遠離恆星,塵埃的溫度就愈低,發出的光就以中遠紅外線為主。

-----廣告,請繼續往下閱讀-----

觀測目標:北落師門

北落師門殘屑盤的觀測始於 1983 年。當時,美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的紅外線天文衛星(Infrared Astronomical Satellite, IRAS)發現北落師門在紅外線波段的亮度異常高,代表周圍很可能有殘屑盤圍繞。由於北落師門離地球僅約 25 光年,這項發現引起眾多天文學家的關注,並在未來數十年前仆後繼地拿出各波段最好的望遠鏡,希望藉此深入了解殘屑盤的特性。其中,哈伯太空望遠鏡(Hubble Space Telescope, HST,簡稱哈伯望遠鏡)、阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)與韋伯望遠鏡擁有非常好的空間解析度,因此能夠清楚地觀測殘屑盤的結構。

● 哈伯的觀測

2008 年, NASA 公布哈伯望遠鏡在 2004 與 2006 年對北落師門的觀測結果(圖三),讓天文學家首次清晰地看到北落師門殘屑盤的影像。這張照片是哈伯望遠鏡以日冕儀(coronagraph)在 600 奈米(nm)的可見光波段下拍攝,中間的白點代表北落師門的位置,而周圍的環狀亮帶正是因散射的北落師門星光而發亮的殘屑盤,放射狀的條紋則是日冕儀沒能完全消除的恆星散射光。除此之外,天文學家還發現有一個亮點正圍繞著北落師門運行,並認為此亮點可能是一顆圍繞北落師門的行星,於是將它命名為「北落師門 b 」。很可惜在往後的觀測中,天文學家發現北落師門 b 漸漸膨脹消散,到 2014 年時就已經完全看不見了。因此它很可能只是一團塵埃,而非真正的行星。

圖三:哈伯望遠鏡於 2008 年公布的北落師門。中間白點代表北落師門的位置,周圍環狀亮帶是因散射北落師門的星光而發亮的殘屑盤,放射狀條紋則是沒完全消除的恆星散射光。右下角亮點當時被認為是圍繞北落師門的行星,但很可能只是塵埃。(Ruffnax (Crew of STS-125);NASA, ESA, P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.)

● ALMA 的觀測

ALMA 對北落師門的完整觀測於 2017 年亮相,他們展示出更加清晰漂亮的環狀結構,且位置與哈伯望遠鏡的觀測吻合。正如前面提到,殘屑盤中的塵埃溫度愈低,放出的輻射波長就愈長。因此 ALMA 在 1.3 毫米(mm)波段觀測到的影像,主要來自離殘屑盤中恆星最遠、最冷的部分。

圖四: ALMA 於 2017 年拍攝的北落師門殘屑盤,展示出清晰漂亮的環狀結構。(Sergio Otárola|ALMA (ESO/NAOJ/NRAO);M. MacGregor)

● 韋伯望遠鏡的觀測

最後則要來看去年韋伯望遠鏡所使用中紅外線儀(mid-infrared instrument, MIRI)拍攝的影像(圖五)。與之前的觀測不同,這次的影像顯示北落師門的殘屑盤其實分成幾個部分:

-----廣告,請繼續往下閱讀-----
圖五:韋伯望遠鏡在 25 微米波段觀測到的北落師門殘屑盤。(NASA GSFC/CIL/Adriana Manrique Gutierrez;NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

首先,哈伯望遠鏡與 ALMA 之前就已觀測到的塵埃環,它的半徑約 136~150 天文單位(AU)、寬約 20~25 AU,而溫度則落在約 50~60 K,與太陽系的古柏帶(Kuiper belt)十分相似,因此被稱為「類古柏帶環」(KBA ring)。雖然在觀測上的溫度相似,但其實此塵埃環與北落師門的距離是古柏帶到太陽的四倍;不過北落師門光度約為太陽的 16 倍,根據前述提及的平方反比關係,才導致兩者的溫度相近。此外,在更外層名為「暈」(halo)的黯淡結構則對應古柏帶外圍天體密度較低的區域。

再來,韋伯望遠鏡還發現了更多未解的謎團:內側殘屑盤(inner disk)與中間環(intermediate ring)。其實早在本次韋伯望遠鏡的觀測之前,天文學家就已經從北落師門的光譜推測,北落師門的殘屑盤中除了存在前面提過的類古柏帶環之外,應該還有另一批更靠近恆星、溫度更高的塵埃,溫度與大小對應太陽系中的環狀小行星帶。但當韋伯望遠鏡實際觀測後,卻發現與太陽系的環狀小行星帶相比,北落師門有著相當瀰散的內側殘屑盤。為什麼會有這樣的不同呢?目前天文學家也不清楚,仍待進一步研究。

最後,在類古柏帶環與內側殘屑盤之間,還存在著一個半長軸約 104 AU 的「中間環」,在太陽系中則沒有對應的結構,這項新發現也需要進一步的研究來了解它的來源。

此外,雖然北落師門 b 最終被證實並不是一顆行星,但這並不代表北落師門旁沒有行星環繞。最初,殘屑盤的形成原因是由小行星等天體不斷碰撞所產生,經過不斷地碰撞合併,其實就有可能已經產生直徑數百到數千公里的行星。從北落師門的殘屑盤還可以推論,在內側殘屑盤與中間環之間可能有一顆海王星質量以上的行星,它就像鏟雪車般清除軌道上的塵埃,從而產生「內側裂縫」(inner gap)的結構。

-----廣告,請繼續往下閱讀-----

另一方面,天文學家也藉由數值模擬發現,如果僅考慮來自北落師門的重力影響,類古柏帶環應該要比觀測到的更寬才對。因此他們推測,很可能在類古柏帶環內外兩側有兩顆行星,像控制羊群的牧羊犬一樣以自身的重力限制塵埃移動,才產生了這麼細的塵埃環。

● 更多的殘屑盤觀測

北落師門雖然是一顆年齡僅4.4億年的年輕恆星,卻已經是一個擁有殘屑盤、形成行星的成熟恆星系統。而來自韋伯望遠鏡的最新觀測結果,無疑讓天文學家更深入地認識殘屑盤中複雜的結構,也更令他們相信北落師門系統中有多個行星環繞。

不過,北落師門系統仍舊有許多未解之謎。例如為什麼太陽系有著環狀的小行星帶,北落師門卻是瀰散的內側殘屑盤?在無數的恆星中,究竟是太陽系還是北落師門的殘屑盤構造比較常見?殘屑盤中是否有行星存在?如果有,在北落師門的演化歷史中又扮演著怎樣的角色呢?這些問題都有待更多的觀測與理論模擬來解答。

在北落師門之後,觀測團隊預計將韋伯望遠鏡指向天琴座的織女星(α Lyr, Vega),以及位於波江座的天苑四(ε Eri),兩者都是離地球非常近且擁有殘屑盤的恆星。其中織女星的溫度與質量比北落師門更大,而天苑四的質量與溫度雖然比太陽小,卻有強烈的磁場活動。藉由觀測不同系統中殘屑盤的性質差異,並與太陽系進行對比,不僅能更加認識殘屑盤的起源、與行星的交互作用,更能理解我們自己的恆星系中,數百萬顆的太陽系小天體從何而來。

-----廣告,請繼續往下閱讀-----

JWST 原始資料的處理過程影片介紹,非常值得一看!

  • 〈本文選自《科學月刊》2024 年 01 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Galicher, R. et al. (2013). Fomalhaut b: Independent analysis of the Hubble space telescope public archive data. The Astrophysical Journal, 769(1), 42.
  2. MacGregor, M. A. et al. (2017). A complete ALMA map of the Fomalhaut debris disk. The Astrophysical Journal, 842(1), 8.
  3. Gáspár, A. et al. (2023). Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 1–9.
科學月刊_96
249 篇文章 ・ 3496 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
2

文字

分享

0
1
2
原住民祖先見過明亮的南方之星?傳說是真的,而且超過一萬年!
寒波_96
・2023/11/08 ・2777字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

有些故事代代相傳之下,經歷非常漫長的時光。過去很久以後,五百年、三千年或一萬年,都已經是「很久很久以前」,難以判斷到底多久。2023 年發表的一項研究認為,澳洲南方的塔斯馬尼亞島,有個故事似乎能追溯到超過一萬年前。

塔斯馬尼亞的祖傳故事

大英帝國的調查隊抵達塔斯馬尼亞初期,估計島上約六千到八千位居民;原住民們統稱為「palawa」,不過又能分成多個有所區別的族群。英國人在公元 1803 年建立第一個殖民地,然後,不意外地起爭議。

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

殖民者與原住民的衝突加劇後,1823 到 1832 年間導致約兩百位殖民者及九百位原住民身亡。有些英國人希望能和平解決問題,最終勸誘加上強迫,1829 到 1835 年間將島上的原住民,都成功遷移到位於塔斯馬尼亞和澳洲之間,巴斯海峽的弗林德斯島(Flinders)。

-----廣告,請繼續往下閱讀-----

英國人認為這是一次「友善」的轉移任務。以當時狀況而言,確實算是相對和平的收場,但是慘遭強制搬遷的原住民依然損失慘重,人口以外,他們脫離原本的家園「Lutruwita」,文化、語言幾乎喪失殆盡。

遷徙計畫中,英國人魯賓遜先生(George Augustus Robinson)可謂關鍵角色。他走訪塔斯馬尼亞各地,說服原住民搬家,也對當地風俗文化非常好奇,留下大量紀錄。

這些 1830 年代的紀錄,就像塔斯馬尼亞傳統文化的切片。後來有些原住民重返塔斯馬尼亞,試圖擺脫殖民時,英國殖民者當初搜集原汁原味的資料,也成為重建傳統的材料之一。

魯賓遜等人搜集的紀錄來自多位原住民的說法,其中一個故事相當費解,至少當年魯賓遜無法理解,新問世的論文總算揭開奧秘。

-----廣告,請繼續往下閱讀-----

情節湊不上,是因為發生在太久之前

祖先的遷徙故事,提到他們來自一片大陸;後來大陸被海水淹沒,當時岸邊附近有冰山漂浮。那時望向南方的天空,可以見到一顆很亮的星。

塔斯馬尼亞與澳洲之間的地形。兩地之間原本存在陸橋,海水上升後形成巴斯海峽。圖/參考資料1

塔斯馬尼亞原住民一代一代仰望星空,也建立一些自己的天文學知識,被魯賓遜忠實收錄。那顆南方大星星卻令人費解,因為星空中根本沒有符合描述的那顆星。最可能的對象是老人星(Canopus),也稱為船底座α(α Carinae)。

星空中最亮的是天狼星,第二就是老人星,顯然它非常顯眼,可是位置明顯有差。是原住民唬爛,還是魯賓遜唬爛,或是魯賓遜紀錄錯誤呢?新的分析指出,他們都是正確的,因為一萬兩千年前的星空,老人星確實處於故事中的那個位置。

-----廣告,請繼續往下閱讀-----

首先,故事提到祖先前來的道路被大海淹沒,冰山在岸邊漂浮。對照現代科學知識,能輕易推論這講的是冰河時期結束,海平面上升,淹沒澳洲與塔斯馬尼亞之間的陸橋,形成巴斯海峽,讓塔斯馬尼亞成為一個四面環海的島。

接著是星空為什麼不同?從地球表面仰望夜空,星星的分布位置會由於「歲差」緩慢改變。回溯調整成一萬多年前的星空,老人星的確就在那兒。

地表很多位置都能見到南方明亮的老人星,不同民族、文化各有自己的想像。台灣人即使沒有親眼注意過,也肯定知道老人星,因為這就是福祿壽中的「壽星」,形象化叫作南極仙翁。

有趣的是,中文名字叫老人星,英文名字 Canopus 則來自特洛伊戰爭傳說中的一位年輕人,他是航海家,後來不幸在埃及被毒蛇咬死……所以中國想像這顆星是老人,歐洲卻想像是年輕小夥。

-----廣告,請繼續往下閱讀-----

回溯塔斯馬尼亞 1831 年 8 月 1 日,凌晨 5 點時的星空。圖/參考資料1

難以理解的時候,先忠實紀錄

考慮到魯賓遜紀錄的日期是 1830 年代,更加深故事的真實感,因為當時英國人還不知道「冰河時期結束導致海面上升」。阿加西(Louis Agassiz)首度宣稱冰川歷史的想法要等到 1837 年,更多年後取得較多支持,十九世紀後期才廣為人知。

魯賓遜等歐洲人對聽到的故事內容難以理解,他們或許會聯想到聖經的大洪水,但是完全想像不到冰河時期。所以這些內容,大概更能免於印象或偏好影響,反映忠實的紀錄。

據此推敲,塔斯馬尼亞祖傳故事講的是:「大約 1.2 萬年前海水上升之際,明亮的老人星在那個位置」。如果推論正確,這便是傳承 1.2 萬年的口述歷史,堪稱全人類罕見的文化遺產。

-----廣告,請繼續往下閱讀-----

有人或許會好奇,一些研究認為早在四萬年前,已經有人穿過澳洲,抵達塔斯馬尼亞。可是島上原住民的祖先故事,卻是一萬多年前?

我想可能是因為,記憶對於愈久遠的事情常常會愈壓縮,把更早發生的事情疊加到比較近期,印象很深的事件中。或許原住民的祖先很早就過去,但是海水上升淹沒陸橋令人印象太過深刻,就變成故事的素材。

另一件啟示是,世界上不知道的事情太多了,當你不太理解聽到什麼的時候,不要試著腦補,就照聽到的忠實紀錄下來!

延伸閱讀

參考資料

  1. Hamacher, D., Nunn, P., Gantevoort, M., Taylor, R., Lehman, G., Law, K. H. A., & Miles, M. (2023). The archaeology of orality: Dating Tasmanian Aboriginal oral traditions to the Late Pleistocene. Journal of Archaeological Science, 105819.
  2. Rising seas and a great southern star: Aboriginal oral traditions stretch back more than 12,000 years
  3. GEORGE AUGUSTUS ROBINSON
  4. 老人星名字來源神話人物 Canopus 維基百科

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1018 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

2

0
0

文字

分享

2
0
0
【成語科學】以管窺天:視野狹隘才看得清楚!「窺管」是怎麼幫助古人觀測星空的?
張之傑_96
・2023/09/29 ・1018字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

這個成語出自《莊子》秋水篇。戰國時,公孫龍自認學問、口才高人一等,可是聽到莊子的言論卻大惑不解。他的一位朋友說,是他眼界狹小,有如用管子看天,只能看到天空的一小部分,以為天空就這麼小。

後來「以管窺天」演變成一個成語,比喻見識淺薄狹窄。談到這裡,讓我們造兩個句吧。

沒讀幾本書,就說自己了解明史,猶如以管窺天,所知太有限了。

這篇討論新冠肺炎的論文,只是以管窺天,並沒看到問題的全貌。

成語「以管窺天」,常和「以蠡測海」並用。蠡,指用葫蘆做的瓢。用瓢測量海水,能測得完嗎?以蠡測海,也是比喻見識淺薄狹窄。

成語「以蠡測海」,純粹是個比喻,沒什麼科學意義。成語「以管窺天」則不然,原來用來窺天的「管」,是古人的天文觀測儀器啊!

-----廣告,請繼續往下閱讀-----

古時沒有望遠鏡,只能用肉眼觀看星空。用肉眼觀測大範圍的天象尚能應付,觀測細微的天象就不敷需要了,所以古人想出一個辦法,用竹管的管孔來縮小觀測範圍,這種觀測天象的管子,特稱「窺管」。

窺管。圖/Wikimedia

窺管能「窺」出什麼呢?首先,能夠消除側光的影響,一些較暗的星,看起來就變亮了。小朋友可以做個實驗,用手握出個孔洞,湊近一隻眼睛,望向遠處目標,是不是看得更清楚了。

窺管除了可以增加亮度,還可以觀測星星的經度和緯度,這就得談談古代的天文觀測儀器渾儀。大約西元前 1 世紀,古人發明了渾儀。渾儀由 1 至 3 重的金屬環構成,外重是固定的,內重可以轉動,窺管嵌於其中。後來環數加多,構造變得複雜,但基本原理是一樣的。

自古以來,天文學家就假想「天」是個球體——天球,做為觀察星空的依據。假想中的天球,是以地球為中心、向外擴充的無限大球面。地球的南北極,向外擴充,就成為天球南北極;地球的赤道,向外擴充,就成為天球赤道。地球有經緯度,天球也有經緯度,稱為赤經、赤緯。

-----廣告,請繼續往下閱讀-----
北京古觀象台的渾儀。圖/Wikimedia

根據《隋書.天文志》,當時渾儀上的窺管,長 8 尺,有直徑 1 寸的圓孔。觀測時,轉動內層的環,將窺管導向某一星星,經過微調,根據環上的刻度,就可以定出這顆星星在天球上的座標,也就是它的經緯度。

所有討論 2
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。