Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

親愛的,我把金星當鏡子了|科學史上的今天:2/10

張瑞棋_96
・2015/02/10 ・988字 ・閱讀時間約 2 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

1958 年的今天,麻省理工學院林肯實驗室的普萊斯 (Bob Price) 與格林 (Paul Green) 偷偷地將位於麻州石磨山 (Millstone Hill) 上的雷達天線轉向金星。這座 27 公尺高,直徑 26 米的碟型天線是由美國空軍出資建造,林肯實驗室只是負責管理操作。軍方的目的在克服各種干擾因素──包括自然現象與蘇聯故意「蓋台」,維持通信暢通;因此林肯實驗室也可以順便用來研究極光、電離層等天文。不過這座天線於去年十月啟用後,剛巧遇上蘇聯發射史上第一顆人造衛星史普尼克一號(Sputnik 1),因此目前還要緊盯著蘇聯這顆人造衛星。

NASA 哈伯太空望遠鏡所拍攝的金星。圖/NASA

那麼,普萊斯與格林兩人究竟是打什麼算盤?其實這只是源於午餐時的閒聊。

「你看這個大天線的功率能將雷達訊號打到金星再反彈回來嗎?」

「你說像 1946 年狄威特 (John H. DeWitt) 將訊號打到月球那樣?」

「對啊,他那時用的天線功率只有 5 萬瓦,我們這座可有 250 萬瓦哪!」

「不過月球距離是三十八萬公里,金星可是在四千萬公里之外!而且有些調速管壞掉,可用的功率大打折扣了。不過,計算看看也無妨。」

兩人在餐巾紙上計算一番後,發現就算金星表面光滑如鏡也不可能再反彈回地球。恰巧此時一位前來訪問的學者加入他們的討論,告訴他們他剛製作的一台微波放大器 (MASER) 應該可以幫上忙,於是他們在一個小時內敲定了系統架構,還加進了類比/數位轉換器、磁帶機、數位電腦,用來將雷達訊號轉換成數位訊號由電腦分析,這都是當時的創舉。

他們前後試了五回,其中有兩次出現應該是由金星反射回來的訊號。他們在第二年發表了他們的實驗;當時美國在太空競賽上仍然落後蘇聯,普萊斯與格林兩人的成果像是一劑強心針鼓舞了美國人民的士氣。他們雖然不是首創將雷達打向天體的人,但他們首創將類比訊號轉成數位訊號貯存分析、使用 MASER 這種低雜訊放大器、運用數位電腦等等,都成為往後用雷達遙測行星的範本,才真正促使雷達天文學的迅速發展。

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1036 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
2

文字

分享

0
6
2
18世紀的金星變形秀:行星凌日與黑滴效應
全國大學天文社聯盟
・2022/06/28 ・3216字 ・閱讀時間約 6 分鐘

1761 年 6 月 6 日,歐洲的天文學家們乘船抵達世界各地的天文台,爭相用最先進的儀器紀錄一個罕見的天文現象──金星凌日, 因為此天文現象可以幫助人們精確測算地球與太陽的距離。在英法七年戰爭的氛圍下,兩國的天文學家尤其較勁,都想要第一個量出日地距離,為天文學史畫下濃墨重彩的一筆。然而當大家拭目以待地望向剛與太陽重疊的金星時,卻都露出了驚訝的表情──金星變形了!

說到金星凌日,大家最有印象的或許是 2012 年的一次金星凌日,從天文學家到各個職業的人們都拿著減光濾鏡共襄盛舉,畢竟下一次的金星凌日要到 2117 年才會再發生。然而在過去,金星凌日並不只是歡樂的娛樂事件,也是非常嚴肅的科學事件。

在十八世紀時,多數天文學家都接受哥白尼的日心說,而克卜勒提出的行星運動三大定律,則可以推導出各行星軌道半徑與地球軌道半徑之間的相對長度,然而最大的問題是當時的人們並不知道地球軌道半徑(地球到太陽的平均距離)的絕對長度。為了解決這個問題,英國天文學家愛德蒙.哈雷於 1716 年提出了使用金星凌日來測量日地距離的方法。如圖一所示,金星凌日的軌跡長短與在地球上的何處觀測有關,在軌跡較長處金星凌日的時間較長,反之則較短,這是因為在地球上不同處觀測金星的視角不同造成的。

假設我們在地球上的 A 與 B 兩處量測金星凌日的時間,我們可以量出兩地觀測金星時的視角差,在知道 A 與 B 間距的前提下,我們可以用視差法量出地球到金星在金星凌日發生時的距離(見圖二)。最後根據克卜勒第三行星運動定律─行星公轉太陽週期平方與行星到太陽的平均距離立方成反比─可以得出金星到太陽的距離約為地球到太陽距離的 0.7 倍,我們也可以得知地球與金星在金星凌日時的距離是地球到太陽距離的0.3倍,由此可以推導出太陽與地球的距離。



圖一(左):金星凌日軌跡。圖二(右):視差法算金星與地球距離。

此方法在當時極大鼓舞了天文學家的士氣,大家都摩拳擦掌的為 1761 年的金星凌日作出準備,共一百多名天文學家乘船至世界各地以測量不同地方金星凌日的時長,其中較為著名的有英國派出的庫克船長於大溪地觀測金星凌日,以及荷蘭則派出的 Johan Maurits Moh 到歷史課本中提過的荷蘭東印度公司巴達維雅總部進行觀測(圖三)。

-----廣告,請繼續往下閱讀-----

然而正當金星與太陽重疊時,大家卻不知道何時該按下碼表記錄金星凌日開始的時間,因為金星變形了。圖四是最早關於金星變形的紀錄,在金星靠近太陽的邊緣時金星的旁邊會出現黑色的陰影與太陽邊緣相連接,而這樣的陰影狀似水滴,因此這個現象也被稱作「黑滴現象」

圖三(左):巴達維雅總部,Johan Maurits Mohr 的私人天文台。
圖四(右):於1761年被Torbern Bergman 記錄之黑滴現象。

當時的天文學家們為黑滴現象提出了各種不同的解釋,有些天文學家認為黑色的陰影是金星大氣對太陽光的散射與折射造成的錯覺,也有人認為這是地球大氣擾動造成的現象,還有人認為是太陽光通過金星時繞射所造成的陰影。

前面兩種解釋在 1999 年 NASA 的 TRACE 太空望遠鏡對水星凌日的觀測後被否定,因為太空中沒有地球大氣干擾,水星上則沒有大氣可以散射或折射太陽的光線,而觀測的照片中卻仍出現黑滴效應(圖五)。光的繞射所能造成的影響則不足以產生黑滴現象(繞射影響在約 10^{-9} 角秒,可忽略[1])。

圖五:1999年水星凌日,攝於 NASA’s Transition Region and Explorer (TRACE) 太空船(Schneider, Pasachoff, and Golub/LMSAL and SAO/NASA)

關於黑滴現象的成因一直到 2004 年才得到令人信服的解釋,天文學家 Glenn Schneider 認為黑滴現象是由望遠鏡的點擴散函數(Point Spread Function, PSF)以及太陽的周邊減光造成的 [2]

為了簡單瞭解他所提出的概念,大家可以將大拇指與食指放在一光源之前漸漸靠近(直視強光源會傷害眼睛,請注意光源強度不可以太強),在兩指快要靠在一起時,可以看見兩指中間突然浮現出一段陰暗的橋將兩指相連(如圖六)。

-----廣告,請繼續往下閱讀-----

這是因為非點光源會在兩指的邊緣製造出模糊的陰影,而人眼對模糊的陰影並不敏感,因此直到兩指特別靠近時,兩指的陰影重疊導致陰影變明顯才看得出來。圖七與圖八中的兩塊陰影可以幫助大家更好地破除這個錯覺,圖七單純顯示兩塊模糊的陰影,而圖八將陰影的等暗度線畫出來。比較兩圖我們可以發現雖然圖七中兩塊陰影像是連接在一起,然而實際上圖八卻顯示兩陰影並沒有連接在一起 [3]

圖六(左):大拇指與食指之間的暗橋。圖七(中):兩個模糊陰影 [3]。圖八(右):同中間圖,但是增加了等暗度線 [3]

金星凌日所產生的黑滴效應也是透過類似的方式產生的,不過金星模糊陰影與太陽邊緣模糊的成因不同。金星陰影在望遠鏡的觀測中,會因為望遠鏡的點擴散函數而在成像時顯得模糊。望遠鏡的點擴散函數,指的是一望遠鏡在觀測點光源時成像的樣子,不同望遠鏡的點擴散函數有所不同,但通常口徑小做工差的望遠鏡會有較大之點擴散函數,點光源被模糊化的程度也越高,看的也就越不清晰。

回到金星的陰影,當古代人們用做工差且口徑較小的望遠鏡觀測金星時,其陰影非常模糊、黑滴現象較現在的望遠鏡明顯的多,這也是為什麼各地回報黑滴現象的次數隨著望遠鏡的進步逐漸地減少 [4]

太陽邊緣的模糊則主要是因為太陽是一團沒有銳利邊緣的發光電漿。如圖九所示,假設每單位體積電漿能發出的光相同,我們可以看到往太陽邊緣的線上通過的電漿比往太陽中心的線上通過的電漿要少,這也代表著往太陽中心看去的光線較亮,而越往太陽邊緣看去亮度會逐漸減少。圖十是一個比較誇張的示意圖,圖中一模糊的黑影為金星,一模糊的白色邊緣則代表太陽邊緣,即便兩者的邊緣沒有接觸,我們仍能看到金星的邊緣伸出了黑影,與太陽邊緣相連接,這便是黑滴現象的由來。

-----廣告,請繼續往下閱讀-----
圖九(左):太陽周邊減光成因示意圖。圖十(右):黑滴現象示意圖。

回到日地距離的問題上,難道在這兩百多年的時間中沒有其他方式能量測金星與地球的距離嗎?實際上在雷達與遙測技術的加持下,人們早在 1964 年就能夠以高精度量測地球到金星間的距離了,因此如今的日地距離測量早已與金星凌日無關。

不過黑滴現象這一歷史悠久的問題,仍在一代一代天文學家的不懈努力下被解決了;時至今日,我們仍面臨著宇宙的諸多未知,而我由衷的期待這些現在看似無解的問題,能在未來的某一天被解決,無論花上幾十年、幾百年的時間。

參考資料:

  1. The Transit of Venus and the Notorious Black Drop, Schaefer, B. E. (2000) https://ui.adsabs.harvard.edu/abs/2000AAS…197.0103S/abstract
  2. TRACE observations of the 15 November 1999 transit of Mercury and the Black Drop effect: considerations for the 2004 transit of Venus, Glenn Schneider (2004) https://www.sciencedirect.com/science/article/pii/S0019103503003841?via%3Dihub
  3. Stackexchange, Why do shadows from the sun join each other when near enough? (2014) https://physics.stackexchange.com/questions/94235/why-do-shadows-from-the-sun-join-each-other-when-near-enough
  4. The black-drop effect explained, Jay M. Pasachof (2005) https://ui.adsabs.harvard.edu/abs/2005tvnv.conf..242P/abstract
-----廣告,請繼續往下閱讀-----

0

6
3

文字

分享

0
6
3
從太空窺探金星表面的派克太陽探測器
Heidi_96
・2022/03/04 ・3829字 ・閱讀時間約 7 分鐘

在天文觀測中,自古以來就有許多關於金星的紀錄。從 1960 年代起,蘇聯、美國太空總署(NASA)、歐洲太空總署(ESA)和日本也都相繼發射探測器,執行不同類型的太空任務,希望能夠更認識金星。

2020 年,NASA 的派克太陽探測器(Parker Solar Probe,簡稱「派克號」)首次在太空中以可見光拍攝金星表面,並在 2021 年 2 月再次拍攝一系列可見光照片後,將他們的分析成果公諸於世。

本篇文章將依序介紹金星探測史、派克號的探測方法、可見光照片的分析成果,以及金星探測的未來展望。現在,就讓我們從頭認識這位閃閃發亮的鄰居吧!

始於科學革命的金星之旅

對地球上的我們來說,月亮是夜空中最亮的天體,但你知道最亮的「行星」是哪一顆嗎?那就是本篇文章的主角——金星!金星的平均視星等,也就是肉眼所看到的平均星體亮度,大約是 -4.14,僅次於月亮的 -12.74 與太陽的 -26.74(數字越小就越亮)[1],不只是地球夜空中最亮的行星,更是太陽系第三明亮的星體。

-----廣告,請繼續往下閱讀-----

有個這麼耀眼的酷東西掛在天上,想必科學家絕不會輕易放過!就在科學革命(1543–1687 年)期間,天文學領域突飛猛進——哥白尼提倡日心說、牛頓發現萬有引力、克卜勒導出行星運動定律等等。同時期的知名科學家還有伽利略,他改良望遠鏡,透過觀測金星相位(圖一),也就是金星表面的光照變化,得知金星並不是繞著地球運行,進而推翻當時蔚為盛行的地心說。

圖一:伽利略透過望遠鏡發現金星和月亮一樣有盈缺變化。圖片上半部分別是土星、木星和火星。圖/NASA

此後,眾多業餘天文學家和天文愛好者也都一窩蜂利用望遠鏡觀測金星。有許多人聲稱在背光側看見了微弱的灰白色光芒,並將其稱作「灰光」(Ashen light)。

有些人認為是灰光是金星上的閃電,有些人則認為是紫外線穿透金星大氣時,氧離子游離而輻射出的暗綠色光芒(類似地球上的極光現象),可是沒有人能夠確實拍照紀錄,因此當時普遍認為灰光只是一種視錯覺。時至今日,這些假設也都還沒有確切的科學根據。[2]

不斷演進的金星探測技術

時間來到 1960 年代,繼水手 2 號(Mariner 2)在 1962 年掠過金星後,金星 4 號(Venera 4) 在 1967 年進入金星大氣層進行分析,結果顯示金星大氣約含有 90-93% 二氧化碳、7% 氮氣,以及少許氧氣和水蒸氣。[3] 緊接著在 1975 年,金星 9 號(Venera 9)測出表面溫度約 485 °C、雲層厚度約 30–40 公里。除此之外,還拍下金星表面的 180 度全景照片(圖二),是史上第一個將金星照片傳回地球的探測器。[4]

-----廣告,請繼續往下閱讀-----
圖二:1975 年 10 月 22 日,Venera 9 拍下第一張金星表面的照片。圖/NASA 

金星大氣層布滿厚厚的硫酸雲,不僅反射了大約 75% 的陽光,也阻擋了來自金星表面的大部分可見光。因此,科學家決定改用雷達儀器測繪金星表面。1990 年代,麥哲倫(Magellan)多次以雷達測繪金星表面的火山和隕石坑等地貌結構,其清晰程度與可見光測繪不相上下,可說是目前最詳細的金星地圖(圖三)。[5]

圖三:根據麥哲倫的數據資料製作的金星視圖。圖/NASA

此後,科學家進一步利用近紅外線(NIR)觀測金星背光面,因為近紅外線(波長 0.75–1.5 μm)有利於影像在低光環境下生成,而這個波段恰好也是大氣透明度最高的範圍,可以更清楚地看見金星表面。1998 年,卡西尼號(Cassini)以 0.85 μm 的波段觀測金星,可惜這種方法在技術上難以突破,因為輻射強度會隨著波長變短而迅速下降。直到 2020 年,派克號才終於以更短的波長捕捉到金星表面的輻射。

飛越金星七次的「派克號」

2018 年 8 月,派克號發射升空,飛往太陽(圖四)。為了在這漫長的旅途中節省燃料,派克號總共得進行七次重力輔助飛越(VGA),利用金星的引力逐步修正飛行軌道,最終在 2025 年抵達距離太陽中心 10 個太陽半徑(約 690 萬公里)的地方,進行日冕和太陽風的測量任務。

七次重力輔助飛越(VGA)的時程分別如下[6]

-----廣告,請繼續往下閱讀-----
  • VGA1:2018 年 10 月 3 日
  • VGA2:2019 年 12 月 26 日
  • VGA3:2020 年 7 月 11 日
  • VGA4:2021 年 2 月 20 日
  • VGA5:2021 年 10 月 16 日
  • VGA6:2023 年 8 月 21 日
  • VGA7:2024 年 11 月 6 日
圖四:準備發射升空的派克號。圖/NASA

截至目前(2022 年 3 月),派克號順利完成了前 5 次 VGA。在 VGA1 和 VGA2 期間,派克號都沒有任何動作。

後來,科學家認為可以利用其搭載的 WISPR 望遠鏡(Wide-Field Imager for Parker Solar Probe)觀測金星雲層。WISPR 可說是派克號的靈魂之窗,但它並不只是一座望遠鏡,而是兩座寬頻光學望遠鏡—— WISPR-I(Inner)和 WISPR-O(Outer),兩者配備的濾光片都只能讓可見光(波長 0.5–0.8 μm)通過。

於是,在 VGA3 和 VGA4 期間,科學家突發奇想,讓 WISPR 對準金星的向光面和背光面,分別拍下照片,想藉此測量雲的速度。沒想到 WISPR 竟然直接穿透了厚重的雲層,以可見光拍攝到明暗不一的表面,同時達成「以光學望遠鏡觀測金星表面」和「從太空拍攝金星表面的可見光照片」兩項創舉。

這時候,問題來了!WISPR 的最短曝光時間是 2 秒,但金星的向光面太亮了,拍出來的照片張張過曝、過飽和,還產生假影,使得原圖和電腦重組照片有所誤差。為了避免這樣的問題,科學家只好放棄拍攝向光面,改以背光面的照片作為研究材料。

-----廣告,請繼續往下閱讀-----

WISPR 拍攝的可見光照片

VGA3 期間拍攝的照片只有兩張可以用,其中一張如下(圖五,黑白部分)。在這張照片長達 18.4 秒的曝光期間,派克號不斷被宇宙塵埃(漂浮在太空中的小顆粒)撞擊,造成隔熱罩上的材料燒毀,留下許多水平方向的刮痕。若是忽略刮痕,可以清楚看到明暗不一致的區域,而造成顏色深淺不一的主要原因就是金星的地形特徵。

藉由比對 WISPR 照片與麥哲倫的雷達地形圖(圖五,彩色部分),科學家得以了解溫度如何隨高度變化。圖中黑色(紅色)部分是金星最大的高地區域,位於阿芙蘿黛蒂高地(Aphrodite Terra)西邊的奧瓦達區(Ovda Regio)——越接近白色的區塊越熱,是低海拔地形;越接近黑色的區塊則越冷,是高海拔地形。

圖五:VGA3 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

有了 VGA3 的失敗經驗後,VGA4 的照片就沒有出現刮痕了,而且還從不同的角度拍到了金星表面(圖六)。在 VGA3 期間,派克號是從金星後方飛越,因此 WISPR 拍到的是金星的東側邊緣;在 VGA4 期間,派克號則是從金星前方飛越,因此 WISPR 拍到的是金星的西側邊緣——這讓科學家能夠更細微、更全面地觀察金星的背光面。

圖六:VGA4 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

金星探測的未來展望

雖然金星、地球和火星都是在同一時間形成,現在卻大不相同——火星的大氣層非常稀薄,而金星的大氣層非常厚重。為了解開這個謎團,NASA 和 ESA 在 2021 年 6 月宣布了 3 項全新的金星探測任務,分別是 VERITAS[7]、DAVINCI[8] 和 EnVision[9]。這些任務將進一步探測金星的大氣、地質和其他條件,瞭解這顆星球是否曾經宜居,又是如何演變成現在的樣貌。

-----廣告,請繼續往下閱讀-----

至於派克號,不幸的消息是,2021 年 10 月的 VGA5 不利於背光面拍攝,而 2023 年 8 月的 VGA6 也將是如此。如果你也和我一樣想看更多 WISPR 拍攝的可見光照片,就讓我們期待 2024 年 11 月的最後一次飛越(VGA7)吧!

NASA 官方針對派克號金星探測任務的介紹。影/YouTube-NASA

註解

  1. Apparent magnitude – Wikipedia
  2. Ashen light – Wikipedia
  3. Venera 4 – Wikipedia
  4. Venera 9 – Wikipedia
  5. Magellan (spacecraft) – Wikipedia
  6. Parker Solar Probe: The Mission
  7. In Depth | Veritas – NASA Solar System Exploration
  8. DAVINCI Homepage – Probe and Flyby Mission to Venus Atmosphere
  9. EnVision: a mission for understanding planets everywhere
-----廣告,請繼續往下閱讀-----
Heidi_96
7 篇文章 ・ 13 位粉絲
PanSci 編輯部角落生物|外語系畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。

0

1
0

文字

分享

0
1
0
親愛的,我把金星當鏡子了|科學史上的今天:2/10
張瑞棋_96
・2015/02/10 ・988字 ・閱讀時間約 2 分鐘 ・SR值 535 ・七年級

1958 年的今天,麻省理工學院林肯實驗室的普萊斯 (Bob Price) 與格林 (Paul Green) 偷偷地將位於麻州石磨山 (Millstone Hill) 上的雷達天線轉向金星。這座 27 公尺高,直徑 26 米的碟型天線是由美國空軍出資建造,林肯實驗室只是負責管理操作。軍方的目的在克服各種干擾因素──包括自然現象與蘇聯故意「蓋台」,維持通信暢通;因此林肯實驗室也可以順便用來研究極光、電離層等天文。不過這座天線於去年十月啟用後,剛巧遇上蘇聯發射史上第一顆人造衛星史普尼克一號(Sputnik 1),因此目前還要緊盯著蘇聯這顆人造衛星。

NASA 哈伯太空望遠鏡所拍攝的金星。圖/NASA

那麼,普萊斯與格林兩人究竟是打什麼算盤?其實這只是源於午餐時的閒聊。

「你看這個大天線的功率能將雷達訊號打到金星再反彈回來嗎?」

「你說像 1946 年狄威特 (John H. DeWitt) 將訊號打到月球那樣?」

「對啊,他那時用的天線功率只有 5 萬瓦,我們這座可有 250 萬瓦哪!」

「不過月球距離是三十八萬公里,金星可是在四千萬公里之外!而且有些調速管壞掉,可用的功率大打折扣了。不過,計算看看也無妨。」

兩人在餐巾紙上計算一番後,發現就算金星表面光滑如鏡也不可能再反彈回地球。恰巧此時一位前來訪問的學者加入他們的討論,告訴他們他剛製作的一台微波放大器 (MASER) 應該可以幫上忙,於是他們在一個小時內敲定了系統架構,還加進了類比/數位轉換器、磁帶機、數位電腦,用來將雷達訊號轉換成數位訊號由電腦分析,這都是當時的創舉。

-----廣告,請繼續往下閱讀-----

他們前後試了五回,其中有兩次出現應該是由金星反射回來的訊號。他們在第二年發表了他們的實驗;當時美國在太空競賽上仍然落後蘇聯,普萊斯與格林兩人的成果像是一劑強心針鼓舞了美國人民的士氣。他們雖然不是首創將雷達打向天體的人,但他們首創將類比訊號轉成數位訊號貯存分析、使用 MASER 這種低雜訊放大器、運用數位電腦等等,都成為往後用雷達遙測行星的範本,才真正促使雷達天文學的迅速發展。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1036 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。