0

1
0

文字

分享

0
1
0

親愛的,我把金星當鏡子了|科學史上的今天:2/10

張瑞棋_96
・2015/02/10 ・988字 ・閱讀時間約 2 分鐘 ・SR值 535 ・七年級

1958 年的今天,麻省理工學院林肯實驗室的普萊斯 (Bob Price) 與格林 (Paul Green) 偷偷地將位於麻州石磨山 (Millstone Hill) 上的雷達天線轉向金星。這座 27 公尺高,直徑 26 米的碟型天線是由美國空軍出資建造,林肯實驗室只是負責管理操作。軍方的目的在克服各種干擾因素──包括自然現象與蘇聯故意「蓋台」,維持通信暢通;因此林肯實驗室也可以順便用來研究極光、電離層等天文。不過這座天線於去年十月啟用後,剛巧遇上蘇聯發射史上第一顆人造衛星史普尼克一號(Sputnik 1),因此目前還要緊盯著蘇聯這顆人造衛星。

NASA 哈伯太空望遠鏡所拍攝的金星。圖/NASA

那麼,普萊斯與格林兩人究竟是打什麼算盤?其實這只是源於午餐時的閒聊。

「你看這個大天線的功率能將雷達訊號打到金星再反彈回來嗎?」

「你說像 1946 年狄威特 (John H. DeWitt) 將訊號打到月球那樣?」

「對啊,他那時用的天線功率只有 5 萬瓦,我們這座可有 250 萬瓦哪!」

「不過月球距離是三十八萬公里,金星可是在四千萬公里之外!而且有些調速管壞掉,可用的功率大打折扣了。不過,計算看看也無妨。」

兩人在餐巾紙上計算一番後,發現就算金星表面光滑如鏡也不可能再反彈回地球。恰巧此時一位前來訪問的學者加入他們的討論,告訴他們他剛製作的一台微波放大器 (MASER) 應該可以幫上忙,於是他們在一個小時內敲定了系統架構,還加進了類比/數位轉換器、磁帶機、數位電腦,用來將雷達訊號轉換成數位訊號由電腦分析,這都是當時的創舉。

他們前後試了五回,其中有兩次出現應該是由金星反射回來的訊號。他們在第二年發表了他們的實驗;當時美國在太空競賽上仍然落後蘇聯,普萊斯與格林兩人的成果像是一劑強心針鼓舞了美國人民的士氣。他們雖然不是首創將雷達打向天體的人,但他們首創將類比訊號轉成數位訊號貯存分析、使用 MASER 這種低雜訊放大器、運用數位電腦等等,都成為往後用雷達遙測行星的範本,才真正促使雷達天文學的迅速發展。

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 951 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

4
4

文字

分享

0
4
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
2

文字

分享

0
6
2
18世紀的金星變形秀:行星凌日與黑滴效應
全國大學天文社聯盟
・2022/06/28 ・3216字 ・閱讀時間約 6 分鐘

1761 年 6 月 6 日,歐洲的天文學家們乘船抵達世界各地的天文台,爭相用最先進的儀器紀錄一個罕見的天文現象──金星凌日, 因為此天文現象可以幫助人們精確測算地球與太陽的距離。在英法七年戰爭的氛圍下,兩國的天文學家尤其較勁,都想要第一個量出日地距離,為天文學史畫下濃墨重彩的一筆。然而當大家拭目以待地望向剛與太陽重疊的金星時,卻都露出了驚訝的表情──金星變形了!

說到金星凌日,大家最有印象的或許是 2012 年的一次金星凌日,從天文學家到各個職業的人們都拿著減光濾鏡共襄盛舉,畢竟下一次的金星凌日要到 2117 年才會再發生。然而在過去,金星凌日並不只是歡樂的娛樂事件,也是非常嚴肅的科學事件。

在十八世紀時,多數天文學家都接受哥白尼的日心說,而克卜勒提出的行星運動三大定律,則可以推導出各行星軌道半徑與地球軌道半徑之間的相對長度,然而最大的問題是當時的人們並不知道地球軌道半徑(地球到太陽的平均距離)的絕對長度。為了解決這個問題,英國天文學家愛德蒙.哈雷於 1716 年提出了使用金星凌日來測量日地距離的方法。如圖一所示,金星凌日的軌跡長短與在地球上的何處觀測有關,在軌跡較長處金星凌日的時間較長,反之則較短,這是因為在地球上不同處觀測金星的視角不同造成的。

假設我們在地球上的 A 與 B 兩處量測金星凌日的時間,我們可以量出兩地觀測金星時的視角差,在知道 A 與 B 間距的前提下,我們可以用視差法量出地球到金星在金星凌日發生時的距離(見圖二)。最後根據克卜勒第三行星運動定律─行星公轉太陽週期平方與行星到太陽的平均距離立方成反比─可以得出金星到太陽的距離約為地球到太陽距離的 0.7 倍,我們也可以得知地球與金星在金星凌日時的距離是地球到太陽距離的0.3倍,由此可以推導出太陽與地球的距離。



圖一(左):金星凌日軌跡。圖二(右):視差法算金星與地球距離。

此方法在當時極大鼓舞了天文學家的士氣,大家都摩拳擦掌的為 1761 年的金星凌日作出準備,共一百多名天文學家乘船至世界各地以測量不同地方金星凌日的時長,其中較為著名的有英國派出的庫克船長於大溪地觀測金星凌日,以及荷蘭則派出的 Johan Maurits Moh 到歷史課本中提過的荷蘭東印度公司巴達維雅總部進行觀測(圖三)。

-----廣告,請繼續往下閱讀-----

然而正當金星與太陽重疊時,大家卻不知道何時該按下碼表記錄金星凌日開始的時間,因為金星變形了。圖四是最早關於金星變形的紀錄,在金星靠近太陽的邊緣時金星的旁邊會出現黑色的陰影與太陽邊緣相連接,而這樣的陰影狀似水滴,因此這個現象也被稱作「黑滴現象」

圖三(左):巴達維雅總部,Johan Maurits Mohr 的私人天文台。
圖四(右):於1761年被Torbern Bergman 記錄之黑滴現象。

當時的天文學家們為黑滴現象提出了各種不同的解釋,有些天文學家認為黑色的陰影是金星大氣對太陽光的散射與折射造成的錯覺,也有人認為這是地球大氣擾動造成的現象,還有人認為是太陽光通過金星時繞射所造成的陰影。

前面兩種解釋在 1999 年 NASA 的 TRACE 太空望遠鏡對水星凌日的觀測後被否定,因為太空中沒有地球大氣干擾,水星上則沒有大氣可以散射或折射太陽的光線,而觀測的照片中卻仍出現黑滴效應(圖五)。光的繞射所能造成的影響則不足以產生黑滴現象(繞射影響在約 10^{-9} 角秒,可忽略[1])。

圖五:1999年水星凌日,攝於 NASA’s Transition Region and Explorer (TRACE) 太空船(Schneider, Pasachoff, and Golub/LMSAL and SAO/NASA)

關於黑滴現象的成因一直到 2004 年才得到令人信服的解釋,天文學家 Glenn Schneider 認為黑滴現象是由望遠鏡的點擴散函數(Point Spread Function, PSF)以及太陽的周邊減光造成的 [2]

為了簡單瞭解他所提出的概念,大家可以將大拇指與食指放在一光源之前漸漸靠近(直視強光源會傷害眼睛,請注意光源強度不可以太強),在兩指快要靠在一起時,可以看見兩指中間突然浮現出一段陰暗的橋將兩指相連(如圖六)。

-----廣告,請繼續往下閱讀-----

這是因為非點光源會在兩指的邊緣製造出模糊的陰影,而人眼對模糊的陰影並不敏感,因此直到兩指特別靠近時,兩指的陰影重疊導致陰影變明顯才看得出來。圖七與圖八中的兩塊陰影可以幫助大家更好地破除這個錯覺,圖七單純顯示兩塊模糊的陰影,而圖八將陰影的等暗度線畫出來。比較兩圖我們可以發現雖然圖七中兩塊陰影像是連接在一起,然而實際上圖八卻顯示兩陰影並沒有連接在一起 [3]

圖六(左):大拇指與食指之間的暗橋。圖七(中):兩個模糊陰影 [3]。圖八(右):同中間圖,但是增加了等暗度線 [3]

金星凌日所產生的黑滴效應也是透過類似的方式產生的,不過金星模糊陰影與太陽邊緣模糊的成因不同。金星陰影在望遠鏡的觀測中,會因為望遠鏡的點擴散函數而在成像時顯得模糊。望遠鏡的點擴散函數,指的是一望遠鏡在觀測點光源時成像的樣子,不同望遠鏡的點擴散函數有所不同,但通常口徑小做工差的望遠鏡會有較大之點擴散函數,點光源被模糊化的程度也越高,看的也就越不清晰。

回到金星的陰影,當古代人們用做工差且口徑較小的望遠鏡觀測金星時,其陰影非常模糊、黑滴現象較現在的望遠鏡明顯的多,這也是為什麼各地回報黑滴現象的次數隨著望遠鏡的進步逐漸地減少 [4]

太陽邊緣的模糊則主要是因為太陽是一團沒有銳利邊緣的發光電漿。如圖九所示,假設每單位體積電漿能發出的光相同,我們可以看到往太陽邊緣的線上通過的電漿比往太陽中心的線上通過的電漿要少,這也代表著往太陽中心看去的光線較亮,而越往太陽邊緣看去亮度會逐漸減少。圖十是一個比較誇張的示意圖,圖中一模糊的黑影為金星,一模糊的白色邊緣則代表太陽邊緣,即便兩者的邊緣沒有接觸,我們仍能看到金星的邊緣伸出了黑影,與太陽邊緣相連接,這便是黑滴現象的由來。

-----廣告,請繼續往下閱讀-----
圖九(左):太陽周邊減光成因示意圖。圖十(右):黑滴現象示意圖。

回到日地距離的問題上,難道在這兩百多年的時間中沒有其他方式能量測金星與地球的距離嗎?實際上在雷達與遙測技術的加持下,人們早在 1964 年就能夠以高精度量測地球到金星間的距離了,因此如今的日地距離測量早已與金星凌日無關。

不過黑滴現象這一歷史悠久的問題,仍在一代一代天文學家的不懈努力下被解決了;時至今日,我們仍面臨著宇宙的諸多未知,而我由衷的期待這些現在看似無解的問題,能在未來的某一天被解決,無論花上幾十年、幾百年的時間。

參考資料:

  1. The Transit of Venus and the Notorious Black Drop, Schaefer, B. E. (2000) https://ui.adsabs.harvard.edu/abs/2000AAS…197.0103S/abstract
  2. TRACE observations of the 15 November 1999 transit of Mercury and the Black Drop effect: considerations for the 2004 transit of Venus, Glenn Schneider (2004) https://www.sciencedirect.com/science/article/pii/S0019103503003841?via%3Dihub
  3. Stackexchange, Why do shadows from the sun join each other when near enough? (2014) https://physics.stackexchange.com/questions/94235/why-do-shadows-from-the-sun-join-each-other-when-near-enough
  4. The black-drop effect explained, Jay M. Pasachof (2005) https://ui.adsabs.harvard.edu/abs/2005tvnv.conf..242P/abstract
全國大學天文社聯盟
7 篇文章 ・ 19 位粉絲

0

6
3

文字

分享

0
6
3
從太空窺探金星表面的派克太陽探測器
Heidi_96
・2022/03/04 ・3829字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

在天文觀測中,自古以來就有許多關於金星的紀錄。從 1960 年代起,蘇聯、美國太空總署(NASA)、歐洲太空總署(ESA)和日本也都相繼發射探測器,執行不同類型的太空任務,希望能夠更認識金星。

2020 年,NASA 的派克太陽探測器(Parker Solar Probe,簡稱「派克號」)首次在太空中以可見光拍攝金星表面,並在 2021 年 2 月再次拍攝一系列可見光照片後,將他們的分析成果公諸於世。

本篇文章將依序介紹金星探測史、派克號的探測方法、可見光照片的分析成果,以及金星探測的未來展望。現在,就讓我們從頭認識這位閃閃發亮的鄰居吧!

始於科學革命的金星之旅

對地球上的我們來說,月亮是夜空中最亮的天體,但你知道最亮的「行星」是哪一顆嗎?那就是本篇文章的主角——金星!金星的平均視星等,也就是肉眼所看到的平均星體亮度,大約是 -4.14,僅次於月亮的 -12.74 與太陽的 -26.74(數字越小就越亮)[1],不只是地球夜空中最亮的行星,更是太陽系第三明亮的星體。

-----廣告,請繼續往下閱讀-----

有個這麼耀眼的酷東西掛在天上,想必科學家絕不會輕易放過!就在科學革命(1543–1687 年)期間,天文學領域突飛猛進——哥白尼提倡日心說、牛頓發現萬有引力、克卜勒導出行星運動定律等等。同時期的知名科學家還有伽利略,他改良望遠鏡,透過觀測金星相位(圖一),也就是金星表面的光照變化,得知金星並不是繞著地球運行,進而推翻當時蔚為盛行的地心說。

圖一:伽利略透過望遠鏡發現金星和月亮一樣有盈缺變化。圖片上半部分別是土星、木星和火星。圖/NASA

此後,眾多業餘天文學家和天文愛好者也都一窩蜂利用望遠鏡觀測金星。有許多人聲稱在背光側看見了微弱的灰白色光芒,並將其稱作「灰光」(Ashen light)。

有些人認為是灰光是金星上的閃電,有些人則認為是紫外線穿透金星大氣時,氧離子游離而輻射出的暗綠色光芒(類似地球上的極光現象),可是沒有人能夠確實拍照紀錄,因此當時普遍認為灰光只是一種視錯覺。時至今日,這些假設也都還沒有確切的科學根據。[2]

不斷演進的金星探測技術

時間來到 1960 年代,繼水手 2 號(Mariner 2)在 1962 年掠過金星後,金星 4 號(Venera 4) 在 1967 年進入金星大氣層進行分析,結果顯示金星大氣約含有 90-93% 二氧化碳、7% 氮氣,以及少許氧氣和水蒸氣。[3] 緊接著在 1975 年,金星 9 號(Venera 9)測出表面溫度約 485 °C、雲層厚度約 30–40 公里。除此之外,還拍下金星表面的 180 度全景照片(圖二),是史上第一個將金星照片傳回地球的探測器。[4]

-----廣告,請繼續往下閱讀-----
圖二:1975 年 10 月 22 日,Venera 9 拍下第一張金星表面的照片。圖/NASA 

金星大氣層布滿厚厚的硫酸雲,不僅反射了大約 75% 的陽光,也阻擋了來自金星表面的大部分可見光。因此,科學家決定改用雷達儀器測繪金星表面。1990 年代,麥哲倫(Magellan)多次以雷達測繪金星表面的火山和隕石坑等地貌結構,其清晰程度與可見光測繪不相上下,可說是目前最詳細的金星地圖(圖三)。[5]

圖三:根據麥哲倫的數據資料製作的金星視圖。圖/NASA

此後,科學家進一步利用近紅外線(NIR)觀測金星背光面,因為近紅外線(波長 0.75–1.5 μm)有利於影像在低光環境下生成,而這個波段恰好也是大氣透明度最高的範圍,可以更清楚地看見金星表面。1998 年,卡西尼號(Cassini)以 0.85 μm 的波段觀測金星,可惜這種方法在技術上難以突破,因為輻射強度會隨著波長變短而迅速下降。直到 2020 年,派克號才終於以更短的波長捕捉到金星表面的輻射。

飛越金星七次的「派克號」

2018 年 8 月,派克號發射升空,飛往太陽(圖四)。為了在這漫長的旅途中節省燃料,派克號總共得進行七次重力輔助飛越(VGA),利用金星的引力逐步修正飛行軌道,最終在 2025 年抵達距離太陽中心 10 個太陽半徑(約 690 萬公里)的地方,進行日冕和太陽風的測量任務。

七次重力輔助飛越(VGA)的時程分別如下[6]

-----廣告,請繼續往下閱讀-----
  • VGA1:2018 年 10 月 3 日
  • VGA2:2019 年 12 月 26 日
  • VGA3:2020 年 7 月 11 日
  • VGA4:2021 年 2 月 20 日
  • VGA5:2021 年 10 月 16 日
  • VGA6:2023 年 8 月 21 日
  • VGA7:2024 年 11 月 6 日
圖四:準備發射升空的派克號。圖/NASA

截至目前(2022 年 3 月),派克號順利完成了前 5 次 VGA。在 VGA1 和 VGA2 期間,派克號都沒有任何動作。

後來,科學家認為可以利用其搭載的 WISPR 望遠鏡(Wide-Field Imager for Parker Solar Probe)觀測金星雲層。WISPR 可說是派克號的靈魂之窗,但它並不只是一座望遠鏡,而是兩座寬頻光學望遠鏡—— WISPR-I(Inner)和 WISPR-O(Outer),兩者配備的濾光片都只能讓可見光(波長 0.5–0.8 μm)通過。

於是,在 VGA3 和 VGA4 期間,科學家突發奇想,讓 WISPR 對準金星的向光面和背光面,分別拍下照片,想藉此測量雲的速度。沒想到 WISPR 竟然直接穿透了厚重的雲層,以可見光拍攝到明暗不一的表面,同時達成「以光學望遠鏡觀測金星表面」和「從太空拍攝金星表面的可見光照片」兩項創舉。

這時候,問題來了!WISPR 的最短曝光時間是 2 秒,但金星的向光面太亮了,拍出來的照片張張過曝、過飽和,還產生假影,使得原圖和電腦重組照片有所誤差。為了避免這樣的問題,科學家只好放棄拍攝向光面,改以背光面的照片作為研究材料。

-----廣告,請繼續往下閱讀-----

WISPR 拍攝的可見光照片

VGA3 期間拍攝的照片只有兩張可以用,其中一張如下(圖五,黑白部分)。在這張照片長達 18.4 秒的曝光期間,派克號不斷被宇宙塵埃(漂浮在太空中的小顆粒)撞擊,造成隔熱罩上的材料燒毀,留下許多水平方向的刮痕。若是忽略刮痕,可以清楚看到明暗不一致的區域,而造成顏色深淺不一的主要原因就是金星的地形特徵。

藉由比對 WISPR 照片與麥哲倫的雷達地形圖(圖五,彩色部分),科學家得以了解溫度如何隨高度變化。圖中黑色(紅色)部分是金星最大的高地區域,位於阿芙蘿黛蒂高地(Aphrodite Terra)西邊的奧瓦達區(Ovda Regio)——越接近白色的區塊越熱,是低海拔地形;越接近黑色的區塊則越冷,是高海拔地形。

圖五:VGA3 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

有了 VGA3 的失敗經驗後,VGA4 的照片就沒有出現刮痕了,而且還從不同的角度拍到了金星表面(圖六)。在 VGA3 期間,派克號是從金星後方飛越,因此 WISPR 拍到的是金星的東側邊緣;在 VGA4 期間,派克號則是從金星前方飛越,因此 WISPR 拍到的是金星的西側邊緣——這讓科學家能夠更細微、更全面地觀察金星的背光面。

圖六:VGA4 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

金星探測的未來展望

雖然金星、地球和火星都是在同一時間形成,現在卻大不相同——火星的大氣層非常稀薄,而金星的大氣層非常厚重。為了解開這個謎團,NASA 和 ESA 在 2021 年 6 月宣布了 3 項全新的金星探測任務,分別是 VERITAS[7]、DAVINCI[8] 和 EnVision[9]。這些任務將進一步探測金星的大氣、地質和其他條件,瞭解這顆星球是否曾經宜居,又是如何演變成現在的樣貌。

-----廣告,請繼續往下閱讀-----

至於派克號,不幸的消息是,2021 年 10 月的 VGA5 不利於背光面拍攝,而 2023 年 8 月的 VGA6 也將是如此。如果你也和我一樣想看更多 WISPR 拍攝的可見光照片,就讓我們期待 2024 年 11 月的最後一次飛越(VGA7)吧!

NASA 官方針對派克號金星探測任務的介紹。影/YouTube-NASA

註解

  1. Apparent magnitude – Wikipedia
  2. Ashen light – Wikipedia
  3. Venera 4 – Wikipedia
  4. Venera 9 – Wikipedia
  5. Magellan (spacecraft) – Wikipedia
  6. Parker Solar Probe: The Mission
  7. In Depth | Veritas – NASA Solar System Exploration
  8. DAVINCI Homepage – Probe and Flyby Mission to Venus Atmosphere
  9. EnVision: a mission for understanding planets everywhere

參考資料

Heidi_96
7 篇文章 ・ 13 位粉絲
PanSci 編輯部角落生物|外語系畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。