0

1
4

文字

分享

0
1
4

全球暖化的物理:金星證實,都是二氧化碳惹的禍

賴昭正_96
・2019/03/22 ・5708字 ・閱讀時間約 11 分鐘 ・SR值 556 ・八年級

我懷疑有些人不喜歡「自然淘汰沒有先見之明」的觀點。事實上,這個過程本身確是不知道將來往哪裡去。 正是「環境」提供了方向;從長遠來看,在很大程度上其影響是不可預測的。

──弗朗西斯・克里克,Francis Crick (1916-2004) ,1962年諾貝爾醫學獎──發現DNA雙螺旋結構

在「人體太複雜了:為何有關人體健康的研究總是充滿爭論?」一文裡(泛科學,2015/11/11),筆者談到了在研究與人體有關的問題上,因爲無法隔離各種可能的「因素」來探討直接的因果關係,因此有關人體健康的研究爭論將永無止境。

地球氣象的複雜性雖然可能比人體簡單些,但也碰到同樣的無法控制之隔離因素的問題,更糟的是世界人口有 70 多億,生物學家與醫學家可以使用統計法來研究,但地球只有一個,因此氣象學家所能使用的研究工具大受限制!故地球是否正在暖化,也像「基因改造物種(GMO)是否對人體有害」一樣,呈現兩極化的爭論。

地球是否正在暖化,目前呈現兩極化的爭論。圖/pixabay

一個極端謂全球暖化是「庸人自擾,根本沒有這種現象。」他們認為地球在過去的 70 萬年中經歷了溫暖和寒冷的時期,以百年尺度來看, 我們或許正處於溫暖時期的中間,但以十萬年尺度來看,我們事實上是正走向另一個冰河時代。理論物理及數學家 Freeman Dyson 謂:「全球變暖是世界面臨的最重要問題的想法完全是胡說八道,並且造成了很大的傷害。」

另外一個極端則認為「氣象變化已經到了極端,我們如果不再採取行動,世界末日就在眼前。」去年 11 月 23 日,包括 300 名頂尖科學家在內的第四次全國(美國)氣候評估(Fourth National Climate Assessment)謂:「美國已經經歷了氣候變化帶來的嚴重和代價高昂的影響。」在 10 月份發布的另一份聯合國報告中,科學家們則謂:「各國需要極端的努力,才能將全球變暖限制在 1.5 攝氏度內——而且我們大約只有 12 年的時間。」

-----廣告,請繼續往下閱讀-----

都是二氧化碳惹的禍

儘管爭論不斷,但 90% 以上的科學家均認為全球是正在暖化,雖然其中有些許認為原因不明,或現有的資料尚不足以支持是因「人類活動」造成的,但大多數都同意全球暖化的罪魁禍首是二氧化碳

二氧化碳在空氣中佔不到千分之一,怎麼竟成為全球暖化的罪魁禍首呢?在探討其原因之前,筆者必須在這裡指出,常被用來「證明」全球暖化之「90%以上的科學家均認為……」並不代表什麼!

誠如美國名作家、編劇、電影導演、和製片人(特別是在科幻小說、驚悚片、和醫學小說類型中的作品)Michael Crichton(1942–2008,哈佛醫學院高材生)所言:「科學工作與共識無關。 共識是政治事務; 相反地,科學只需要一名正確的調查員。…歷史上最偉大的科學家之所以偉大,正是因為他們打破了共識。…沒有共識科學這樣的東西。 如果達成共識,那就不是科學。 如果是科學,那就不是共識。」

科學工作與共識無關。圖/pixabay

不幸的是,如前面所提:因為複雜性及只有一個地球,這一名「正確的調查員」是永遠不會出現的。因此自圓其說的各種研究報告將繼續不斷地出現!如筆者在一些文章內所提的:讀者不能盲目地相信,必須用自己的判斷力來看所有的報告和研究!另一個讀者需要注意的是:作者的立場常有意或無意地影響了其結論!(例如今年2月底,美國白宮計劃創建由一群不認同「石化燃料的持續燃燒正在傷害地球」的特選聯邦科學家組成的特設小組,來重新評估政府對氣候科學的分析──不用等報告出爐,我們就應該已經知道結論了!)

筆者的立場在「人體太複雜了:為何有關人體健康的研究總是充滿爭論?」一文裡已表示得非常地清楚:「你說整天將手機放在耳邊對大腦沒有影響?怎麼可能呢!只是這環境改變不夠巨大,因此到底有那些人能夠成為適者而生存下來,那可能是幾百年後才可能知道的!」人類大量地製造出二氧化碳,怎麼可能不影響自然界的平衡呢?只是這影響將不再是「有些人」而已,而是整個人類。然而人類或其他動植物是否能成為適者,那就要看破壞及進化的相對速度了!

-----廣告,請繼續往下閱讀-----
人類大量地製造出二氧化碳,怎麼可能不影響自然界的平衡呢?只是這影響究竟為何?圖/pixabay

黑體輻射與地球表面平均溫度

因為太陽是驅動我們氣候系統的基本能源,首先讓我們來看看經過 45 億年的太陽照射,「理想」的地球溫度應該是多少。太陽的直徑約為 140 萬公里,表面溫度為絕對溫度 6000°K, 所發射出來的能量(電磁波)分布如(圖一)所示。

(圖一):太空中之太陽能分布情形。因空氣之關係,太陽能抵達地面之分布大不相同。

從(圖一)可以看到:五官中最重要的器官「眼睛」,所能感應到的電磁波範圍,正是太陽能分布中最強的部份(占 47%),我們因之稱此範圍為可見光,其波長大約在 390∼750 奈米(10-9 公尺)之間!你說這是巧合還是演化的必然結果?事實上不僅人類及大部份動物如此,大部份植物也是利用可見光來進行其生存與繁盛所必須之光合作用的!

早在十九世紀末期,物理學家便致力於分析因溫度而放射的輻射能光譜(即分析某頻率範圍內有多少輻射能)。他們發現輻射能光譜僅與放射物質的溫度有關,卻幾乎與其組成的物質無關1。近代物理中的量子力學,便是為了解釋實驗光譜而興起的。事實上波茲曼(L. Boltzmann)早在1884年,便由熱力學導出溫度為T之物質的輻射總能量為:

ET(單位時間單位面積之總輻射能)=σT4

公式中之 σ 為史蒂芬—波茲曼常數(Stefan-Boltzmann constant),T為絕對溫度

-----廣告,請繼續往下閱讀-----

將太陽的表面溫度代入上面公式,可以算出太陽一天所放射出的能量,足供人類一年所須,可是還好只有 21 億分之一的能量抵達地球2。當然,地球本身也會依上面的公式輻射。如果我們要求地球所吸收的能量等於它所輻射的能量,我們可以計算出地球的穩定溫度為 279°K(6°C)。信不信由你,這實際上竟然非常接近 1880 年時的地球表面平均溫度 287°K !3

經過 45 億年,地球溫度達到一個平衡值,似乎是很好的假設。圖/pixabay

經過 45 億年,地球溫度達到一個平衡值,似乎是很好的假設。因此我們不免要問:為什麼不是完全吻合呢?一個可能的解釋是:「因為大氣的關係,地球並不是一個很理想的黑體,大氣不但反射部分的太陽能,也吸收了地球往外太空輻射的部分能量。」但科學家不但未在大氣的各個層面看到更溫暖的氣溫,相反地,他們觀察到高層大氣的冷卻,以及對流層表面和下部的升溫——顯然是因為「溫室效應」在低層大氣中捕獲較多熱量之故。

什麼是「溫室效應」呢?相信許多讀者不但聽過,而且可能都親身體驗過,那就是在門窗緊閉之車子內的溫度可以比外面的溫度高出甚多4;因此在比較冷的地方,在玻璃屋內可以種一些熱帶植物。要了解玻璃屋內為什麼可以保持比較高的溫度,我們在這裡必須先溫習下電磁波(輻射能)與分子(原子)的作用。

溫室效應的物理

電磁波是一種電、磁場的振動,因此要與他作用,物體必須帶電。分子是由帶正電之原子核以及帶負電的電子組成的,因此一定可以與電磁波作用。20世紀量子物理的一大發現,就是分子本身的內在「振動」頻率,必須與電磁波頻率相同才能將它吸收。分子本身的內在「振動」大約可以分成三種:

  1. 電子在軌道中的跳動,其頻率大約都在可見光及紫外線附近;
  2. 分子的振動,其頻率大約都在紅外線附近;
  3. 分子的轉動,其頻率大約都在微波附近。

如果頻率不同,不能引起共振(吸收),那麼電磁波裡的電場就只能帶動分子內之電子,依它的頻率振動,往四面八方放出頻率相同的電磁波,造成散射(scattering)現象(如天空之所以是藍色的原因)。不管是吸收或散射,如果電磁波訊與分子繼續作用,其原來之能量最後都將被轉換改成熱能(分子之無規律運動——詳見延伸閱讀「熱力學與能源利用」)!

-----廣告,請繼續往下閱讀-----

前面提過太陽的輻射主要是可見光,而玻璃是透明的,意即除了少數可見光被散射掉外,其他都毫無阻擋地通過,射落在地面及植物上(圖二),最後大都被吸收經由分子之間的作用改變成熱能,提高地面及植物的溫度。

因為它們的溫度比太陽低得多(室溫,大約只有 300°K 而已),故其頻率分佈與(圖一)完全不同,不但整個能量(分佈圖下的面積)少多了,其主要的輻射已不再是可見光,而是集中在紅外線區域。

電磁波的波譜與性質。圖/wikimedia

這些能量在往外輻射時,卻不幸碰到了「溫室氣體」及玻璃。這些氣體雖然不能吸收可見光,但是它們的的振動頻率正是集中在紅外區附近,因此這些輻射將大部分被吸收,使分子的振動變快。透過分子間的碰撞,這些快速的分子振動最後終被轉換成分子的動能──熱能,提高了室內空氣的溫度,造成所謂的「溫室效應」。

溫室氣體:二氧化碳與水蒸氣

地球雖然沒有玻璃罩,但是它卻被一層大氣包圍著。大氣的主要成分是氧氣(21%)、氮氣(78%)、及氬(1%),它們都是由同樣的原子組成的(氬是單一原子),因此振動不可能產生具正、負電端電偶,故不能與電磁波作用吸收紅外線。剩下的 1% 則主要是水及二氧化碳等微量氣體。水分子大都以水蒸氣形式存在,其濃度因地點和時間而異,大約在 0-4%之間變化:在寒冷乾燥的地區,水蒸氣通常佔不到大氣的 1%;而在潮濕的熱帶地區,水蒸氣幾乎佔大氣的4%。

-----廣告,請繼續往下閱讀-----

二氧化碳分子(O=C=O)雖然因為對稱的關係不具電偶,但它的四個振動態中有三個(例如O===C=O)會破壞對稱而產生電偶,吸收同一頻率的電磁波。水分子本來就具電偶,因此與二氧化碳一樣,可以吸收從地球表面放出來的黑體輻射,造成溫室效應使地球變暖,合稱為「溫室氣體」(greenhouse gas)。

水分子與二氧化碳一樣,可以吸收從地球表面放出來的黑體輻射,造成溫室效應使地球變暖,合稱為「溫室氣體」圖/pixabay

水在大氣中的份量比二氧化碳多,因此水應是改變地球輻射平衡的最重要的分子。但大氣中水蒸氣的濃度主要取決於海洋的蒸發(和凝結),而海洋是如此巨大,人類對它的直接影響有限,不能過多地改變它,因此只能將地球變暖全部怪罪到二氧化碳,及其他一些更少的氣體如甲烷、氮化氧等。

金星提供的間接證據

我們雖然不能在地球上進行任何實驗,來直接證明現在地球變暖是因為二氧化碳的關係,但被稱為地球姐妹之金星,似乎是提供了很好的一個間接證據。

金星的密度、體積、組成均與地球差不多,顯然是因為溫室效應的關係表面溫度高達 740°K!圖/pixabay

金星的密度、體積、組成均與地球差不多,但與太陽的距離為地球的 72%。如果我們也要求它所吸收的能量等於它所輻射的能量,我們可以很容易地計算出金星的穩定表面溫度應為 538°K;5 金星的實際表面溫度不但相當均勻,且高達 740°K!其原因顯然是因為溫室效應的關係 :金星的大氣幾乎完全是由二氧化碳組成的(僅含有微量的氮和硫酸)。而比它更近太陽的水星,因為沒有大氣調節溫度,溫度變化非常地大(103°K 到 700°K),最高的溫度也只有 700°K 而已。

讀完上面的論點,讀者覺得將「地球暖化歸咎於二氧化碳」有沒有道理?筆者在親朋好友間的一句「名言」是「飯吃過量對身體也是有害」,因此不需要任何物理就已經覺得很有道理了。人類生活水平的全面提高,無可否認地是因為大量使用能源的關係;大量燃燒石化物,無可否認地將產生大量的二氧化碳,破壞了原本之地球上的二氧化碳平衡6。此一平衡的破壞一定會有影響,如果不是暖化地球,那是什麼呢?筆者去年 12 月中旬回到台灣,帶了一些冬天的衣服,卻發現台灣天高氣爽,好像春天早已光臨寶島!

-----廣告,請繼續往下閱讀-----

比利時科學家 Christian de Duve 曾言:「我們(人類)成功的代價是自然資源枯竭、導致能源危機、氣候變化、污染、和我們棲息地的破壞。 如果你耗盡了自然資源,那麼你的孩子就沒有什麼了。 如果我們繼續朝著同一個方向前進,人類就會走向一些可怕的考驗——如果不是滅絕的話。」

或許自然淘汰本身確是不知道要將我們往哪裡推,但過去幾次的地球氣候巨變,如:二疊紀(Permian)、三疊紀(Triassic)、或甚至寒武紀(Cambrian)中期,幾乎總是對生命造成高度破壞性,導致大規模物種滅絕。

人定勝天或者作繭自縛?且待下回分解──有嗎?

註解:

  1. 如果該物質為「黑體」,則輻射能光譜便完全與物質無關。黑體是一種理想化的物理體,無論頻率或入射角如何,都能吸收所有入射的電磁輻射。許多普通物體發射的輻射可以近似為黑體輻射。
  2. 利用簡單的幾何面積計算即可:πr2/4πR2( r為地球半徑,R為地球與太陽的距離)。
  3. 事實上筆者第一次看到這個「巧合」時,是有點「震驚」,想一想地球的表面溫度變化從184°K到331°K,並不是在一個平衡狀態,而總輻射能與絕對溫度的4次方成正比(用線性平均溫度算出來的總放射能將比實際的少)。
  4. 美國每年平均大約有 37 位小孩因為父母親忘了他們還留在車後座位而被熱死。
  5. 約等於(地球穩定表面溫度 287°K)× (1/0.72)2
  6. 與此同時,人類又大量地砍採可以幫助消化、平衡二氧化碳的樹木與森林!

延伸閱讀:

  1. 賴昭正:「我愛科學」,華騰文化有限公司2017年12月出版。該書收集筆者自1970年元月至2017年8月在科學月刊及少數其他雜誌所發表之文章編輯而成。本文章所涉及到之「熱力學與能源利用」、黑體輻射、史蒂芬—波茲曼定律、分子的振動、分子與電磁波的作用等均在裡面。
  2. 黑體輻射的研究如何導致量子力學的發展,請參考賴昭正:「量子的故事」,第二版,2005年,凡異出版社。
文章難易度
賴昭正_96
42 篇文章 ・ 51 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
1

文字

分享

0
3
1
溫室效應有救了?把二氧化碳埋進地底吧!  
鳥苷三磷酸 (PanSci Promo)_96
・2024/03/25 ・1389字 ・閱讀時間約 2 分鐘

本文由 台灣中油股份有限公司 委託,泛科學企劃執行。 

近年全球對於氣候變遷的關注日益增加,各國紛紛宣布淨零排放(Net Zero Emissions)的目標,聯手應對氣候變遷所帶來的挑戰。淨零排放是指將全球人為排放的溫室氣體量和人為移除的量相抵銷後為零。而「碳捕存再利用技術(Carbon Capture Utilization and Storage,簡稱 CCUS)」技術被視為達成淨零重要的措施之一。 

CCUS 示意圖。圖/INPEX CCS and CCUS Business Introduction Video 2022 

「碳捕存再利用技術 CCUS」是什麼? 

CCUS 技術可以有效地將二氧化碳從大氣中捕捉並封存,進而減少溫室氣體的排放。CCUS 包含捕捉、運輸、封存或再利用三個階段,也就是將二氧化碳抓下來,並且存起來或是轉換成其他有價值的化學原料。關於如何捕捉二氧化碳,可以參考我們先前拍的影片《減碳速度太慢?現在已經能主動把二氧化碳抓下來!?抓下來的二氧化碳又去了哪裡?》。 

至於捉下二氧化碳之後,該存放在哪裡呢?科學家們看上一個經過數千萬年驗證、最適合儲存的地方——地底。沒錯,地底可不只有石頭跟蜥蜴人,只要這些石頭中存在孔隙,就可以儲存氣體或液體。最常見的就是天然氣與石油。現在,我們只要將二氧化碳儲存到這些孔隙就好。 

-----廣告,請繼續往下閱讀-----

封存的地質條件也很簡單,第一,要有一層擁有良好空隙率及滲透性的「儲集層」,通常是砂岩。第二,有一層緻密、不透水且幾乎無孔隙的岩石,用來阻擋儲集層的氣體向上逸散的「蓋層」,常見的是頁岩。只要儲集層在下,蓋層在上,就是一個理想的儲存環境。 

臺灣哪裡適合地質封存? 

臺灣由東往西,從西部麓山帶、西部平原、濱海到臺灣海峽,都有深度達 10 公里的廣大沉積層,並且砂岩與頁岩交替出現,可說是良好的儲氣構造。 

至於臺灣適合封存二氧化碳的地點,有個很直接的作法,就是參考石油、天然氣的儲存場域就好,也就是所謂的「枯竭油氣層」。將開採過的天然氣或石油的空間,重新拿來儲存二氧化碳。而臺灣的油氣田,主要集中在西部的苗栗與臺南一帶,在 1959~2016 年,累計產了 500 億立方公尺的天然氣,和超過 500 萬公秉的凝結油。 

臺灣油氣田位置圖。圖/《科學發展》2017 年 6 月第 534 期
鐵砧山每年封存 10 萬噸二氧化碳(相當於通霄鎮 1/3 人口一年的二氧化碳排放量)。圖/台灣中油

而至今這些枯竭油氣田,適合來做二氧化碳的封存。例如苗栗縣通霄鎮的鐵砧山是臺灣目前陸上發現最大的油氣田,不只是封閉型背斜構造,更擁有厚實緻密的緻密蓋岩層。在原有油氣田枯竭後,從民國 77 年開始轉為天然氣儲氣窖利用原始天然氣儲層調節北部用氣的方式,已持續超過 35 年。因此中油也正規劃在鐵砧山氣田選擇合適的蓋層和鹽水層,進行小規模的二氧化碳注入,作為全國首座碳封存的示範場址。並同時進行多面向的長期監測,驗證二氧化碳封存的可行性與安全性。 

-----廣告,請繼續往下閱讀-----

更多詳細內容及國際 CCUS 案例,歡迎觀看影片解惑! 

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3634字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2209 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

52
3

文字

分享

0
52
3
耳背腦就鈍?解密聽力受損與失智的關係
雅文兒童聽語文教基金會_96
・2024/02/17 ・4232字 ・閱讀時間約 8 分鐘

  • 文/雅文基金會聽語科學研究中心研究員 詹益智

阿明是位 65 歲的退休長者,總是積極參與各種社區活動,是熱心的志工。然而,近來他開始意識到自己在大型聚會中,必須使勁聆聽他人的話語,有時還是會錯過一些關鍵的內容,這使得他逐漸對大型活動感到焦慮,害怕因聽不清楚別人的對話而與人生分。隨著聽力問題逐漸浮現,他開始注意到自己的思緒也跟著變得混亂。比如說,他常常忘記事情發生的順序,甚至有時候不記得已經說過的話,這種記憶的衰退讓阿明感到十分困擾。最終,阿明去看了醫生並接受相關的測試,被診斷出患有中度聽損與早發性失智症。

在日常生活中,聽覺扮演了重要的角色,是我們與外界交流的管道之一。然而聽力受損不僅僅是一種單純的生理障礙,更可能與失智症之間存在著密切的關係。

關於失智症的二三事

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。有些失智症患者甚至無法控制情緒,個性也可能發生轉變。失智的症狀隨程度不同而有所改變,從最輕微的階段開始影響一個人的基本能力(如記憶),到最嚴重的階段,患者完全需要仰賴他人進行日常活動 [1]。失智症不僅對患者本身造成巨大的影響,也帶給家人和照顧者極大的負擔。

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。圖/Pixabay

2023 年世界衛生組織(WHO)的統計數據顯示,世界上目前約有 5,500 多萬的人口患有失智症,而每年全球正以 1,000 萬人的速度增加 [2],預計到 2050 年,全球失智症患者數量將達到 1.53 億人口 [3]。Livingston 等學者於 2020 年在國際著名的醫學期刊《刺胳針》(The Lancet)發表了一篇關於失智症的預防、介入與照護的研究 [4],列舉了 12 項風險因子,包括教育程度較低、聽力損失、創傷性腦傷、高血壓、酗酒、肥胖症、吸煙、憂鬱症、社交隔離、缺乏運動、空氣污染與糖尿病,將近 40% 的失智症都與這些因素有關(另 60% 為風險因子不明),其中,聽力損失佔最大宗,約有 8% 的比例。另一項研究更進一步指出,罹患失智症的風險會隨著聽損程度越重而增加,例如輕度、中度與重度聽損者罹患失智症的風險分別是聽常者的 1.27、3.00 與 4.94 倍 [5]。由此可見,聽損與失智症的關係不容小覷。

-----廣告,請繼續往下閱讀-----
失智症的風險因子,聽力損失約佔 8%。圖/引自HearingLife

聽力出包時,失智症有可能找上門!

聽損與失智症關聯的機轉究竟是什麼呢?綜合現有的研究文獻,大致可歸納出三大觀點:

一、聽損會耗費大腦的認知資源

聽損常使一個人在吵雜的環境下聽不清楚聲音,此時,大腦便會進行代償作用,將負責思維和記憶區塊所需的資源移轉用來處理這些模糊的音訊,而導致前述二項高階的認知功能受到影響,進而增加失智的風險 [6]。以上的論述主要來自 Mishra 等人的研究 [7],該研究比較輕度聽損年長者與聽常年輕人在「認知備用容量測驗(Cognitive Spare Capacity Test)」的表現:受試者聽完(無視覺提示)一串由男女穿插錄製之二位數的數字列表(如下表所示)後,要說出這串列表中由男生所錄製的奇位數數字(如 13 與 59,以圓圈標示)。要順利完成此項作業,受試者必須排除女生所錄製奇位數數字的干擾(如 77、89 與 61,以底線標示)。

數字5036774496895240612066
男/女
「認知備用容量測驗」實例(來源:Mishra 等人 [8]

結果顯示,在安靜的環境下,兩組受試者的表現無顯著差異,但在噪音環境下,聽損年長者的表現則顯著落後於聽常年輕人,研究者認為聽損年長者為了排除噪音的干擾以獲取正確的答案,其大腦會將高層次的認知資源挹注於彌補聽損所帶來的負面影響,而致使認知功能下降。長此以往,漸漸便埋下了失智症的導火線。

另一個較為直觀的證據則是透過腦造影技術觀察聽損者大腦活動的狀況。Glick 與 Sharma [9] 讓聽常與聽損老年人觀看電視螢幕的光影變化,並透過高密度的腦波圖(high-density electroencephalography;EEG)記錄其對視覺刺激反應的皮質視覺誘發電位(cortical visual evoked potentials;CVEPs),再透過電流密度源重建技術(current density source reconstruction)定位大腦皮質活動的區塊;此外,研究也評估了受試者的認知功能。結果顯示,相較於聽常者,聽損者觀看視覺刺激物時,腦部發生了視覺跨模重組(visual cross-modal reorganization)的現象:除了主司視覺的枕葉區被活化外,主司聽覺的顳葉與主司認知功能的前額葉也被活化用以輔助處理視覺訊息,這會為大腦帶來極大的負擔而增加認知負荷,並耗盡用以記憶的認知資源,最終可能引發失智症。

-----廣告,請繼續往下閱讀-----

二、聽損會使大腦組織萎縮

此外,聽損與否也可能會影響一個人大腦的結構與功能。美國約翰霍普金斯大學的研究人員 [10],利用「巴的摩爾老化長期研究(Baltimore Longitudinal Study of Aging)」的資料,針對聽損與腦容量的關係進行了一項有趣的研究,他們分析了一群受試者在逐漸老化時,其腦容量的變化。受試者在研究之初,做了聽力評估,接著接受為期長達十年、每年一次的核磁共振檢查。結果顯示,研究開始時就患有聽損的受試者,相較於聽常者,其大腦有較大幅度的萎縮,平均以每年一立方釐米以上的速度流失大腦組織,而這些大腦組織恰好與輕度認知功能退化和早期失智症所表現出的記憶衰退的行為有關 [11]

三、聽損會引發社交隔離

社交隔離(social isolation;意旨與他人很少有社交互動或是社交圈窄小的現象 [12])也可解釋為何聽損與失智症有關。一項由英國所進行的研究 [13] 追蹤了一群 50 歲以上成年人的聽損、社交隔離的程度與認知的狀況,並分析這三個因素間的關係,結果發現雖然聽損與認知功能下降有直接且顯著的關聯,但當加入了社交隔離程度的影響後,聽損與認知關聯的強度降低了近三分之一,此結果說明聽損可能會導致社交隔離,間接造成認知功能下降而引發失智症。這也顯示大腦須要透過適當的社交刺激,才能維持其活力,進而保持正常的認知功能。值得注意的是,當聽力閾值達到 25 分貝或以上(即輕度以上的聽損,亦為影響社交溝通的起始閾值)時,聽損所帶來的失智風險就會明顯地增加 [14]

如何預防聽損所帶來的失智風險

一般而言,聽力是與他人溝通互動不可或缺的元素之一;然而,聽力問題不僅僅是關乎聽覺本身,如前所述,它也可能與失智症存在直接或間接的關係,若能適時地做好聽力保健,或許就可避免老年時,讓失智找上你。那麼要如何維持良好的聽力呢?以下幾點可供參考:

  1. 定期聽力檢查是維護耳朵健康的重要關鍵。許多人並不瞭解即便是輕微的聽損也可能對認知功能造成負面的影響。在一般的情況下,聽力下降是漸進且微小的,而人類的大腦有極強的適應能力,這使得聽力衰退不易被察覺 [15]。透過定期的聽力檢查,有助於追蹤聽力狀況,即使是微小的變化也能及時掌握,並處理潛在的聽力問題,進而降低聽損所帶來的失智風險。
  2. 減少長期暴露在噪音環境中。噪音環境除了會加速聽損的惡化外,同時也會誘發海馬迴受損的記憶功能障礙,這也是失智典型的症狀 [16]。因此,避免長時間處在高分貝的環境下,或者適時地佩帶耳塞或耳罩,便是保護聽力健康進而降低失智風險的良方之一。

然而,就聽損人士而言,難道就只能坐視自身認知功能逐漸退化而毫無作為嗎?其實不然。還記得 Glick 與 Sharma 的研究 [9] 提到聽損者大腦的視覺跨模重組與其認知功能衰退息息相關嗎?但令人振奮的是,這些聽損者在穩定配戴助聽器六個月後,逆轉了視覺跨模重組的現象,其認知功能也隨之改善,這表示聽損者配戴助聽器後,失智風險也可能跟著降低。 

-----廣告,請繼續往下閱讀-----
聽損人士配戴助聽器後,失智風險可能會跟著降低。圖/iStock

雖然失智症並不全然與聽力問題相關,但就聽力而言,我們可做的就是聽力保健,如定期做聽力檢查、遠離噪音環境、適度保護耳朵,以及必要時配戴助聽輔具是維持良好聽力的重要關鍵,若能確實執行上述建議,或許就可降低那 8% 的失智風險。請記住,保護耳朵就是保護大腦,讓我們一起努力維護聽力,為未來的大腦健康奠定穩固的基礎吧!

參考資料

  1. National Institute on Aging (n.d.). What is dementia? Symptoms, types, and diagnosis. https://www.nia.nih.gov/health/alzheimers-and-dementia/what-dementia-symptoms-types-and-diagnosis
  2. Dementia (2023, March 15). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
  3. The Institute for Health Metrics and Evaluation (2022, January 6). The Lancet Public Health: Global dementia cases set to triple by 2050 unless countries address risk factors. https://www.healthdata.org/news-events/newsroom/news-releases/lancet-public-health-global-dementia-cases-set-triple-2050
  4. Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., … & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet396(10248), 413-446.
  5. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  6. Fulton, S. E., Lister, J. J., Bush, A. L. H., Edwards, J. D., & Andel, R. (2015, August). Mechanisms of the hearing–cognition relationship. In Seminars in Hearing (Vol. 36, No. 03, pp. 140-149). Thieme Medical Publishers.
  7. Mishra, S., Stenfelt, S., Lunner, T., Rönnberg, J., & Rudner, M. (2014). Cognitive spare capacity in older adults with hearing loss. Frontiers in Aging Neuroscience6, 96.
  8. Mishra, S., Lunner, T., Stenfelt, S., Rönnberg, J., & Rudnera, M. (2013). Visual Information Can Hinder Working Memory Processing of Speech. Journal of Speech, Language, and Hearing Research56, 1120-1132.
  9. Glick, H. A., & Sharma, A. (2020). Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Frontiers in Neuroscience, 93.
  10. Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., … & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage90, 84-92.
  11. Liu, J., Zhang, X., Yu, C., Duan, Y., Zhuo, J., Cui, Y., … & Liu, Y. (2016). Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease49(4), 1051-1064.
  12. Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences110(15), 5797-5801.
  13. Maharani, A., Pendleton, N., & Leroi, I. (2019). Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing. The American Journal of Geriatric Psychiatry27(12), 1348-1356.
  14. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  15. Audiology Associations of DFW. (August 31, 2023). Regular hearing tests could decrease your risk of getting dementia. Hearing Test Info. https://www.audiologyassociates.com/hearing-test-info/hearing-test-reduce-risk-dementia/
  16. Paciello, F., Pisani, A., Rinaudo, M., Cocco, S., Paludetti, G., Fetoni, A. R., & Grassi, C. (2023). Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiology of Disease178, 106024.

討論功能關閉中。

雅文兒童聽語文教基金會_96
55 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。