0

0
0

文字

分享

0
0
0

登陸月球以後,行銷的戰國時代才正要開始──《登月大作戰》

PanSci_96
・2017/12/30 ・4657字 ・閱讀時間約 9 分鐘 ・SR值 498 ・六年級

為何我們挑選了這本書:
談到 1960 年代最膾炙人口的科學計畫,阿波羅登月計畫肯定榜上有名。但多數人難以意識到今日我們蔚為風潮的許多行銷手法,包括「內容行銷」、「網紅網美」、「實況直播」,當年 NASA 為了募集計畫的資金與人力,早就全都用上了。
登月大作戰:NASA 動員 6 億人的行銷實錄》告訴你科學、行銷、公共關係其實密不可分,NASA 為這個「人類的一大步」、以及讓你知道有這一步所做的事,比你想像的多太多了!

1969 年 7 月 20日,阿姆斯壯成功登陸月球,全世界的媒體無不大肆報導這「人類的一大步」。在此之前,NASA 與航太承包商為了向全世界宣傳這項計畫已付出非常多的行銷心力,而在 NASA 成為世界科學英雄的這一刻,承包商們當然也希望為自己博得名聲。

好的資料袋讓你上天堂

每一家阿波羅承包商都希望他們的公關努力為自家公司帶來正面報導,呈現在數千篇有關登陸月球的新聞報導中。幾乎所有承包商都積極爭取額外的政府合約,因此有利的新聞報導和與阿波羅計畫的關聯,都能凸顯他們的優勢。為了這個目的,承包商製作出精心設計的新聞資料包,內含各家公司在計畫中扮演角色的詳盡資訊。這些印刷資料在任務期間補充了記者無法親自取得的專業資訊。

要確保袋子裡的資料能脫穎而出並不容易,光靠印好的新聞稿加上照片塞進印好的文件袋還不夠,因為有數百名其他公關人員也在吸引媒體和散發資料。但一個有創意的新聞資料袋加上印刷精良、清晰且豐富的材料,往往可以捕捉注意,直接促成在媒體被提及。

第一台上月球的照相機

這些在阿波羅九號任務拍的照片,被納入瑞典相機製造商哈蘇的三十六頁小冊,上方的照片顯示太空人施維卡特(Rusty Schweickart)攜帶哈蘇相機進行新阿波羅A7L太空衣的測試。下方的照片顯示太空人史考特從艙口出來,拿著相機為施維卡特拍照,而施維卡特則為他拍照。      圖/行人文化提供

瑞典相機製造商哈蘇(Hasselblad)選擇展示他們產品的功能。自阿波羅十二號開始的發射任務,哈蘇都會寄出一疊厚厚的新聞資料給媒體,內含一篇標題為「第一台上月球的照相機」的新聞稿,附在一本三十六頁的絕美相冊旁,不經意的彷若臨時增添的。這本由維特.哈蘇(Victor Hasselblad)本人寫前言的小冊裡有數十張相片,包含了從阿波羅九號和十號登月艙的首度飛行,直到阿波羅十一號的首度登陸月球。

-----廣告,請繼續往下閱讀-----

冊中以令人震撼的精細向記者展示哈蘇照相機能做什麼,以及為什麼被 NASA 選擇用來記錄阿波羅任務。這份資料袋也包括七張月球表面的照片,可以翻印到雜誌和報紙上。每張照片都附上圖說,詳細說明相機資訊如「以哈蘇電子資料相機拍攝,使用柵網玻璃板,Zeiss Biogon f.5,6/60mm 鏡頭,Synchrom-Compur 快門。相機裡裝了一個特別設計的哈蘇 70mm 軟片匣,以便在月球上使用。」

阿波羅十一號新聞資料袋封面。由主要承包商的公關人員為阿波羅十一號任務準備的新聞資料袋,提供了在NASA散發的新聞稿中找不到的額外寶貴資訊。處理登陸月球報導的記者和編輯可從超過一百家製造商獲得這類文件。         圖/行人文化提供

出盡行銷招式:資訊視覺化、俊男美女

顯然如果一種像照相機這麼容易了解的產品被用在月球表面上,製造商就有使之在媒體被提起的優勢。但大多數公司沒有這種優勢。對太空船硬體製造商來說,抓住媒體的注意力需要更多一點創意。數家承包商了解記者必須以簡單明瞭的語言向讀者和觀眾解釋複雜的資料,因此在新聞資料袋中以視覺說明來呈現深奧的技術資料。例如,航天器公司格魯曼納入許多頁圖解,以剖析他們的登月艙。一系列的剖面圖印在順序分明的醋酸纖維紙上,顯示太空船內部運作的細節,提供在格魯曼工廠製造的登月艙完整的視覺化說明。

阿波羅十三號任務分析器。雷神公司製造了一具圓形的「阿波羅十三號任務指南和航行分析器」,為其他阿波羅任務也製造類似的分析器,作為任務期間了解重要活動的輔助器具。當然,這具分析器可以反映任務計畫的一切是否正常進行。當阿波羅十三號服務艙的氣氣罐爆炸後,登陸月球被迫放棄,任務改成讓人員安全返航。  圖/行人文化提供

通用汽車(GM)旗下的 AC Electronics 公司為阿波羅製造導航設備,該公司設計出一套任務計畫,以記錄飛行期間的主要事件,讓記者可以視覺化地了解第一步驟的情況。TRW、雷神、北美航空(North American Aviation)更進一步,設計了計算尺式的分析器。北美洛克威爾(North American Rockwell)的公關部發放一份「阿波羅航行英里數與速度轉換表」,讓記者用來把報導的數據(例如每秒英尺數)轉換成每小時英里數,讓外行人較容易了解。雷神的「任務分析器」用來把 NASA 的飛行地面時間(Ground Elapsed Time),換算成大眾較熟悉的每週時間和日數。

最別出心裁的是 TRW 的「任務資訊顯示器」,類似於雷神的計算尺,但添加了根據高度和多項主要事件資料估計的月球登陸降落所需時間。鼓勵使用這些特別且珍貴工具的公關人員,不僅為他們的企業僱主博得客戶好感,也希望透過這些東西鼓勵記者在媒體上提及他們的公司,報導他們與阿波羅計畫的關聯。

-----廣告,請繼續往下閱讀-----
TRW 公司的阿波羅十一號任務資訊包。TRW 為阿波羅十一號造登月艙,並設計和分析軌道。他們製作了這個雙面的計算尺,免費送給記者和來賓。這具計算尺本身就是資訊設計的傑作。 圖/行人文化提供

在 1960 年代,公關部門以展示漂亮女性臉孔或姣好身材的產品照片來吸引目光是常見的作法。與清一色男性的試飛駕駛員世界一樣,傳播業也以男性為主,且競爭十分激烈。承包商甚至寫新聞稿吹捧他們俊美的員工,有些還在光面照片上展示暗示性的長圓筒狀物體。

(左)新聞資料袋──難得一見的女性。1960 年代的太空計畫由男性主導,舉目所見很少有女性,難得看到的女性都是擔任幕後的秘書角色或產品模特兒,例如在哈里斯電子集團(Harris Eletronics)的新聞稿上,由「美人珍娜 ‧ 辛克森」(Pretty Janet Hinkson)介紹一套重要、但很少上鏡頭的阿波羅十一號指揮艙遙測系統零件。(右)在雷神公司,一名女子正為阿波羅導航電腦組裝記憶模組。 圖/行人文化提供

月球登陸報導的聖經:阿波羅太空新聞參考書

在阿波羅年代所有的新聞資料與書籍中,阿波羅太空船新聞參考資料夾最為獨樹一幟。這些附上許多圖解的手冊由 NASA 和太空船的主要承包商格魯曼太空工程公司及北美洛克威爾公司共同編製。每一本精心編製的三孔活頁夾都有超過一百頁的技術資料、圖形、圖表和規格表,很快就變成報導阿波羅計畫的所有記者主要的技術百科全書。它們的編製部分原因是為應付頭幾次任務前幾個月大量的新聞業詢問。

「記者不斷打電話來問一個問題,第二天又打電話問另一個問題。」格魯曼公關部資深人員兼記者鮑伯.巴頓(Bob Button)回憶道。(巴頓之前擔任過 NASA 的公共事務官。)「我找上公司的總裁,提議我們開辦一個教育課程,邀請所有新聞業者到這個大教室,以便我們的專家可以提供資訊。不過我們也需要印講義。」

北美洛克威爾編製了一本令人刮目相看的阿波羅太空船新聞參考書手稿,用以說明指揮艙和服務艙,剛好可當作NASA和格魯曼的「教室講義」範本。但編製這種書格魯曼沒有經驗,而且必須在 1969 年 1 月前的兩個月內編寫並印刷完成。被指派監督這個計畫的人是格魯曼的太空公共事務主任兼首席發言人狄克.鄧恩(Dick Dunne),他是資深技術作家,之前為格魯曼的後掠翼海軍戰鬥機部門工作。鄧恩負責登月艙參考書的編寫,有時候與 Hamilton Standard 等公司的顧問協調編製書中特定的章節。為了月亮的章節,鄧恩聘用前麻州春田科學博物館天文策展人理查.霍格蘭德(Richard Hoagland)。阿波羅太空船登月艙新聞參考書第一版印了二千本,剛好趕在 1969 年初格魯曼教室第一堂課使用。

-----廣告,請繼續往下閱讀-----
阿波羅太空船新聞參考書。這本描述登月艙的參考書由格魯曼太空工程公司製作,合作者是NASA載人太空船中心。指揮艙參考書則由NASA載人太空船中心和北美航空的太空與資訊系統部門共同製作。  圖/行人文化提供

報紙記者和電視網通訊員被邀請參加在紐約州貝斯沛吉的格魯曼總部會議廳舉行的兩天講座。(後來的講座在其他地方舉行。)巴頓回憶道:「每個人都為了這本書而來。那就像一所學校,我們期待發問和提供我們已知的解答。我們請來演講者:登月艙計畫經理人到課堂演講,還有軌道專家來解釋登月艙實際上如何登陸月球。」在二十年後做的一次訪問中,克隆凱特回憶說,在登陸月球之前的幾個月,他努力研讀這些參考書:「我必須從頭學起,因為我完全未受過機械訓練,科學更不用談……我拿到 NASA 的講義和參考書後,便努力做功課,狂熱地研讀。」克隆凱特的兒子奇普特別記得,他父親在 1969 年初埋頭研究這些厚重的活頁夾,就像剛開學的中古世紀研究生。[1]

格魯曼的講習會結束後,阿波羅太空船新聞參考書的登月艙版變成了記者報導月球登陸的聖經。不可避免的,愈來愈多新聞業和其他行業的人知道它的存在,紛紛向格魯曼要這本參考書。不過,書的數量有限,而訂購加印本的價格則極其昂貴,因此為了盡可能公平地分發給眾多不同的新聞組織,格魯曼的公共事務辦公室詳細記錄了每一個收到加印本者的姓名和機構,要求同一新聞機構的人共用這些奇貨可居的書。(阿波羅十一號任務後,格魯曼和 NASA 印製了兩版修訂過的活頁書,以說明後來的飛行中使用的較重型登月艙。)

對渴求視覺故事的電視記者來說,他們的報導仰賴承包商提供的道具和太空船縮小模型。面對向電視觀眾解說太空船或火箭引擎的基本運作時,記者發現縮小模型很好用。指揮艙的主要承包商北美洛克威爾,以及登月艙主要承包商格魯曼飛機工程公司,提供了幾種不同尺寸的太空船模型給主要電視網。零件和設備製造商則提供電視記者降落傘布料、開關、刻度盤、乾燥太空食物樣品、筆。

哥倫比亞廣播公司(CBS)晚間新聞主播克隆凱特拿著格魯曼登月艙模型。克隆凱特和他在國家廣播公司(NBC)和美國廣播公司(ABC)的同業,在阿波羅登月任務期間的長時間電視播報中常用到太空船模型。  圖/行人文化提供

被忽視的商業面向報導

只要有消費產品在阿波羅任務中使用,製造商通常就會製作慶祝這件事的新包裝。通用食品(General Foods)即飲橘汁飲料Tang、Duro Marker 簽字筆、Exer-Genie 個人運動器的廣告和包裝,都強調這些產品被 NASA 挑選在美國太空計畫中使用。

-----廣告,請繼續往下閱讀-----

隨著承包商和媒體間的關係為了解說阿波羅故事的技術面而建立起來,故事的商業面往往被忽略未報導,不受到新聞業的注意。

鋁製的輕質簽字筆Duro Marker被NASA選為所有阿波羅任務中使用的筆。總共有二十七支Duro Marker筆跟隨飛向月球,其中十二支降落在月球表面。紐約市布魯克林的Duro筆公司,推出類似的筆給消費者,以慶祝這支筆在月球任務中扮演的角色。  圖/行人文化提供

《紐約每日新聞》(New York Daily News)報導阿波羅飛行的首席記者馬克.布倫(Mark Bloom)回憶當年的新聞報導時說,當年原本可以做得更好些。「如果是今日的報導,我們會請一位商業記者一起採訪。我們會請人報導這一切對格魯曼、洛克威爾、波音有什麼意義。」

注解:

  • 注 1:Walter Cronkite and Don Carleton, Conversations with Cronkite Austin : University of Texas Press, 2010,  p.232; and Douglas Brinkley Cronkite. New York : HarperCollins, 2012, p.410.

參考資料:

  • Bob Button, interview with the authors, March 13, 2012.
  • Dick Dunne, interview with the authors, May 2, 2013.
  • Mark Bloom, interview with the authors, January 13, 2012.

 

 

 

 

本文摘自泛科學2017年12月選書《登月大作戰:NASA 動員 6 億人的行銷實錄》,行人文化出版。

 

 

 

 

 

文章難易度
PanSci_96
1221 篇文章 ・ 2249 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 304 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
這些太空垃圾會不會阻礙我們太空旅行?太空垃圾怎麼清? 
PanSci_96
・2024/05/29 ・5682字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

人類上太空的夢想會被我們親自摧毀嗎?

隨著火箭成本降低,人人都能把衛星丟上太空,現在,當你晚上抬頭看天空,你看到的星星可能不是星星,而是人造衛星。你看到一閃而過的的流星,可能只是墜入大氣的太空垃圾。

這些多到不行的太空垃圾已經成為隱憂,更可怕的是,這些以超音速飛行的太空垃圾可能摧毀其他衛星,在衛星軌道上製造更多不可預期的致命飛彈。有人擔心,人類終有一天會無法穿過這片垃圾雲,天空永遠被自己封閉。 終於,有人提出清理太空垃圾的方法了,但這些方法真的可行嗎?

現在的太空垃圾有多少?

最大的太空垃圾可能是整節火箭!

所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭,例如 1960 年代太空競賽時大量發射的火箭,有許多至今還在宇宙遊蕩,每一個都像公車一樣大。而小東西,則包含太空人在太空漫步時遺忘的東西,或是太空垃圾互相碰撞後產生的碎片,最小可能只有數毫米,小的像隻蚊子。但不論太空垃圾來自哪裡,只要缺乏妥善的管理和追蹤,就可能成為其他運作中設施和儀器的致命血滴子。

-----廣告,請繼續往下閱讀-----
所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭。
圖|PanSci YouTube

為什麼說太空垃圾真的很危險?

為了不被地心引力拉入大氣,墜向地球,在軌道上繞行地球的物體大多都以非常快的速度在移動,包括現在還在運作的衛星與各種設施。舉例來說國際太空站位於距離地球表面四百公里高的近地軌道(Low Earth Orbit),以大約每秒 7 ~ 8 公里的速度高速移動,是地表音速的 20 倍。也就是說,太空上的車禍可嚴重多了,來自不同方向或不同傾角的物體,可能會以超過每秒 10 公里的相對速度發生碰撞。別說公車大小的太空垃圾了,只要直徑超過 1 公分的碎片就足以對太陽能板或玻璃造成損害。更麻煩的是,大小在 10 公分以下的物體,大多還因為尺寸過小難以追蹤。

那麼,我們的頭上有多少太空垃圾呢?

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1 公分到 10 公分的則高達一百萬個。

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2 千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1公分到 10 公分的則高達一百萬個。
圖|PanSci YouTube

在這些太空垃圾中,大多數大型太空垃圾就是來自發射衛星後,一起留在太空的第二節推進火箭,小型太空垃圾則來自火箭爆炸或各種大大小小碰撞所產生的碎片。

太空上曾發生過嚴重的太空垃圾碰撞事件?

歷史上比較嚴重的一次撞擊事件發生在 2009 年,銥衛星公司運作中的通訊衛星,重量 700 公斤的 iridium 33,和失效、重 900 公斤的蘇聯軍用衛星 kosmos 2251,在 789 公里的高空,兩台衛星以每秒 11.7 公里的相對速度直接撞上,化成了兩團在軌道上繞行的碎片團。

-----廣告,請繼續往下閱讀-----

NASA 估計,這單一次的碰撞產生了超過 2000 片可追蹤的碎片,雖然許多碎片受地球引力慢慢墜入大氣燒毀,但直到到 2023 年 2 月的統計,大約還有一半,也就是 1000 片碎片留在軌道上。過往也曾經觀察到碎片從距離國際太空站僅 100 多公尺的位置驚險掠過。

如何解決太空垃圾的問題?

太空垃圾又多又危險,真的有辦法清除嗎?

2023 年三月,NASA 發表一篇研究,整理了關於各種清理太空垃圾的方法與成本,包含從地面或太空發射雷射推動垃圾改變軌道,或是直接物理性撞擊改變軌道,還有透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用等方法。

透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用。
圖|PanSci YouTube

清理不同大小的物體,要用的方法跟產生的效益也不同,因此他們評估了針對兩種策略。第一種策略將會優先處理目前最大、最具威脅性的 50 個太空垃圾,例如完整的第二節火箭或是失去功能的完整衛星。第二種策略則是優先移除 1 到 10 公分的十萬個小型垃圾。NASA 分別評估處理這兩種目標帶來的效益,恩,所謂的效益,就是預估能減少多少因為太空垃圾碰撞而產生的損失。

要如何移除太空垃圾呢?

移除大型垃圾主要的方法主要是再入大氣層(re-entry),簡單來說就是讓垃圾落入大氣層燒毀。這個方法預計讓運送任務完成的火箭載具,透過剩餘的推進燃料,順手將其他大型垃圾帶下來。移除這 50 個大型垃圾預計總共會花費 10 億美金,但在移除 30 年後所帶來的效益,將會超過花費的成本,非常划算。

-----廣告,請繼續往下閱讀-----

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。發射雷射的裝置可以設置在地面或是太空中,單純以使用效率來說,設置在太空所需要的能量較低,但是設置在地面維護和管理比較方便。然而這也衍伸了許多爭議,主要圍繞在這個清除垃圾的雷射也可以作為武器使用,例如在戰爭爆發時用雷射攻擊敵國的衛星。不過如果順利設置的話,清除十萬個小型垃圾後大約只要十年就可以達到等同於成本的效益,比移除大型垃圾能更快回收成本。

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。
圖|PanSci YouTube

方法有了,但我們真的能讓太空再次乾淨嗎?

太空垃圾問題有解嗎?

現在的太空有多擁擠?

如果把歷史發射資料整理出來,會發現近五年人類的衛星發射數量幾乎是直線攀升,2012 年一整年全世界也只發射了 200 多顆衛星,到了 2022 年已經成長到一年 2000 多顆衛星。而且絕大部分都是來自於美國的衛星,想當然很大一部份都來自於 SpaceX 的星鏈計畫。而受益於獵鷹九號的高成功率和可回收造就的低廉成本,也能夠發射更多的中小型衛星,像是我們臺灣也發射了不少自主研發的立方衛星上太空,例如 2021 的「飛鼠」和「玉山」以及最近才剛發射的珍珠號立方衛星。

如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。

-----廣告,請繼續往下閱讀-----
如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。
圖|PanSci YouTube

治標也要治本,我們對於即將發射進太空的人造物能有套管理辦法嗎?

1967 年在聯合國通過並簽署的《關於各國探索和利用包括月球和其他天體的外太空活動所應遵守原則的條約》,簡稱為《外太空條約》。這個條約制定了各國在外太空活動所應該遵守的原則,其中和人造衛星有關的原則主要有三個:

  1. 國家責任原則:各國應對其航太活動承擔國際責任,不管這種活動是由政府部門還是由非政府部門進行的
  2. 對空間物體的管轄權和控制權原則:射入外空的空間物體登記國對其在外空的物體仍保持管轄權和控制權
  3. 外空物體登記原則:凡進行航太活動的國家同意在最大可能和實際可行的範圍內將活動的狀況、地點及結果通知聯合國秘書長

也就是說,雖然各國需要將太空活動回報給聯合國統計,但實際上在制定規範和進行管制的還是各國本身。以美國來說,分別需要和 FAA 聯邦航空總署申報火箭發射和再入大氣層的計畫,以及向 FCC 聯邦通訊委員會申報衛星的通訊規格,至於要如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。

如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。
圖|PanSci YouTube

不過對於衛星任務結束後的處置,FCC 倒是有相關的規定和罰鍰。因為如果衛星有動力系統,可以在任務結束時就控制墜入大氣層或飛離常用軌道,進到所謂的死亡軌道(Graveyard Orbit),而通常在申請發射衛星時,也需一併提供任務結束後的處置方式。

去年,衛星電視業者 Dish Network 沒有按照它在 2012 年所制定的衛星處置計畫,將衛星從離地 36000 公里的地球同步軌道再往外推 300 公里。這顆衛星在移動的半途中就燃料耗盡失去了動力,只離開原本的軌道 120 公里,FCC 因此對衛星電視業者開罰了 15 萬美元。這起首次針對太空垃圾的開罰,對於太空垃圾的管制具有重大的意義,代表著對太空垃圾危害性的重視,也代表著清理太空垃圾的商機正在逐漸成長。

-----廣告,請繼續往下閱讀-----

清除太空垃圾能有商業價值?

隨著商業化的太空活動逐漸熱絡,如何讓清理太空垃圾不只是空談也成了一個重要的問題。如果軌道上的垃圾減少,受益的會是所有使用軌道的衛星。就與現存的回收與垃圾處理方式一樣,我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。

我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。
圖|PanSci YouTube

另外,雖然目前對於在軌道上進行捕捉再回收的直接經濟效益並不突出,但如果未來在太空可以建立起專門的處理設施,或許可以作為一個長期的太空垃圾處理機制,沒想到吧,人類要成為跨行星文明的第一步,竟然是得先成立太空垃圾清潔隊。

不過話說回來,要讓各國政府願意砸大錢在太空垃圾回收產業可能還需要一點時間。畢竟相較於直接影響到生活的全球暖化,太空垃圾的危害並不那麼可怕,大型垃圾的撞擊也可以預測並提前避開,因此短時間內也還不會有明顯的感受,但如果你是需要觀測的天文學家,可能就覺得垃圾好礙眼了。

最後想問問大家,你覺得處理太空垃圾最好的辦法會是什麼呢?

  1. 向所有太空公司徵收處理費,培育回收業者,資本的事情資本解決。
  2. 從技術研發著手,火箭能回收,想必衛星回收技術很快也能做出來。
  3. 都別處理了,就等人類把自己鎖死在地球,宇宙垃圾就不會再增加了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

1

8
4

文字

分享

1
8
4
太陽系如何形成、如何演化?就讓「靈神星」來解答!
EASY天文地科小站_96
・2023/04/12 ・2962字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/黃子權|掉入岩石堆中的研究生,現就讀台大地質所
  • 文/林彥興|現就讀清大天文所,努力在陰溝中仰望繁星

M 型小行星與行星的誕生

了解太陽系的形成歷史與演化,是行星科學最重要的使命之一。然而,身在太陽系形成後 46 億年的我們所看到的行星,都是經過漫長演化後的結果。它們的表面特性、內部結構,早已與剛形成時大相逕庭。

因此,想要研究太陽系的形成與演化,小行星是相當重要的目標。由於小行星質量小、冷卻快,更不會有複雜的風化和地質運動,因此它們從太陽系形成之初到現在都沒有什麼改變,就像活化石一般。而過去幾十年,人類也確實對小行星進行了廣泛而詳細的研究,比如拍攝照片計算它們的軌道,用光譜分析化學組成,甚至派遣太空船(如 JAXA 的隼鳥一號、隼鳥二號、NASA 的 OSIRIS-REx)直接前往小行星,將樣本採回地球分析。

而在太陽系目前已知的一百多萬顆小行星中,有一個相當特殊的族群,它們大多具有較大的密度和較高的雷達反照率,同時在光譜上缺乏特徵。基於上述特點,科學家們認為它們的組成中有含有不少金屬,因此稱之為 M 型小行星。

根據目前天文學家對行星形成的理解,原行星盤(protoplanetary disk)中的金屬元素分布理應相當分散,因此能夠自然產生元素分異並聚集大量金屬的地方,只有足夠大、足夠熱的原行星(protoplanet)的行星核。所以傳統上,M 型小行星被視為受到撞擊後裸露的行星核,同時也是鐵隕石的來源之一。但截至目前,仍未有探測器直接造訪 M 型小行星,確認這個假說是否正確。

-----廣告,請繼續往下閱讀-----

近期,新的觀測資料更顯示,某些 M 型小行星似乎比人們預想的還輕,各種特徵也和人們對行星核的認知不盡相同(例如,在表面觀測到含水礦物的訊號)。這表示傳統的行星形成與演化模型,也許不盡正確。換個角度看,這也代表對 M 型小行星的研究,也許將能幫助我們揭開行星演化理論中的盲區。

M 型小行星是由什麼構成的?它們的演化歷史又是如何?苦於距離遙遠,過去人們對這些問題往往只能止於粗略的推測。但隨著靈神星號任務逐漸上軌,我們離解答這些問題(的一部分)只有一步之遙了。

靈神星號探測器。圖/NASA/JPL-Caltech/ASU

靈神星探索任務

靈神星探索任務(Psyche)是 NASA 發現計畫(Discovery Program)的一部分。發現計畫始於 1989 年,每隔幾年就會向全美國徵求任務提案,經過重重篩選後,最具有科學價值且最可行的團隊,就可以獲得 NASA 提供的經費,將他們的構想付諸實行。從 1996 年的 NEAR 任務開始,發現計畫已經為十幾個重要的太陽系探索任務提供機會,包含近期因太陽能板發電量降低而終止的火星「洞察號(InSight)」任務。2014 年,第 13、14 次發現計畫徵選開始,最後脫穎而出的其中一個計畫,正是靈神星探索任務。

而計畫要觀測的目標靈神星(16 Psyche)於 1852 年被義大利天文學家加斯帕里斯(Annibale de Gasparis)發現,並以希臘神話中靈魂之神「賽姬」命名。祂是第 16 個被發現的小行星,雖然不是最大的小行星(平均寬度約 220 公里)但卻是目前已知小行星中第 10 重的,其質量佔小行星帶總質量的 1%。根據估算,靈神星的密度大約為 3.9 g/cm3,遠低於鐵鎳隕石的 7.9 g/cm3,因此靈神星不太可能真的完全由金屬構成,比較可能是類似石鐵隕石那樣,由金屬與岩石共同組成。

-----廣告,請繼續往下閱讀-----
科學家對靈神星的想像。圖/ NASA/JPL

作為發現計畫的一員,靈神星計畫切實地反映了該系列任務的宗旨:便宜、快速的解答重要的疑問。M 型小行星是行星形成與演化中相當重要的一片拼圖,而靈神星又是體積最大的 M 型小行星,其重要性不言而喻。對靈神星的探測,勢必能更加推進人們對行星演化的認知。

靈神星號的科學目標及預期解答的問題為:

  1. 靈神星是行星核還是未熔結物質?
  2. 靈神星表面的相對年齡為何?
  3. 小型金屬天體是否含有和高壓地核同比例的輕金屬?
  4. 靈神星形成環境的氧化還原性?
  5. 靈神星地表及撞擊坑特徵?

為了達到這些目標,靈神星號上搭載了以下儀器:

  • 多光譜成像儀 (Multispectral Imager)
  • 伽馬射線/中子光譜儀 (Gamma-Ray and Neutron Spectrometer, GRNS)
  • 通量閘磁強計 (Fluxgate Magnetometer)
  • X頻無線電實驗 (Radio Science (X-band))

整體而言,靈神星號的載酬相當簡要,科研儀器加總起來只占約 30 公斤,且每項儀器都是經過「實戰」驗證過的:多光譜成像儀來自火星好奇號探測車,GRNS 來自水星的信使號任務、磁強計參與了洞察號任務、X 頻無線電實驗(利用通訊時訊號的都卜勒效應測量重力強度變化)更是有多項成功紀錄。使用這些驗證過的儀器不僅能減少任務風險,同時能省下不少研發經費,提高任務的 CP 值。另外,靈神星號同時也會為深空網路(Deep Space Network, DSN)測試全新的「深空光學通訊(Deep Space Optical Communication, DSOC)」系統,利用雷射作為資料載體進行傳輸,科學家估計 DSOC 的資料傳輸速度,將比過去使用無線電的 DSN 快 10 到 100 倍。

靈神星號各項儀器位置圖。圖/修改自NASA/JPL-Caltech/ASU
靈神星號的伽馬射線光譜儀及中子光譜儀。圖/Johns Hopkins APL/Ed Whitman

另外,隨著科技進步,太空探索不再是國家機構的天下,各種商業公司紛紛加入了衛星製造的行列。因此重視任務 CP 值的靈神星號,從設計初期,科學家們便決定向商業公司尋求成熟、有發射紀錄且搭載了離子推進系統的衛星載具。最終他們選定了 Maxar 旗下的 Space Systems/Loral(SSL)公司的 1300 系列框架作為靈神星號的主體,並由噴氣推進實驗室(JPL)整合飛行系統(包含指令及資料處理系統)。靈神星號的推進系統是一具 SPT-140 霍爾效應推進器(Hall effect thruster),藉由游離氙氣並透過磁場將其加速噴出以獲得推力。搭配發電量達 20 千瓦的太陽能板及 922 公斤的氙氣,足夠支持靈神星號走完將近六年的航程。

抵達靈神星後,探測器將嵌入軌道開始環繞靈神星。科學家為靈神星號安排了四個逐漸降低的軌道(A 到 D),每個軌道都有各自主要的研究目標:

  1. 最高也是最初始的軌道 A 半徑約 700 公里,靈神新號將會在這裡測量靈神星的磁場。
  2. 56 天後,探測器將降至軌道 B(半徑 290 公里)並且開始對靈神星的地貌進行調查。
  3. 76 天後,靈神星將下降至半徑 170 公里的軌道 C,這是最小的穩定繞極軌道,同時也是最適合用來探測靈神星重力場的高度。
  4. 100 天後靈神星號將會降至最後、最低的軌道 D,軌道半徑僅 85 公里,在這探測器將利用 GRNS 調查靈神星表面的元素分布。
靈神星號任務示意圖。圖/修改自 NASA/JPL-Caltech

靈神星號原訂的發射日期為 2022 年 9 月。然而在飛行前的測試中,任務團隊發現飛行軟體異常,導致它錯過了 2022 年的發射窗口。經過幾個月的調查和調整,目前 NASA 公布的下個發射窗口為 2023 年 10 月 10 日以後,屆時靈神星號將會搭乘 SpaceX 的獵鷹重型火箭進入太空,就讓我們好好期待靈神星號傳回來的各種資料吧!

-----廣告,請繼續往下閱讀-----

延伸閱讀

  1. 我們的征途是星辰大海:回顧隼鳥二號的億里長征
  2. Just Look Up!小行星監測系統「哨兵」全面升級
  3. 災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?
所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1471 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事