0

6
2

文字

分享

0
6
2

曾經有50億鳥口的「旅鴿」,遺傳多樣性卻低得嚇死人?

寒波_96
・2018/01/09 ・4207字 ・閱讀時間約 8 分鐘 ・SR值 555 ・八年級

旅鴿:曾與智人一樣多的鳥類

住在北美洲的旅鴿(passenger pigeon,學名 Ectopistes migratorius)是種非常獨特的鳥,最特殊的是牠們的數量,毫無疑問排名美洲第一,或許也是世界冠軍——全盛時期估計有30到50億。然而,不久前仍如此龐大的族群,竟然已經步向滅亡的命運,1914年以後,世界上就再也沒有旅鴿了。

被獵人們追捕的旅鴿們。source:wikimedia

古代 DNA 近來成為研究滅絕生物的利器,而消失不久、目前仍有不少標本保存在博物館的旅鴿,它的基因組也在其滅絕的一百週年,也就是2014年時被定序發表。這項由台灣學者主導的研究,最驚人的發現是:旅鴿的遺傳多樣性與牠們龐大的鳥口數目,完全不相稱。[1]

通常我們會直覺地認為,某種生物的數目愈多,其遺傳多樣性應該也會愈大;旅鴿可能一度是世界上最多的鳥類,有如此多個體能累積遺傳差異,DNA 多樣性應該會大的嚇死人。可是由基因組看來,旅鴿的遺傳變異反而低的驚人,如果不考量旅鴿的個體數量、單純從他們的DNA序列來估計鳥口的話,估計值只有大約 33 萬左右……對,單位沒有寫錯,但旅鴿實際上至少有 30 億個體啊!

旅鴿的標本。source:wikimedia

為什麼旅鴿的族群很大,遺傳多樣性卻很低?

為什麼旅鴿數量的理論估計與實際情況的落差會這麼巨大呢?影響遺傳多樣性的因素除了個體數目以外,還有何方神秘力量?在2017年發表的論文,提出相當具有啓發性的解釋,讓旅鴿無法累積 DNA 變異的主要因素是:天擇!?[2]

-----廣告,請繼續往下閱讀-----

讓我們來從頭說起:新發表的論文獲得了更多旅鴿的 DNA 序列,包括 2 個新的基因組(加上之前發表的一共有 4 個),以及 41 個粒線體 DNA。除此之外,還定序了旅鴿的近親班尾鴿(band-tailed pigeon,學名 Patagioenas fasciata)的 2 個基因組,一同用於研究旅鴿的遺傳史。

左圖,紅色是旅鴿歷史上分佈的範圍,紫色是班尾鴿分佈的範圍。右圖,旅鴿樣本的取樣位置。圖/取自 ref 2

用 DNA 差異計算出的族群大小稱為「有效族群量(effective population size)」,採用粒線體 DNA 估計的結果是 1300 萬,比之前計算的 33 萬高出不少,不過仍遠遠低於實際上的 30 到 50 億。和班尾鴿比較,更能看出旅鴿反差的驚嚇程度,旅鴿的鳥口遠遠超過這種親戚,基因組的 DNA 多樣性卻只有班尾鴿 2 倍;假如以「有效族群量除以實際族群量」換算,也就是反差愈大、數值愈小,班尾鴿是 0.2,亦即實際鳥口是遺傳估計值的 5 倍,而旅鴿約為 0.0002,足足有 5000 倍之多!

與天擇利害糾葛,沒有中立空間

為何旅鴿的個體變多,卻無法累積相應的遺傳多樣性?我們常常聽到「多樣性大便是好的」,這背後的潛台詞是:多樣性小,代表個體數少,容易近親交配,導致不良後果。但是回頭思考,憑什麼族群個體變多,多樣性也要跟著變大?這是有前提的,那就是新的遺傳變異是中性的,亦即對個體沒有利、也沒有害;在沒有利害關係之下,新突變造成的 DNA 差異能保留在基因組中,因為每隻鳥的突變機率一樣,所以族群中有愈多個體、就會有愈多差異,使得族群整體的遺傳多樣性愈大。

可是實際上,個體間許多遺傳差異並非中性,而是會影響生存與繁殖。這又有兩個可能,一種是有利的,亦即有此變異與沒有此變異的個體相比,會比較有優勢;另一種是有害的,分配到這類變異的鳥比較倒霉,傳承後代的機率較低。以上是路邊過馬路的老爺爺老太太和扶他過馬路的我們都知道的天擇。

-----廣告,請繼續往下閱讀-----

以 DNA 差異來看,牽涉利害關係的天擇多半會降低多樣性:舉例來說,如果單一品牌的市占率上升、或是一個牌子長保穩定優勢,會讓新品牌不易進入,「品牌多樣性」便會下降;相對的,如果大家都不挑品牌、買東西都碼是隨機選擇,那麼當有新品牌進入市場時,我們就多了一個牌子可以挑選、讓品牌多樣性變大,而之後影響其興衰的就只是機率而已了。

在演化上,隨機影響力的正式名詞叫作「遺傳漂變(genetic drift)」,它和非隨機的天擇都會影響 DNA。演化理論預測,比較大的族群中天擇的作用較強;比較小的族群遺傳漂變則較有影響力。旅鴿和班尾鴿相較,兩者多數特徵都差不多,旅鴿族群卻大了很多倍,應該會更強烈被天擇影響。那麼天擇的強大,與旅鴿遺傳多樣性不如預期之間,有關係嗎?

同一條染色體上不同區域,遺傳多樣性竟然不一樣?

分析基因組後觀察到的狀況非常奇妙,不過要解釋起來也很複雜,希望以下文字能正確傳達論文的概念。旅鴿染色體不同的位置,遺傳多樣性有明顯的差別。在同一條染色體的中間,遺傳多樣性普遍較低,而邊緣區域則顯著較高。相比之下,班尾鴿染色體不同區域間,遺傳多樣性的差異程度遠遠不如旅鴿劇烈。

旅鴿基因組上不同區域的 DNA 多樣性卻不一樣,靠近染色體邊緣的範圍較高,中央較低。圖/取自 ref 2

論文指出此一分佈模式,與染色體重組率(recombination rate)的高低一致,鳥類 DNA 重組率低的區域,也就是染色體中央的多樣性也低,重組率高的邊緣,多樣性也比較高 [3]。重組的影響是什麼?根據論文的說法,要與天擇的作用一起看。一個遺傳變異若是有利益糾葛,受到天擇作用時,影響的往往不是只有本身,還包括周圍的 DNA 序列,也就是遺傳學上說的「連鎖」。本身為中性的 DNA 片段,若是鄰居有利也會跟著受益,更容易傳遞下去,反之亦然。

-----廣告,請繼續往下閱讀-----

天擇會消滅差異,除非被重組拯救

在強大天擇力量的影響下,由於遺傳連鎖之故,整段 DNA 都不容易累積差異;就像買 A 牌手機,連帶也會買整套 A 牌週邊配備,壓縮他牌的空間;假如重組率低,連鎖的範圍較大,天擇能影響的範圍也會跟著變大,正是旅鴿染色體中央的狀況。相對的,在基因組中重組率高的區域,比較不受天擇與連鎖的影響,中性變異的生還率高,也就能觀察到族群個體很多之下,遺傳多樣性應有的上升。

旅鴿基因組研究,上了當期《Science》封面。圖/取自《Science》封面

論文還做了一些細緻的分析,對相關議題有興趣的讀者請自行欣賞。跳到結論,不論是有害變異的清除(淨化選汰,purifying selection),或是有利變異的增加(正向選汰,positive selection),旅鴿整個基因組受天擇的影響都更勝班尾鴿。可見族群較大,的確也會有較強的天擇力量。

天擇兩個方向中,吻合淨化選汰特徵的 DNA 變異,比較旅鴿基因組中,重組率不同的區域,不管高低皆有明顯差異,意謂掃蕩有害變異的能力都比較強;但是重組率高的區域內,儘管序列乍看之下符合正向選汰的特徵,論文卻警告,這可能只是染色體重組時 DNA 突變的傾向所致(AT 突變為 GC 的機率更高,影響序列判斷),而非讓有利變異更容易留下的演化力量作用。總之,旅鴿基因組受天擇作用時,顯然也受到重組機率影響。

比較具體的基因方面,旅鴿有 32 個基因疑似受到正向選汰影響,有些基因與免疫、壓力、吃飯消化有關。想來十分合理,鳥口多,大家住在一起也容易得到傳染病,需要較強的免疫力;另外,有人會因為人多而壓力大、感到恐懼,鳥也一樣。

-----廣告,請繼續往下閱讀-----

所以一度繁盛的旅鴿,為何會滅絕?

旅鴿標本。圖/取自本研究新聞稿〈 Passenger pigeon genome shows effects of natural selection in a huge population

個人答案是:不知道,不過應該不單純。已經發表的 2 個論文,對這問題的見解不同。2014 年論文的論點是,旅鴿並非一直這麼多,牠們經歷過多次劇烈的鳥口波動,是導致其滅絕的重要因素。然而新的論文分析指出,過去幾萬年來旅鴿的族群量不斷增加,到 2 萬年前達到高峰,之後就一直保持穩定,直到滅絕,所以波動不像是主因。

用旅鴿粒線體 DNA 推估的遺傳族群數目,近幾萬年來不斷上升,距今 2 萬年前達到高峰。圖/取自 ref 2

新論文的見解是,一度有利的天擇,讓旅鴿族群大增,卻也付出遺傳多樣性嚴重損失的代價,反倒使得環境轉變時,難以適應人類獵捕的壓力而短時間內徹底滅團。不過這個解釋……看起來也就只是另一個解釋,沒有進一步證據。

旅鴿的遺產

曾經能跟智人數目相提並論的旅鴿,消失一百多年。但是藉由研究牠們的 DNA 遺產,我們仍然能得到許多非常有價值的收獲。

一般認知中,族群大,遺傳多樣性也會跟著變高,然而旅鴿卻是極端的反例。對遺傳演化學家而言,即使都學過理論,知道大族群中天擇的作用力量也強,大概也難以想像現實世界中天擇的影響力,在極端龐大的鳥類族群中能如此驚人,強大到甚至會把正常累積的遺傳多樣性,大半排擠掉的境界。

-----廣告,請繼續往下閱讀-----
在論文的附錄中還有許多分析,附錄的圖 S25 修正一些參數後,重新計算 2014 年論文的歷年族群大小變化,與新的分析對照,兩者明顯有異。圖/取自 ref 2

重組率高低會導致基因組不同區域的 DNA 多樣性差異明顯,也告訴我們,探討抽象的演化力量作用時,不可忽略具體分子機制的影響。假如把旅鴿基因組視為一個整體,將無法釐清天擇的影響,而會把大部分區域錯誤地假設為中性演化,造成各種估計結果的偏差。

看完旅鴿的研究,雖然一些舊有認知受到挑戰,大家先別驚慌;也許旅鴿驚人的鳥口,讓牠們成為極端的特例,並非常態。可是回頭想想,遺傳學上大家研究最多,最在意的智人,不也是動物世界中,實際人口遠遠超過遺傳估計值的特例嗎?誰知道研究旅鴿獲得的知識,未來能有多少用於人類?

延伸閱讀:

參考文獻:

-----廣告,請繼續往下閱讀-----

1. Hung, C. M., Shaner, P. J. L., Zink, R. M., Liu, W. C., Chu, T. C., Huang, W. S., & Li, S. H. (2014). Drastic population fluctuations explain the rapid extinction of the passenger pigeon. Proceedings of the National Academy of Sciences, 111(29), 10636-10641.

2. Murray, G. G., Soares, A. E., Novak, B. J., Schaefer, N. K., Cahill, J. A., Baker, A. J., … & Gilbert, M. T. P. (2017). Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science, 358(6365), 951-954.

3. Ellegren, H. (2010). Evolutionary stasis: the stable chromosomes of birds. Trends in ecology & evolution, 25(5), 283-291.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
寒波_96
193 篇文章 ・ 1082 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
從「衛生紙」開始的環保行動:一起愛地球,從i開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1604字 ・閱讀時間約 3 分鐘

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
圖說:從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

圖說:人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

圖說:只要認明FSC(森林管理委員會)認證與PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

圖說:選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
212 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
深海發現大型礦場和「暗氧」!是能源危機的希望還是潘朵拉之盒?
PanSci_96
・2024/09/21 ・2334字 ・閱讀時間約 4 分鐘

深海的暗氧:無光環境中的神秘氧氣生成

深海,被譽為地球最後的未開發疆域,隱藏著許多不為人知的奧秘。數千公尺深的海底沉積了數量龐大的多金屬結核,這些礦物因含有大量珍貴金屬,對現代技術,尤其是能源轉型,至關重要。然而,科學家在探索這些結核的過程中意外地發現了一種神秘的現象:暗氧,即在無光的深海環境中生成氧氣的過程。這一發現不僅可能改變我們對海洋生態系統的理解,還可能重新定義地球早期生命起源的故事。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

長期以來,科學界普遍認為氧氣的生成依賴於光合作用。光合作用是植物、藻類及一些細菌透過陽光將水和二氧化碳轉化為有機物並釋放氧氣的過程。這一過程主要發生在地球表層和淺水區域,是維持大氣和海洋中氧氣含量的核心機制。根據這一觀點,只有在陽光能夠到達的區域,氧氣才能被生成。因此,對於深達數千公尺的深海區域,我們的認識是,氧氣主要來自於表層水透過洋流輸送到深處。

然而,深海中缺乏光源,光合作用無法進行,這意味著氧氣在深海中的供應受到限制。雖然洋流能夠在一定程度上將氧氣輸送到深海,但這一過程極其緩慢,往往需要數百年甚至上千年才能完成一次循環。因此,科學家一直認為深海是一個缺氧的環境。

多金屬結核的發現,是新能源的關鍵,還是海洋生態的災難?

在這樣的背景下,科學家對深海進行了更深入的探索,並發現了錳結核(英語:Manganese nodules),又被稱為多金屬結核這一珍貴資源。多金屬結核是富含金屬的岩石,其主要成分包括鈷、錳和鎳等金屬。這些結核廣泛分佈於全球深海區域,尤其是太平洋海域,儲量高達數兆噸。這些金屬對綠色能源技術,如電池生產,具有極高的價值,吸引了全球各國的關注。

-----廣告,請繼續往下閱讀-----

然而,這些結核不僅是地球資源的寶藏,它們還隱藏著另一個重要的發現。2013 年,科學家安德魯·斯威特曼(Andrew Sweetman)在太平洋克拉里昂-克里珀頓區域進行深海研究時,意外地發現,在封閉的深海水域中,氧氣濃度竟然有所增加。這一現象引發了科學界的極大關注。

科學家探索深海的多金屬結核時,意外發現「暗氧」的存在。 圖/envato

暗氧的生成機制

斯威特曼的研究團隊推測,深海中的多金屬結核可能在某些化學條件下,充當了天然電池。這些結核通過電化學反應將水分解為氧氣和氫氣,從而在無光的環境中產生了氧氣。為了驗證這一假設,團隊在實驗室中模擬了深海環境,並確實觀察到氧氣從結核生成的現象。

不過,這一過程並非如想像中簡單。根據實驗數據,某些海底結核表面的電壓僅為 0.95 伏特,卻能夠生成氧氣,這與理論上需要的 1.6 伏特電壓不符。研究團隊進一步推測,這可能與結核的成分有關,例如含鎳的錳氧化物可能起到了催化作用,降低了反應所需的能量。此外,結核表面的不規則排列及空隙可能也促進了電子轉移和水的分解。

暗氧的發現挑戰了我們對氧氣生成的傳統理解。過去我們認為,地球上的氧氣主要來自於光合作用,但這一現象表明,甚至在無光的深海環境中,氧氣也能通過無機物的電化學反應生成。這意味著,我們對於地球早期氧氣循環及生命演化的認識可能存在重大疏漏。

-----廣告,請繼續往下閱讀-----

尤其值得注意的是,多金屬結核的形成需要氧氣,而這些結核大量出現在深海中,是否表明早期地球上就已經存在非光合作用的氧氣生成機制?如果是這樣,暗氧是否可能推動了地球上生命的起源?這一問題仍然未有定論,但暗氧的發現無疑為生命起源的研究開闢了一條新的途徑。

未來的挑戰:開採深海資源還是守護地球最後的「淨土」?

除了科學研究的價值,多金屬結核也吸引了全球對於深海資源開採的興趣。這些結核富含稀有金屬,特別是對電池生產至關重要的鎳和鈷。然而,大規模的深海開採可能會對海洋生態系統造成嚴重破壞。

對於發現的深海資源,是要開採?還是選擇守護海洋生態? 圖/envato

首先,深海採礦可能導致噪音和光污染,破壞深海生物的棲息地。此外,採礦過程中產生的懸浮物可能對海洋生物,尤其是水母等生物造成生理負擔。研究顯示,水母在模擬的採礦環境中會因應對懸浮物而消耗大量能量,這可能削弱其免疫系統並降低生存率。

因此,雖然深海資源的開採看似能解決當前的能源危機,但國際間對此議題的爭議仍然持續。全球已有32個國家支持暫停或禁止深海採礦,呼籲進行更多的生態影響研究以確保環境保護。

-----廣告,請繼續往下閱讀-----

暗氧的發現,不僅為科學研究帶來新的挑戰,也為深海資源的開採提出了更高的要求。在能源危機與生態保護之間,我們需要尋找平衡點。未來的技術或許能夠在不破壞環境的情況下,模擬自然過程生成多金屬結核,從而實現可持續的資源開採。

此外,暗氧現象的發現也為探索外星生命提供了新的思路。當我們在其他行星上發現氧氣時,不一定意味著那裡存在光合作用生物,可能是類似多金屬結核的無機反應在默默進行。這一發現或許將改變我們對地外生命的定義與尋找方式。

深海的秘密仍在不斷被揭開。從暗氧的發現到多金屬結核的開採,這片未開發的疆域將在未來的科學探索與資源爭奪中扮演至關重要的角色。無論是能源危機的解決還是生態系統的保護,我們都應以謹慎且負責任的態度面對這一未知的領域,避免打開潘朵拉之盒。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
氰化物的黑暗面:從間諜小說到戰爭罪行的恐怖故事——《毒藥的滋味》
PanSci_96
・2024/09/08 ・3314字 ・閱讀時間約 6 分鐘

最出名的毒藥

氰化物(Cyanide)是最惡名昭彰的毒藥之一,以其殺人於瞬間的特色享譽各大間諜小說和謀殺謎團。推理女王克莉絲蒂非常清楚氰化物的效果,用這種毒藥殺死了十八個角色,甚至還將她七十五部小說的其中之一直接命名為《閃閃發光的氰化物》(Sparkling Cyanide,台版譯名為《魂縈舊恨》)。偵探小說家瑞蒙.錢德勒(Raymond Chandler)在他最著名的《大眠》(The Big Sleep)一書中用加了氰化物的威士忌賜死一名線人。

內佛.舒特(Nevil Shute)的小說《世界就是這樣結束的》(On the Beach)描述毀滅性的核戰後的澳洲生活,而在故事中,澳洲政府分發了氰化物膠囊給民眾,讓他們可以快速輕鬆地自殺,不需面對逼近澳洲的放射性落塵雲帶來的緩慢、痛苦的死亡。

同樣的,間諜小說中的秘密情報員經常也會拿到氰化物讓他們在被抓時使用。甚至連伊恩.弗萊明(Ian Fleming)筆下的○○七情報員龐德以及其他情報員也都有氰化物膠囊;不過不出所料,龐德會把它扔掉。

在現實生活中使用氰化物進行謀殺或自殺的案件同樣令人著迷和驚駭。氰化物是史上一些最惡劣的犯罪行為中使用的兇器。第二次世界大戰期間,氰化氫製作的毒氣是所謂的「最終解決方案」的一部分,在奧斯威辛(Auschwitz-Birkenau)和馬伊達內克(Majdanek)的死亡集中營毒殺了數千名囚犯。

-----廣告,請繼續往下閱讀-----

當德國戰敗的跡象越來越明顯時,含有氰化鉀的玻璃膠囊是納粹高層首選的自殺方法,包括可怕的納粹黨衛軍(Schutzstaffel,SS)領袖海因里希.希姆萊(Heinrich Himmler)和德國空軍最高將領赫爾曼.戈林(Hermann Göring)都人手一顆。在目睹妻子伊娃.布勞恩(Eva Braun)用氰化物自殺後,希特勒也吞下氰化物並開槍自殺,終結了他第三帝國的夢想。

較近期的例子出現在一九七○年代初的舊金山。魅力十足的邪教領袖吉姆.瓊斯 (Jim Jones)吸收了大量追隨者,在加州的紅木谷(Redwood Valley)建立聖殿,開始宣揚自己是甘地、耶穌、佛陀和列寧轉世。

氰化物以其迅速致命的特性在文學中廣為人知,克莉絲蒂和錢德勒都曾使用它。圖/envato

到了一九七○年代中期,瓊斯已經說服了數百人,其中許多人還攜家帶眷,一起和他搬到南美洲蓋亞那當地與他同名的瓊斯鎮,加入「人民聖殿」(People’s Temple)這個新烏托邦。一九七八年,關於瓊斯鎮聖殿侵犯人權和採取嚴刑峻罰的憂心言論開始浮上檯面。同年十一月,國會議員里歐.萊恩(Leo Ryan)與其他美國官員和記者一起前往蓋亞那調查這些指控。

瓊斯起初對前來這座聚落的代表團表達歡迎之意,還在瓊斯鎮的中央涼亭為他們舉辦歡迎會,但接著萊恩突然遭到一名持刀的聖殿士兵襲擊,身上多處受傷。負傷的他依舊成功與代表團其他成員一起逃到瓊斯鎮附近的一座小機場,眾人分別登上兩架飛機。

-----廣告,請繼續往下閱讀-----

然而,他們才登機幾秒,槍手便迅速趕到,殺死了萊恩和其他四人。當天稍晚,瓊斯召集了瓊斯鎮的九百一十三位居民,其中包括三○四名兒童,命令他們進行他所謂的「革命行動」。所有人都拿到了一杯加了氰化物的葡萄口味酷愛(Kool-Aid,沖泡式飲料粉末),父母把飲料拿給孩子們喝,護理師用注射器將致命的混合物滴入嬰兒的嘴裡。最後共有九○九人死亡,其中三分之一是兒童。時至今日,「喝酷愛」這句話依然常在美國被用來形容「個人或團體對某種思想或個人表現出絕對服從或忠誠」。

飲食中的氰化物

儘管氰化物有明顯的致命特性,但含有氰化物的食物種類多得驚人,包括杏仁、皇帝豆、大豆、菠菜和竹筍。桃子、櫻桃、蘋果和苦杏仁等李屬植物(Prunus)的種子或果核都含有氰化物。食用少量氰化物不會對健康造成風險;事實上,我們大多數人都偶爾會吞下蘋果種子,但沒有任何不良影響。這是因為人體有一種處理飲食中少量氰化物的機制。人體內幾乎每個細胞都含有羅丹酶(Rhodanese)這種酵素,能將氰化物轉化為硫氰酸鹽來迅速解毒。

硫氰酸鹽是一種無害的化學物質,可以安全地被腎臟過濾並釋放到尿液中。人體每二十四小時可以處理約一克的氰化物。只有當身體無法負荷突然間湧入的大量氰化物時——特別是以殺人為目的——才會出現問題。

大多數兇手會用結晶的氫化鈉或氰化鉀下毒。雖然兩者都很易溶於液體,但氰化鉀的溶解度是氰化鈉的十倍。即便如此,只要在一杯咖啡或一杯葡萄酒中少量溶解兩者之一都足以致命;所需的份量極少,就代表它不會產生讓受害者有所警覺的氣味或味道。結晶氰化物進入人體後會與胃酸接觸,氰化鈉或氰化鉀會轉變成氫氰酸,造成嚴重的化學灼傷。

-----廣告,請繼續往下閱讀-----

當受害者胃部出現腐蝕性灼傷,但食道沒有灼傷,就代表受害者並非喝下任何腐蝕性物質,死因是在胃中產生的——這是氰化物中毒的關鍵指標。固體或溶解的氰化物晶體遇到胃酸後也會形成氣體氰化氫,接著被吸收進入血液,輸送到全身。本質上而言,受害者最終是同時被固體、液體和氣體氰化物殺死的。

結晶氰化物與胃酸接觸後,氰化鈉或氰化鉀會轉變成氫氰酸,造成受害者胃部出現化學灼傷。圖/envato

氰化物的致死原理

無論遭謀殺的受害者是吸入氰化物氣體還是吞下溶解在飲料中的氰化鈉或氰化鉀,氰化物的致死方式都完全相同。一旦進入體內,氰化物就會黏附在紅血球中的血紅素(hemoglobin)上,跟著血液迅速散播到全身。然而氰化物與血紅素的結合度很差,引起破壞的方式也不是透過影響血液,而是脫離血紅素進入人體細胞,破壞細胞製造生存所需能量的能力。

粒線體(mitochondria)位於我們每個細胞的深處,具有小型的棒狀結構,是身體裡的迷你發電廠,會產生化學能量三磷酸腺苷(adenosine triphosphate,ATP),這是維持人類活著的能量。每個細胞通常有一百到兩百個粒線體,具體數量取決於細胞需要多少能量。舉例來說,肝臟細胞需要相當大量的能量,因此每個肝臟細胞會有超過兩千個粒線體;而紅血球大致上只是裝著血紅素的袋子,能量需求非常低,所以沒有任何粒線體。然而儘管 ATP 是為身體各方面的功能提供能量的重要角色,但身體能夠儲存起來的 ATP 相當有限。

本質上而言,粒線體執行的功能與樹木的葉子恰恰相反。植物的葉子會利用陽光中的能量,將水和二氧化碳結合在一起來產生葡萄糖;動物細胞中的粒線體則會與我們吸入的氧氣作用,分解食物中的葡萄糖,產生二氧化碳和水並釋放 ATP 形式的能量。基本上,人類和所有動物都是透過這種迂迴的方式利用來自太陽的能量。3

-----廣告,請繼續往下閱讀-----

埋在粒線體膜內襯當中的是一連串的蛋白質,它們構成所謂的電子傳遞鏈(electron transport chain)。我們呼吸的氧氣正是在這裡被確實用於製造 ATP。傳遞鏈中有一個蛋白質成分稱為「細胞色素 C」(cytochrome C),鐵原子靜靜位於細胞色素 C 的核心,是它發揮功能的關鍵。

氰化物的致死性在於它能夠與細胞色素 C 中心的鐵原子緊密結合,使整個蛋白質死亡。一旦失去活性,細胞色素 C 就不能在傳遞鏈的最後一步利用氧氣,導致 ATP 的整個生產過程中斷。

因為細胞運作強烈依賴 ATP 的持續供應,所以人體一旦發生氰化物中毒,中樞神經系統和心臟的細胞都會立即受到影響。當中樞神經系統關閉,受害者會開始感到頭痛和噁心,然後失去知覺,慢慢進入深度昏迷;接著大腦會進一步失去 ATP 能量供應,直到最終耗盡所有 ATP,不可避免地造成腦死;隨著心臟中的 ATP 逐漸減少,心跳會減慢並變得不穩定,脈搏也會微弱到無法察覺,最終使心臟完全停止跳動。

儘管名字聽起來很相似,但發紺(cyanosis,也稱「紫紺」)症狀與氰化物中毒無關。發紺指的是與減氧血相關的藍色,也是靜脈血液呈藍色的原因。相反的,由於與氰化物結合的細胞色素 C 不能再使用氧氣,血液中的血紅素反而會一直保持充氧狀態,4 因此氰化物中毒的症狀之一就是皮膚因為鮮紅色的充氧血而顯得紅潤。

-----廣告,請繼續往下閱讀-----

——本文摘自《毒藥的滋味:11種致命分子與使用它們的凶手》,2024 年 7 月,方舟文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。