0

0
0

文字

分享

0
0
0

「罷免」與「選舉」的投票行為可以混為一談嗎?

林澤民_96
・2017/12/26 ・3284字 ・閱讀時間約 6 分鐘 ・SR值 566 ・九年級

source:Heiandad @Wikimedia,創用CC 姓名標示-相同方式分享 4.0

編按:「2017年12月16日,立法委員黃國昌罷免案投票,總投票人數為70,924人,同意票為48,693票,不同意票為21,748票,無效票為483票,投票率為27.75%。由於未達法定投票門檻,罷免案依法遭否決,且不可再於黃國昌剩餘任期內行使罷免權。」後續有很多媒體討論到之所以會有這樣的結果,是因為「負性偏差」的關係,也多從當屆立委投票結果與這次罷免案的投票結果做比較;但這樣真的適當嗎?

因為「罷免」與「選舉」的不對稱性,要用原來選舉時的得票數來衡量罷免投票的結果,或用罷免投票的結果來預測下次選舉投票的結果,都是不科學的。

黃國昌罷免投票的結果有48,693票同意罷免,21,748票不同意罷免。

媒體上對這樣的結果有種種評論,其中很多立論的主要根據是「反對」效應比「支持」效應要來的強烈。這個心理學上所謂「負性偏差」(negativity bias,編按:也稱負面偏誤、消極偏見。) 的理論雖然沒有錯,但用來分析罷免投票的結果卻未見深入,甚至有些似是而非。

以下我用選舉行為理論中所謂的「負面投票」(negative voting) 來分析罷免投票與選舉投票的不同。我的分析並不需要仰賴「反對」行為與「支持」行為的不對稱性;它所仰賴的,主要是「罷免」與「選舉」的不對稱性

負面投票是關鍵!

所謂「負面投票」,意指選民投票給候選人A的主要原因並不是因為支持A,而是因為反對候選人B。相對而言「正面投票」意指選民投票給候選人A的主要原因就是因為支持A。選舉中,候選人獲得的選票一般都會有「正面投票」和「負面投票」的成分,其分配會因每次選舉候選人的特質而異,但都可以用民調加以測量。

-----廣告,請繼續往下閱讀-----

負面投票的傾向在2016年的美國總統選舉特別顯著。Pew Research Center 研究2016年大選選舉行為的民調有這樣的一個問題:

你說你的抉擇主要是用選票來支持______還是反對______?

民調結果顯示:投票給川普的選民中有 53%說他們主要是用選票來反對柯林頓,另有 44%說他們用選票來支持川普。另一方面,投票給柯林頓的選民有 46%說他們主要是用選票來反對川普,而有 53%說他們用選票來支持柯林頓。Pew Research Center 的研究顯示,2016年大選的負面投票較 2008年要強烈許多,但即使在2008年,負面投票傾向也相當顯著。[1]

美國在2016年大選的正、負面投票結果。圖/作者製作。

罷免與選舉的不對稱性

時任「時代力量」立委參選人黃國昌等人於2015/11/4 赴凱道抗議。source:Wikimedia,創用CC 姓名標示-相同方式分享 4.0

罷免與選舉最大的不同是:選舉通常有兩個或兩個以上的候選人,因此候選人所得的選票可以包括正面投票和負面投票兩種效應;而罷免則只有單一的「被罷免人」,選民只能對罷免被罷免人一案表示同意或不同意,而不涉及其他人。因為如此,被罷免人原來選舉時所得選票只有正面投票部分可能繼續支持他而不同意罷免;而原來選舉對手所得選票,不論是正面投票或負面投票,都可能在罷免投票中出面同意罷免。

這裡用2016年美國大選中正面投票和負面投票的數據來討論罷免和選舉的不同之處。美國憲法規定國會可以彈劾總統,但選民對總統並無罷免權,所以以下的討論純粹是假想性的。

-----廣告,請繼續往下閱讀-----

如何估算罷免投票的基本盤?

假設今天罷免川普成案,我們可以用 2016年的數據來估計罷免投票的基本盤。2016年大選結果川普獲大約有效票數 46%的選票,柯林頓獲約 48%。在川普的46%中,只有約 20%(=46%x44%)是 真心支持川普的選民,卻有約 24%(=46%x53%) 只是因反對柯林頓而支持他。我們可以估計在罷免川普的投票中,原來投票給川普的選民,大約只有有效票數 20%的選民會出面不同意罷免。

為什麼選舉投票時負面投票給川普的選民不會出面不同意罷免?這是因為當時反對的對象——柯林頓——在罷免投票中已經不是「候選人」了,在罷免票只列川普一人的情況下,負面投票的川普選民不會有太強烈的動機出面不同意罷免。

唐納·川普在各界多數未看好的情況下於2016年大選當選第45任美國總統。圖/wikipedia

反觀2016年支持柯林頓的選票,其中真心支持克林頓的選票佔有效票數約 25%(=48%x53%),只是因為反對川普而投票給克林頓的佔有效票數約 22%(=48%x46%)。這兩種類型的選票加總共佔有效票數約 47%,這些選民都極有可能在罷免川普的投票中出面投同意票。與川普的負面投票選民不同,柯林頓的負面投票選民,正因為當初是因爲反對川普而投票給柯林頓,如今出面同意罷免川普的動機只有更強烈。

根據以上的推論,如果美國選民可以投票罷免川普的話,罷免投票的基本盤大約是 47%同意罷免, 22%不同意罷免。當然,因為罷免投票的投票率不會太高,而且還有動員因素,最後的投票分配難以預測,但基本盤可以提供我們一個初步的估計。除非被罷免人當選後惡跡昭彰,連原來的支持者都同意罷免,否則在充分動員的情況下,罷免結果應該接近基本盤。

-----廣告,請繼續往下閱讀-----

有趣的是, 47/22=2.14 很接近於黃國昌罷免投票結果的  48,693/21,748=2.24。這是巧合嗎?當然也許是,但是在原來選舉中得票只佔有效票大約50%的被罷選人,如果當選時所得選票中有 50%的負面選票,則上面的分析會得到約 50/25=2的罷免投票同意/不同意比值,這與上面兩個數字相差不大。在被罷免人原來選民中負面選民不參與罷免投票的假設下,基本盤裡頭同意罷免與不同意罷免的票數比與負面選票百分比的關係,可以用下圖表示:

在當選時得票為50%的假設下,當負面選票的百分比等於50%時,基本盤比值等於2。當負面選票的百分比大於50%,基本盤比值會大於2,而且會隨著負面選票百分比的增加而急速增加;反之,則小於2。當負面選票的百分比為0,也就是被罷免人當選時所得到的選票全為正面選票時,基本盤剛好是同意票數與不同意票數相等的平盤。

所以到底是「負性偏差」還是「負面投票」?

從本文的分析可以看出:一般所謂罷免投票中「反對」效應比「支持」效應強烈的說法是似是而非的。心理學上所謂「負性偏差」指的是當刺激的強度相同時,個人對負面刺激的反應要比對正面刺激的反應來得強烈。

這雖然不見得不能用來分析個別選民在選舉或罷免投票中的抉擇,但它基本上只適用於個人層次的決策分析,而本文指出選舉投票中有「負面投票」和「正面投票」兩種不同的選民,並由此切入分析罷免投票和選舉投票差異之處,作的卻是集體層次的分析。

簡言之,如果被罷免人當選時的選票有相當比例的負面投票時,因為罷免投票並不涉及競選當時的對手,原來支持被罷免人的陣營會鬆動,而相對之下,原來反對被罷免人的陣營則不會,這是集體層次的分析而不是個人層次的分析。

-----廣告,請繼續往下閱讀-----
圖/ParentRap@pixabay

心理學中「負面效應」的理論可以用來比較同一個個人對同樣強度的負面刺激和正面刺激的不同反應,卻不見得可以比較一個持反對立場的個人和另一個持贊成立場的個人的反應強度;真的要作這樣的分析,至少必須先確立前者所受的負面刺激和後者所受的正面刺激具有相同的強度,而這是很不容易做到的。

本文想傳達的訊息是:因為「罷免」與「選舉」的不對稱性,要單純用原來選舉時的得票數來衡量罷免投票的結果,或用罷免投票的結果來預測下次選舉投票的結果,其實都是不科學的。

參考資料:

本文原刊載於作者部落格,原文為《黃國昌罷免投票結果:是「負性偏差」還是「負面投票」?》經編修後刊登。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
林澤民_96
37 篇文章 ・ 244 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

林澤民_96
37 篇文章 ・ 244 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

3
1

文字

分享

0
3
1
選舉的秘密:票多的贏,票少的輸!候選人該怎麼增加支持者?造勢、掃街有用嗎?
PanSci_96
・2024/01/10 ・4267字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

嘿,他們正在操控你的選票!

選舉不只是投票,更是一場宣傳技術大展。策略專家運用心理學,了解選民的需求和期望。造勢、辯論、掃街、情勒,萬式齊發。但這些招數真的有效嗎?一場造勢的成本,動輒百萬、千萬,如果只有死忠的會參加,不是把錢灑進水溝嗎?某些經典甚至老套的選舉策略,為何顛撲不破?請務必看到最後,因為看破所有招數背後原理的你,將左右這一場選舉!

造勢概念是怎麼來的?真的有效嗎?

造勢真的有助於選情嗎?

當然有,第一,造勢能鞏固鐵粉,拉進新支持者。造勢活動為粉絲們提供了一個聚集的場所,甚至,有些搖擺不定的選民可能也受到造勢現場的激情感染而入陣。

第二,造勢能影響媒體報導。當候選人舉辦造勢活動時,媒體通常會進行報導,甚至透過塑造「媒體框架」來帶風向,在增加曝光度的同時,塑造候選人的特定形象。關於框架塑造的詳細攻略,歡迎回去我們的這一集複習。

-----廣告,請繼續往下閱讀-----

不過,看在旁人眼中,造勢看起來不過是把大家集合在一起,講講話罷了。但代誌絕對不是你所想的那麼簡單,這一切其實都是競選團隊安排好的心理圈套?

難道造勢是一個大型洗腦現場嗎?

當你在造勢場合中望著台上的候選人,他的一言一行彷彿散發出領導人魅力。看著看著,你可能也忘了他的政見是什麼,但不知道為什麼,就覺得他一定是一位好的領導者,能帶領我們走向未來。這稱作月暈效應,指的是人們看見他人的一個正面特質,卻延伸成對整個人全面的好印象,當然相反的負面印象也適用。這就像天空中只有月亮,但月亮周圍的夜空也被照亮,產生一圈光環,因此稱為月暈效應。

每個候選人肯定都有其優點與缺點,至少有些本事才能站上政治舞台。但無法否認的,造勢場合上不論是越大越好的舞台與造勢場所,還是將主角放在壓軸登場的特殊橋段,甚至搭配高亢激昂的音樂,營造出該總統候選人是天選之人的印象,都是要利用月暈效應讓我們越來越暈,提升對眼前候選人的好印象。

圖/giphy

要不以偏蓋全有多難?

1977 年,社會心理學家理查德.尼斯貝特做了一個實驗。它將 118 名學生分成兩組,觀看同一個帶有口音的老師的上課錄影。雖然兩組學生看到的是同一個老師,但他們看到的片段,一個是充滿熱情、鼓勵學生回答問題的樣子;另一個是對學生提問顯得冷漠的樣子。

-----廣告,請繼續往下閱讀-----

在看完影片後,尼斯貝特請學生評價對這個老師的外表、舉止、口音三者的喜好程度,結果三項的評分結果,冷漠組都低於熱情組。沒想到吧,行為表現也會影響到別人對你的外表評價哦。

這就是月暈效應。最重要的是,當尼斯貝特問到,你認為你對老師的個人喜好,是否影響了你對他其他特質的客觀評估時,不論哪一組的受試者,外表、舉止、口音三個都是以勾選「無影響」居多(圖表中中間最高的都是"NO EFFECT")。顯然,大多數人都很難察覺自己正被片面印象,影響著對人的整體評價。

選舉造勢除了展現候選人的個人魅力,還能利用群眾的力量,拉進更多的支持者。

1848 年美國總統選舉期間,總統候選人扎卡里.泰勒利用樂隊花車來吸引民眾參與他的選舉集會,人們會喊著"Jump on the bandwagon",意思就是跳上遊行中樂隊馬車,吸引更多人一起加入同樂。這句英文後來也衍伸出跟風、趕流行的意思。

泰勒之後成功贏下選舉,成為美國第 12 任總統。雖然這與他在美墨戰爭的經歷有關,但這種透過群眾帶動更多人的「從眾效應」,在此之後也被稱為「樂隊花車效應」。造勢或大型活動不僅能展現自己的支持者的數量,還能吸引那些沒有明確政治立場的選民,讓他們跟隨多數人的意見。

-----廣告,請繼續往下閱讀-----

我們真的那麼容易被影響嗎?

1956 年,心理學家所羅門.阿希(Solomon Asch)進行了一個經典的從眾實驗,實驗設計本身很簡單,就只是詢問受試者右邊卡片的三條直線哪條和左邊的直線長度一樣。很明顯地,直線 C 就是正確答案。有趣的是,如果有受試者是和研究者請來的 6 位暗樁一起做實驗,並聽到他們都回答直線 A 才是和左邊的直線長度一樣,結果竟然發現超過百分之 75 的受試者都曾出現跟著錯誤回答的情況,說明人們會被無形的社會壓力影響而做出決定。

阿希從眾實驗。圖/wikimedia

今年的搞笑諾貝爾獎,也正是頒給另一個 1969 年的經典從眾實驗。實驗發現,只要路上有一人抬頭,就會有 40% 的人會跟著模仿。當眼前有 5 個人一起抬頭,高達 80% 的人都會一起抬頭。

好的,你知道透過造勢和從眾心理,可以製造更多的支持者了,接下來,要怎麼確保這些支持者會出門投票,把這些人的票都催出來呢?

把票催起來!

拜票會提升投票率嗎?

記得,一定要出門投票!就算你再怎麼支持特定候選人,要是支持者不出門投票,他就永遠選不上。雖然拜票形式五花八門,但最終目的都是希望民眾能真的走出門,把自己手中的一票投給他,也就是動員投票,Get-out-the-vote (GOTV)。但這真的有效嗎?美國政治科學家哈洛德·戈斯內爾作為先驅,在 1927 年就使用統計分析來研究拜票是否能有效增加投票率,還出版了《投票:刺激投票的實驗》這本書。在其中一項實驗,他將提醒小卡寄到民眾的信箱提醒民眾投票,並在選舉後統計了有收到與沒收到提醒小卡的投票率。最後發現,有收到小卡的投票率從 47% 提升到了 57%,顯示拜票還真的能催出更高的投票率。所以呢,我們也會不斷提醒大家訂閱泛科學,想必一定會有好效果的,你說對吧?

-----廣告,請繼續往下閱讀-----
實驗發現受到提醒的民眾有更高的投票率。圖/giphy

勤跑基層、努力掃街有助於選情嗎?

為什麼候選人總是要走進街頭,一個一個地跟人握手呢?大家可能都有這個經驗,在學校時,是不是更容易和坐在旁邊的同學們更容易變成朋友?這種拉近物理距離,也會拉近心理距離的現象稱作「鄰近原則」(Proximity principle),彼此靠近的人們更容易建立人際關係,經常見面的人的關係也往往會更牢固。另外,根據心理學的解釋級別理論,我們對於對象的心理距離,會隨時間距離、空間距離、社會距離和假定距離而改變。距離的遠近,會影響我們是用抽象還是具體的解釋方式,也就是所謂的解釋水平。由於我們物理距離上相當靠近候選人,更可能讓我們覺得政治離我們很近,需要投入實際行動如投票來參與。

掃街時握手握得越多,握得越有感情,得票率可能越高嗎?

這看似簡單的一個肢體接觸,卻能影響著我們的大腦,增強彼此的社會連結,增加有利的互動。透過功能性核磁共振照影(fMRI),發現握手增加的親近友善行為與杏仁核(Amygdala)、顳上溝(Superior temporal sulcus)以及依核 (Nucleus Accumbens)活性上升有關。 此外,也有研究顯示溫和接觸會讓俗稱愛情賀爾蒙的催產素(Oxytocin)分泌上升。 催產素是哺乳動物大腦分泌的一種激素,能增強信任感並與他人產生社會連結。也就是說,握手也是有訣竅的,不是一股腦兒握好握滿就好。這裡我們就不特別介紹,如果想要我們介紹握手攻略,留言告訴我們吧!

握手有助於增強彼此的社會連結。圖/envato

呼,講到這邊就懂了吧。雖然你不會馬上變成選舉大師,但至少知道,這些選舉策略為什麼總是萬年不變。原來拉票、催票手段背後都經過許多理論支持跟實證驗證。

當然,心理學理論畢竟是理論,不是問題的所有解答。而且呈現的多是群體現象或趨勢,個體間還是存在差異。做為具有選舉權的公民,要投給誰,能不能客觀看待政見而不受到這些戰術的影響,還是只能問問自己。

-----廣告,請繼續往下閱讀-----

最後想問問大家,這次的選舉你會想投給誰?啊不是,是想問:你覺得哪種選舉宣傳作法到目前為止,最能影響你的投票傾向呢?

  1. 集結誓師造勢大會,參加過一次,我的心就只剩下這位候選人了
  2. 陸戰掃街拜票,看到候選人真的出現在面前,親和力大增
  3. 空戰媒體行銷,包括 YT,畢竟政治人物的形象幾乎都被媒體框住了,等等,我是在選 YouTuber 還是總統啊?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。