0

1
0

文字

分享

0
1
0

奠基黑體輻射研究:威廉.維因誕辰|科學史上的今天:1/13

張瑞棋_96
・2015/01/13 ・1071字 ・閱讀時間約 2 分鐘 ・SR值 583 ・九年級

1900年,著名的物理學家開爾文男爵 (1st Baron Kelvin) 在世紀之初發表演說,充滿樂觀的認為物理大廈已建成,只剩一些修飾性的工作,除了兩朵小小的烏雲,一是邁克生與莫利的光速實驗,一是黑體輻射的理論與實際不符。

威廉.維因。圖/wikimedia

開爾文沒料到這兩朵烏雲很快就會發展成為吹垮大廈的暴風雨,前者是相對論,後者則是量子力學。德國物理學家威廉·維因 (Wilhelm Carl Werner Otto Fritz Franz Wien) 正是在黑體輻射的問題中扮演關鍵角色的人。

黑體是克希荷夫 (Kirchhoff) 在研究物體本身輻射出能量與吸收外來能量的比例關係時,所假想的理想物體。所謂黑體就是只能吸收一切外來的輻射能的物體;因為所有頻率的光都被它吸收,不會反射回去,看起來就是純然的黑色,所以稱為黑體。

另一方面,十九世紀後期的物理學家已經知道熱輻射是一種電磁波,有不同的波長。他們想研究物體溫度與熱輻射的波長分布之間的關係,但物體除了自身的熱輻射,也會反射外來的輻射,難以釐清。而黑體完全不會反射外界的輻射能,完全只有本身輻射出來的能量,因此就可以很單純地用來研究;就像我們在計算重力時,會假設物體是一個質點。

維因於1896年從熱力學的角度推導出「維因公式」,首度賦予黑體輻射一個明確的關係式。但怎麼知道這個公式對不對呢?畢竟現實世界中又不存在理想中的黑體,供我們測量其輻射能量來加以驗證。沒關係,維因和同事盧默 (Otto Lummer) 想出一個可以模擬黑體的巧妙方法。

他們建議做一個密閉的空腔,僅留一個極小的孔洞。如此一來,即使有外界的光恰巧射入小孔,也會被「鎖」在腔內不斷反彈,幾乎沒機會再從小孔逃出,就相當於不會反射任何外來輻射的黑體。將空腔加熱至一定溫度後,小孔發出的光就是空腔內壁本身的熱輻射,分析其光譜就可以得到相當於此一溫度的黑體輻射。

雖然維因第二年就轉而研究陰極射線,但盧默仍繼續與其他科學家著手空腔實驗。經過三年的實驗,他們測得的資料顯示黑體輻射中只有高頻區段的數據與維因公式吻合,低頻則有不小差距(另一個瑞利─金斯公式則恰好相反,只適用於低頻)。雖然維因的公式並不完全正確,但他相當於完成部分先導的工作,才有普朗克引進量子的概念,徹底解決這問題,並開啟了量子力學的研究。所以維因還是因此而獲得1911年的諾貝爾物理獎。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

 

 

文章難易度
張瑞棋_96
423 篇文章 ・ 663 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
160 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

10
3

文字

分享

1
10
3
探討量子力學,該是「發明」還是「發現」?
賴昭正_96
・2022/12/14 ・4432字 ・閱讀時間約 9 分鐘

  • 文/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

西方科學的發展基於兩大成就:希臘哲學家發明了形式邏輯系統(歐幾里得幾何),以及發現了通過系統實驗找出因果關係的可能性(文藝復興時期)。 在我看來,中國的先賢們沒有邁出這一步,也就不足為奇;令人驚訝的是這些發現出現了!——愛因斯坦,1921 年諾貝爾物理獎

在「思考別人沒有想到的東西—誰發現量子力學?」一文之意見裡,有些讀者認為應該用「發明」,而不是「發現」:

  • 量子力學該是發明而非發現的。量子現象是物理學家發現的,因此發明了一套理論來解釋——管用但非常不直覺。
  • 科學被認為一種發現,然而「詮釋」與「解釋」則似乎更像是一種「創造」或「發明」。
  • 所說「發明了一套理論來解釋」不夠清楚。應該說發明了一條方程式——薛丁格的波方程式。之後推演出一整套原子軌域只是數學上的發現必然如此,而且經實驗驗證,大自然確實如此運作。
  • 在概念上個人是以德布洛伊所「發明」的物質波為一個界線…… 對於本文所探討的誰發現量子力學?可以存在著另一個見解為薛丁格「發現」且「找到」或「猜測」出了量子波動方程;波爾、海森堡、波恩等人「發明」了量子力學。

筆者不甚苟同,因此想在這裡拋磚引玉,談一談筆者的看法。

在中文或英文裡,發現(discovery)與發明(invention)均顯然有非常不同的意義。

我們說哥倫布發現新大陸;因為新大陸早就存在自然界,所以我們不會說哥倫布發明新大陸。造紙術、指南針、火藥、及印刷術並不存在於自然界中,所以我們說這是中國古代的四大發明,而不是四大發現。從這裡我們可以看出在日常用語中,發現與發明的分別主要在於該「東西」是不是已經存在於自然界中。

月亮總是存在的,所以只能被發現,而非被發明。圖/Pexels

「存在」的物理意義

可是什麼是「存在」於自然界中的呢?相信大部分的人都持與馬赫(Enerst Mach, 1838-1916,奧地利物理學家、哲學家)一樣的看法:只五官的感覺是真實的、是「存在」的。馬赫的一句名言是:「我不相信原子的存在!」

因此儘管道爾頓(John Dalton)在 19 世紀初就提出原子論,19 世紀中期後化學家成功地將它應用於解釋化合物的組成及化學反應現象,但大部分的物理學家到 20 世紀初還是不相信原子的存在!

1905 年,當愛因斯坦還是瑞士專利局的一位小職員時,發表一篇論文謂液體中看不到的原子會轟擊懸浮粒子,導致可以在顯微鏡下直接觀察到布朗運動(Brownian Motion)。1908 年 5 月,愛因斯坦發表了第二篇關於布朗運動的論文,提供了細節,及可透過實驗檢驗他的理論的方法。

同年,法國物理學家佩蘭(Jean Perrin)進行了一系列實驗後,寫道:「(我的結果)毫無疑問嚴格且準確地證實了愛因斯坦的(預測)公式」。佩蘭的實驗不但說服了許多物理學家相信原子的存在,他也因之獲得了 1926 年諾貝爾物理獎。

法國物理學家,尚.巴蒂斯特.佩蘭(法語:Jean Baptiste Perrin) 圖/wikimedia

可是有人「看」過原子嗎?1955 年,美國賓夕法尼亞州立大學的穆勒(Erwin Muller)和巴哈杜爾(Kanwar Bahadur)終於透過場離子顯微鏡(field ion microscope)在尖銳的鎢樣品尖端觀察到單個鎢原子,可是這並不是肉眼直接看到的,而是透過理論「解釋」所觀察到的。像前面提到之一些讀者的意見一樣,馬赫認為科學理論是用來描述與歸納觀感,它存在於感觀之外,與現實無關;但大部分的物理學家都認為這是哲學的問題,他們是「看到」了原子!物理理論是存在於宇宙中的,等待我們去發現。

在「微中子的故事」一文裡,筆者提到了 1930 年包立(Wolfgan Pauli)為了解救能量不滅定律免於破壞,在「非常絕望下」下提出了一個後來被稱為「微中子」(neutrino)的觀念。當時「微中子」根本不存在宇宙中,我們不知道包立是否認為這是一種發明;但1995年諾貝爾物理獎發給「……通過實驗證明……微中子的存在」之物理學家來內士(Frederick Reines)。

老實說,筆者想破大腦都不知道這一個在基本粒子標準模型裡不帶電、沒有質量、不是電磁波、沒有人直接觀感過、只有能量的「東西」會是什麼「東西」?更令筆者難以相信及理解的是:它竟然還有兩位兄弟姐妹!

發現」還是「發明」?

我們現在就用上面那些觀點來探討,到底牛頓是發現還是發明萬有引力?萬有引力是抽象的、不是「東西」,牛頓當然不可能用眼睛發現;牛頓發現的只是蘋果往地上掉及宇宙中星球之有規律的運動(現象),從中推論出萬有引力(解釋)。因此對牛頓而言,他或許認為萬有引力不存在於自然界中,是他的創造出來的,所以要說是一種發明,好像也沒什麼反對的理由。

牛頓到底是發現還是發明萬有引力?圖/Envato Elements

可是萬有引力真的不存在於宇宙中嗎?1798 年,英國科學家卡文迪許(Henry Cavendish)在實驗室中不但測出兩個物體間的引力,也準確地量得萬有引力常數!所以眼睛看不到的「東西」並不代表不存在於宇宙中——牛頓顯然是發現、而不是發明萬有引力定律!

同樣的道理,普朗克根本沒發現什麼量子「現象」,他只是看到了黑體輻射的光譜分佈,便提出能量量化的觀念,在當時顯然是一種發明,但後來的發展(如原子的光譜)不是證明了「能量量化」存在於宇宙中嗎?量子力學成功地解釋和預測了這些現象,因此也被認為是存在於宇宙中的。

當然,我們知道物理理論或定律是可能被推翻或修正的,但這只代表我們的發現錯了。哥倫布不是以為他到了印度群島嗎?

德布洛伊(Louis de Broglie)「發明」物質波嗎?1927 年貝爾實驗室的戴維森(Clinton Davisson)和格默(Lester Germer)在實驗室中,發現被鎳金屬晶體表面散射的電子顯示出干擾圖案後,大部分的科學家都相信物質波的存在,因此諾貝爾獎委員「敢」將 1929 年物理獎頒發給德布洛伊,1937 年物理獎頒發給戴維森和格默了。

格默(右)和戴維森(左)共同合作,證明了物質的波粒二象性。圖/wikimedia

「是不是已經存在於自然界中」事實上也正是中外專利局判斷是否頒發「發明專利」的基礎;台灣專利法謂:「發明專利是指利用自然界法則之技術思想的創作,對於欲解決之問題,使用適宜的技術手段,產生其功效,達成所預期的發明目的。

發明專利必須具有技術性,不具技術性之發明,例如單純的發現、科學原理、單純之美術創作等,都不符合發明的定義。」在這一法規下,萬有引力、相對論、量子力學…… 等等科學原理都是發現,不能申請發明專利。

量化量子化

既然在這裡談到科學用詞,我們不妨也來談談「能量量化」的意義。

在「天才愛因斯坦曾和諾貝爾獎擦身而過? 相對論也不曾得過諾貝爾獎」的泛科學影片裡,有聽眾建議將「普朗克提出能量量化的觀念」中之「能量量化(quantization)」改為「能量量子(quanta)化」。

筆者認為「能量量子化」中的「子」字有「微粒子」的意義在內;但普朗克在他那篇「開創量子力學」的文章中,只認為空心黑色球體內任一頻率(n)輻射能量均不是連續的,而是由 hn 單位組成的,輻射的發射和吸收必須以hn進行,從沒提過「能量量化」的觀點,更甭說具有「微粒子」之意的「能量量子化」了。因此我們只能從以後的發展來判斷。

在古典力學裡,氫原子中的電子可能具有的能量應該是連續的;但後來發現只能存在某些能階上才可以解釋光譜——這應該說是一種「能量量化」的現象,而不是「能量量子化」的現象!讓我們在這裡用一個日常生活的例子或許更能說明其間的差異:實數是連續的(質),但我們用它來數人頭時,卻發現它只能存在於整數的「數階」上(量)。讀者覺得用實數被「量化」了、或是被「量子化」了比較適合?

結論

愛因斯坦謂「西方科學的發展基於兩大成就:希臘哲學家發明了形式邏輯系統,以及發現了通過系統實驗找出因果關係的可能性」。

從這名言裡,我們可以看出愛因斯坦顯然認為因果是存在於宇宙中的,將它們連在一起的形式邏輯系統(formal logical system)才是一種發明;所以我們可以說薛丁格發明了「波動量子力學」;海森堡(Werner Heisenberg)、伯恩(Max Born)和喬丹(Pascual Jordan)發明了「矩陣量子力學」;狄拉克(Paul Dirac)發明了希爾伯特(Hilbert)空間上的「算子(operator)量子力學」——他們以不同的數學形式表達了物理學家所發現的量子物理(理論)。

在「不用數學就可以解釋—相對論的著名想像實驗「雙胞胎悖論一文裡,筆者提到了時間及空間是人類製造出來便利溝通的語言。為了解釋觀察到的現像,不同運動者對時間便必須有不同的認知,否則就會發生像「雙胞胎悖論」(twin paradox)一樣的矛盾。

「雙胞胎悖論」提及:當太空旅行者回到地球後,發現自己比留在地球的雙胞胎手足更年輕。圖/Pexels

同樣地,作家在寫一篇文章時,也必須假設讀者對主題具有某些程度的了解與認知。如果假設不對,那便像內人讀筆者的文章一樣,不管筆者是用發明或發現,對她來說都是「不知所云」!而如果能在讀者心中起了共鳴呢?則不管筆者是用發明或發現,相信讀者都能心領筆者事實上是在有意或無意中表達了對某一物理觀念的看法。

延伸閱讀

所有討論 1
賴昭正_96
34 篇文章 ・ 34 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

1
0

文字

分享

1
1
0
量子糾纏?量子穿隧?盤點那些在電影裡的量子概念——《我們的生活比你想的還物理》
商周出版_96
・2022/12/07 ・2541字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

時事話題

NEWS|近年來,「量子」成為科技領域最新的關鍵詞或流行語,量子科幻電影也不遑多讓,例如《蟻人與黃蜂女》、《復仇者聯盟 4》描述的世界和科技想像,皆連結量子的概念。

雖然科幻片吸引人的主因可能不在科學本身,或其採用的科學理論並不見得完全依循嚴謹的科學研究,例如時間旅行、超能力等。但不可否認那些關於科技的想像,已讓觀眾深深著迷,並啟發無限的想像力,而且說不定多年後,可能實現電影的情節。

熱門的量子科幻電影

經典量子科幻片《星艦爭霸戰》。圖/IMDb

經典的量子科幻片多,而且無法用古典物理學解釋裡面的部分元素,例如 1966 年《星艦爭霸戰》(Star Trek),描述艦長寇克與艦員,在 23 世紀的星際冒險故事,其後又衍生動畫影集和電影。

《星際爭霸戰》中,最引人注目的創意之一是傳送器,這是電影裡一種常見的近距離旅行的方式,能將人體或物質分解為量子,並將量子傳送到終點後重新組合。雖然只有在科幻片或魔術表演中可以看到傳送器現象,但傳送的概念與現在的量子遠端傳輸,其實有些異曲同工,只是量子傳輸只能傳送與複製訊息,而非物體本身。其他如 1985 年的《回到未來》系列影片也可說是跨時空傳送的想像。

2020 年上映, 英國與美國合拍的科幻動作片《天能》(Tenet),則是一部融入幾個科學幻想元素的電影。這部電影是大導演諾蘭(Christopher Nolan)的創新燒腦名作,如果沒有一點科學知識,很難一回就看懂整部電影的故事情節。

這部影片不僅在網路聲量高,引發熱烈討論,其中隱含的各種劇情,除了科幻片中常見的祖父悖論外,天能不斷地在多重宇宙間往復穿梭,此想法是基於多個量子位元的高維次,在空間中不斷往復式的操作。劇情複雜的程度,甚至連劇中演員也常不知到底在拍什麼,一直到電影剪接完畢才初步了解。

《天能》中不斷在多重宇宙間往返,此想法就是基於量子位元。圖/IMDb

量子力學另一個重要的概念是量子糾纏。1990 年的《第六感生死戀》(Ghost)敘述一位被殺的男子,死後心有不甘而化為鬼魂, 與女友心電感應,並將謀殺他的幕後兇手繩之於法;2014 年上映、曾經在臺灣取景的法國科幻動作片《露西》(Lucy),主角露西是一個 25 歲的美國女子,居住於臺北市,她意外吸取抑制藥品後,大腦功能快速進化,可以產生心電感應及念力,甚至具有讀心術,可讀取他人記憶。

其他科幻片中也常用心電感應,例如《星際爭霸戰》中瓦肯人特有的心電感應能力,能透過觸摸他人臉部達成心靈相通,分享對方的意識、經驗、記憶及知識。心電感應是指不借助任何已知工具,而能將訊息傳遞給遠方另一個人的現象或能力,常被稱為第六感,至今尚無法以科學證實這種超級本能。

有些人喜歡把量子糾纏與心電感應連結在一起,主要是量子糾纏有遠距離的影響,而且一旦量子測量後,就出現相互影響,這些與心電感應的一些基本要素有些相似。然而,量子糾纏是嚴謹的科學,是可以控制而且可以重現的科學現象,這又與心電感應截然不同。

不過科幻影片喜歡呈現這種特殊能力,對這類科幻情節的喜好,也反映人類期待的未來世界的輪廓。近期臺灣的導演也有拍攝量子科幻影劇的計畫,例如周美玲導演的《Q18》作品,就將量子疊加、量子糾纏、量子量測,甚至量子不可複製性都融入劇情中。

量子穿隧效應

另一部很有意思的電影,是2018 年上映的《蟻人與黃蜂女》。劇情中,主角「鬼女」愛娃在一場意外後,身體出現量子的變化狀態,竟然可以穿過各種物體! 

編劇以身體已成量子狀態,合理化愛娃可穿過任何物體,這是發揮科幻的想像力。但依據量子物理的「波粒二象性」,這其實不可能發生,因為以人類的尺寸的物質波,是無法在巨觀體系中被觀測到。為何這樣說?主要是物質波不是電磁波,也不是光速傳遞, 物質波是一種機率分布的概念。

《蟻人與黃蜂女》中的愛娃(Ava)可以直接穿過各種物體。圖/GIPHY

若以一顆棒球而言,棒球快速飛行時,對量子世界而言,其質量太大,造成物質波的波長極短,一般的世界無法察覺波的特性,人的身體也是如此。然而,如果能把一個人分成無數個微粒原子,然後再讓這些原子同時發生量子穿隧效應,當原子穿牆過後,再重新把這些原子組合成人,用這種方式或許可以完成人體穿牆術。只是這些論述已經超越現在科學知識的理解。但在科幻片中,穿牆術的想像仍是觀眾的最愛。

如前面章節所說,量子是一種近代物理的概念,不是像棒球、乒乓球或電子、質子的粒子,它是用來描述電子或光子的能量特性。一個物理量如果存在最小且不可分割的基本單位,則這個物理量具有最小單元的整數倍關係,稱為量子化,並把最小單位稱為量子。

電子等微觀物質,有時會穿透原本理應無法穿透的障礙物。把障礙物想像成一道牆壁的話,電子應該像棒球一樣被牆壁反彈,可是在微觀世界,電子具有「波」的特性,可穿越牆壁這個障礙物, 以電子波的形式通過牆壁,這就是量子穿隧效應,而且不是只有電子才有這種鬼魅幽靈的穿隧能力。但質量愈大的物體,愈不容易發生穿隧效應,所以人類的身體或一顆籃球,雖然穿透牆壁的機率不是零,但與零相去不遠。至於質量極小的基本粒子,穿透牆壁的量子穿隧效應就大得驚人。

量子穿隧效應以電子波的形式通過牆壁。圖/《我們的生活比你想的還物理

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

所有討論 1
商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。