Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

克勞修斯誕辰|科學史上的今天:1/2

張瑞棋_96
・2015/01/02 ・968字 ・閱讀時間約 2 分鐘 ・SR值 559 ・八年級

-----廣告,請繼續往下閱讀-----

伴隨熱力學第二定律而生的「熵」 (entropy) ,大概是最令人迷惘、最充滿爭議的物理概念了。再也沒有其它物理量像它這樣,一個名詞,卻有各種表述,而每個表述看起來還都各不相干。創造這個神秘的物理概念的人,正是率先提出熱力學第二定律之一的德國物理學家克勞修斯。

魯道夫·克勞修斯。圖/wikipedia

1854 年,克勞修斯首度賦予熱力學第二定律明確的定義:

「熱不能自發地從低溫物體傳向高溫物體。」

因此,熱的傳導是單向的、不可逆的過程,只能由高溫物體流向低溫物體。

為了賦予系統一個明確的物理量,以判斷此自發過程的進行方向,克勞修斯後來才發明熵這個全新的物理量,定義一個系統的熵的變化量就相當於物體熱量的變化量除以其絕對溫度的商值。定義很明確,但其物理意義究竟是什麼?大英簡明百科全書的說熵是物質系統不能用於作功的能量的度量,有人說熵是系統的亂度,資訊理論又會說熵是一種資訊的度量。無論是哪種詮釋,根據熱力學第二定律,在自然狀態下,熵總是愈來愈大。代表有用的能量愈來愈少;亂度越來越大;資訊逐漸散佚。

-----廣告,請繼續往下閱讀-----

由此,克勞修斯推導出一個悲觀的結論:「宇宙的熵趨於最大值」,宇宙無可避免的注定走向一片死寂,也就是所謂的「熱寂」。即使科技再進步,我們可以像電影《星際效應》那樣移民到其它星球,以因應地球資源耗盡或是太陽最後吞噬地球的末日來臨,但是,我們卻無力對抗熱力學第二定律,無論逃往哪個星球,億萬年後一切終將崩解,什麼也不會留下。

克勞修斯大概不會預料到他的熱力學第二定律以及他對宇宙命運的悲觀預言會主宰人們對未來的看法長達一世紀,直到量子理論出現才有所改變。不過這樣的省思也是好的,正如數學家兼哲學家羅素在 1923 年寫下的感慨:

「人類長久以來的努力、奉獻、熱情和智慧的結晶,都將隨著太陽系的滅亡而煙消雲散。人類的成就最後終將長埋在宇宙的碎屑中。這幾乎是無庸置疑的事,所有相反的論調都會被推翻。只有在這些真理的框架中,只有在極度絕望的基礎上,靈魂才能找到棲身之所。」[註1]

註解

  • [註1]:摘自《穿梭超時空》/ 商周出版社

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

8
4

文字

分享

1
8
4
為什麼時間總是「往前」?熵是什麼?和時間有關聯嗎?——《關於宇宙我們什麼都不知道》
天下文化_96
・2023/11/07 ・2581字 ・閱讀時間約 5 分鐘

為什麼時間向前走?

既然我們不能回到過去,你可能會合理的問:「為什麼時間向前走?」

對我們來說,時間不向前走的概念是匪夷所思的。你不會期待烤箱能把煮熟的食物變回原料,或杯子內的飲料在炎熱的日子裡形成冰塊,甚至女童軍餅乾也不會憑空出現。所有事情都以我們非常熟悉的方式隨時間前進,但如果你看到逆著時間走的情形,你可能會想自己是否是藥吃多了。

同樣的,你可以記住過去發生的事,但是你不能想起未來發生的事 *1。時間似乎有一個偏好的方向,我們不知道為什麼。

為什麼時間只向前走?這個基本問題長久以來深深困擾著物理學家。事實上,「時間向前」到底意味著什麼?在某些宇宙中,時間可能流向其他方向。他們的科學家可能會定義往「那個方向」向前。 所以真正的問題應該是:「為什麼時間朝著它前進的方向移動?」

-----廣告,請繼續往下閱讀-----

我們先來考慮,如果時間往其他方向走,宇宙是否能夠運作。 物理學定律要求時間往單一方向流動嗎?想像你正在看某些宇宙影片,你能透過仔細檢查,來判斷影像是否正在向前或向後播放嗎? 例如,假設你正在觀看一個球上下彈跳的影片,只要球完全彈跳 (並且不會因為摩擦或空氣阻力失去任何能量),那麼這個影像無論是往前或往後播放,看起來都會一模一樣!在罐內反彈的氣體粒子或在河中流動的水分子也是如此。即使量子力學也能逆著時間運作 *2。事實上,幾乎每個物理定律在時間往前或往後都可以成立。

但這不是全部的故事。

完全彈跳球的例子是不現實的,因為它忽略了球在地面上的摩擦力、空氣阻力以及諸多其他讓球的能量耗散成熱量的方式。經過幾次彈跳後,即使寵物雪貂最喜愛的超級彈力球也會停止彈跳,最終穩定在地面上。球的所有能量將轉化成熱,傳至空氣分子、球分子或地面分子。

想像一下,倒著播放的彈跳球影像會變得多麼奇怪,坐在地上的球會突然開始彈跳起來,而且愈彈愈高。能量流將看起來更奇怪:空氣、球和地面會冷卻下來,失去的熱將轉化為球的動能。

-----廣告,請繼續往下閱讀-----

在這個例子中,你可以肯定指出時間向前和向後的區別。烹飪食物、融化冰塊和吃餅乾等也都相同。但是,如果物理學的大部分定律都能反向工作,特別是熱和擴散等微觀物理,為什麼宏觀過程似乎只在一個時間方向發生?原因是系統中的無序量,也就是熵,非常強烈傾向於單一時間方向。

熵總是隨時間增加。這稱為熱力學第二定律。熵視為某些事物中的無序量。你忘記餵食雪貂時,雪貂會毀壞客廳,撞翻整疊有完整簽名的這本書,雪貂透過增加亂度來提高客廳的熵。

如果你回家重新整理客廳,可以減少客廳的熵,但是這樣做需要相當程度的能量,你把能量釋放成熱、沮喪和低聲咒罵著要如何告訴室友說:「養雪貂是個壞主意。」在整理客廳時,你釋放的能量將保持總熵的增加。每當你產生任何局部秩序,例如:堆疊書籍、在方格紙上做標記,或打開空調時,你都會同時產生亂度這個副產品,且通常以熱的方式呈現。根據熱力學第二定律,平均而言,總熵沿順向時間減少是不可能發生的事。

(注意:這是機率描述。技術上來說,一群憤怒的雪貂有可能意外的組織一個完全有序的隊伍,從而減少了牠們的熵,但機率微乎其微。孤立事件可能發生,但平均熵總是增加。)

-----廣告,請繼續往下閱讀-----

這會導致令人不寒而慄的後果:因為熵只會增加,在最終非常非常久遠的未來,宇宙將會達到最大亂度,這有個聽起來很酷的名字:「宇宙熱寂」。在這種狀態下,整個宇宙將處於相同溫度,這表示一切都將完全無序,沒有一丁點有用的有序結構(如人類)。在熱寂之前,我們仍然有空間可以創造局部秩序,只因為宇宙還沒有達到最大亂度。

現在我們逆著時間回想。過去每個時刻,宇宙的熵比現在更少(更有秩序),一直回溯到大霹靂時。把大霹靂當成是搬家卡車和小孩來到新房子之前的那一刻。宇宙的初始狀態(當熵最低時)決定了宇宙從誕生到熱寂之間有多少時間。如果宇宙從一開始就已經有大量亂度,不需要太多時間就能達到熱寂。在我們自身的例子中,宇宙似乎始於非常有序的狀態,在達到最大熵之前給了我們很多時間。

為什麼宇宙從一開始是從高度有組織的低熵狀態中啟動?我們不知道,但是我們確實很幸運,因為宇宙在開始和結束之間,留下了很多時間來做有趣的事情,比如製造行星、人類和冰棒。

熵是否幫助我們了解時間?

熵是少數幾個關心時間如何流逝的物理定律之一。

-----廣告,請繼續往下閱讀-----

影響熵的多數過程(例如影響氣體分子如何互相反彈的運動學定律),可以完美的逆著時間走。但大體來說,它們遵循一項定則:有序數量隨時間前進而遞減。所以時間和熵互相以某種方式連接起來。但到目前為止只有一個相關性:熵隨時間而增加。

這是否代表熵導致時間只能向前流動,就像是山丘只讓水往下流那樣;或者熵是遵循時間的箭頭,像被捲入龍捲風的碎片?

即使你接受熵隨時間前進而增加,仍然不清楚為什麼時間只會向前進。例如,你可以想像一個時間向後的熵,熵隨負時間而減少,這將保持熵和時間的關係,而不會違反熱力學第二定律!

與其說熵洞察了時間的一切,不如說它是個線索。熵是我們關於時間如何運作的少數線索之一,所以值得注意。熵是理解時間方向的關鍵嗎?雖然很多人如此臆測,但我們還是毫無頭緒。不僅如此,我們能把這問題弄清楚的辦法也寥寥無幾。

-----廣告,請繼續往下閱讀-----

註解

  1. 如果你能記得未來的事,請打電話給我們,我們有些問題想請教你。
  2. 除了波函數的崩陷之外,有些人認為它是不可逆的、有些人則認為是失去同調性,而其他人只是為了辯論而辯論。

——本文摘自《關於宇宙我們什麼都不知道》,2023 年 9 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
0

文字

分享

0
2
0
賽道上高溫與摩擦的平衡!賽車最重要的配件「剎車」——《黏黏滑滑》
晨星出版
・2023/01/06 ・3272字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

度影響剎車的抓力

雖然似乎有點違背直覺,但是煞車是高速駕駛不可或缺的一環。不管是在哪個賽車場,駕駛的目標之一就是保持在賽道的最佳路徑(racingline)—繞行賽道的最短路徑。所以駕駛過彎時不會沿著急轉彎處長長的外彎道前進,而是「夾著」彎道的內側,稱為彎頂點(apex,即過彎路線中最接近彎道內側的點)的地方,以將他們必須行駛的距離縮到最短。

這麼做需要非常精準的煞車:要在剛剛好的時間對煞車踏板施予剛剛好的壓力。當他們辦到時,駕駛就會出現在賽道轉彎處的絕佳位置,且依然帶有征服下一段賽程所需的速度。但是這樣的開車方式會耗損煞車;而且有些賽道沒什麼機會可以讓煞車冷卻。

以世界知名的摩納哥街賽道來說。雖然僅長3.34 公里(2 哩多),是F1 賽程中最短的賽道,但是卻必須不斷踩煞車和加速。煞車製造商布雷博(Brembo)指出,2019 年賽季中,駕駛們每一圈使用煞車 18.5 秒,多過總賽程的四分之一。

在需求最高的轉彎處,汽車要在不到 2.5 秒的時間內將時速從 297 公里(185 哩)減至 89 公里(55 哩);這會將大量動能快速轉換成熱能,難怪煞車碟盤會冒出火花。為了要負荷這樣龐大的熱負載,製造商在每個煞車碟盤的邊緣鑽入細小的徑向孔—數量超過 1000 個。

-----廣告,請繼續往下閱讀-----

這樣的小孔可以增加煞車碟盤的表面積,比較容易散熱。但是也具有通氣孔的功能。與安裝在各個輪框上的大型冷卻管相結合時,可以把冷空氣拉入煞車碟盤中心,把熱空氣從邊緣帶走。還有個額外優點,這些F1 煞車碟盤相當輕,重量約各為1 公斤(2.2 磅),相較之下,差不多大小的鑄鐵煞車碟盤則為 15 公斤(33 磅) 。

所以為什麼不全面使用這種煞車碟盤呢?有個原因是價格—每片煞車碟盤可能要價高達 2000 美元(約 1500 英鎊) ,而且要六個月的時間才能製成。它們也不太耐久,通常每次比賽後就得更換。最後,它們受限於一定的工作溫度,只能處於 350 ∼ 1000℃。

低於溫度下限時,它們幾乎不具有停止能力—煞車片與煞車碟盤無法產生足夠的抓力。但是如果煞車的溫度高於上限值太久,則會災難性地失靈。如馬歇爾對我描述的,「彷彿在踩縫紉機。當這種狀況發生時,煞車碟盤耗盡『材料』的速度有多快,簡直難以置信。」

科技有助於車隊和駕駛控制他們的煞車,但是就跟 F1 的大部分狀況一樣,沒那麼簡單。冷卻管的大小與形狀可控制流經煞車碟盤的空氣量,所以你可以想像管子愈粗愈好。

-----廣告,請繼續往下閱讀-----

但是如 F1 傳奇工程師帕特.西蒙茲(PatSymonds)告訴《賽車工程》(Racecar Engineering)雜誌的,冷卻有其後果:「遇到像蒙特羅這樣需要一直踩煞車的賽道,我們被迫使用一些該賽季最粗的管子。從最細的冷卻管換到最粗的冷卻管,會犧牲 1.5%的空氣動力學效率,這代表最高速度時速會減少 1 公里。」

我可以想像這會引發車隊的煞車工程師與他們的空氣動力學家爭辯。就連測量煞車配件的溫度都不容易。馬歇爾告訴我,在奧斯頓馬丁 F1 車隊中,他們會在煞車片的安裝托架中埋入高溫的熱電偶,和一系列直接朝向煞車碟盤的遠紅外線感測器。電視轉播賽事時偶爾會出現的彩色熱影像,主要是為了給我們這些觀眾看—顯示出他們建議的最高溫度。

剎車片的抓力在彎道時高速剎車時至關重要。圖/envatoelements

摩擦介面與溫度控制

煞車片與煞車碟盤之間還有另一個重要的過程是磨耗。所有滑動與摩擦都會對兩個表面造成實質傷害;每次煞車作動,兩者都會有微粒破裂。在煞車系統的使用期間,這會逐漸降低材料的摩擦係數—換句話說,會失去它們的抓力。

但這不只是因為彼此的表面被「磨光」,或是失去黏性。磨耗也會形成摩擦膜(tribofilm)這種東西—煞車片與煞車碟盤相接觸時壓碎的一層非常薄的細粒狀材料。「談到磨耗與摩擦力,摩擦膜非常有影響力,」英國里茲大學(University of Leeds)的沙赫里爾.柯沙利(Shahriar Kosarieh)說。

-----廣告,請繼續往下閱讀-----

「我們把這層膜視為『第三體』,因為儘管它是由互相滑動的那兩種材料製成,其化學與機械性質還是與那兩種材料不同。」關注各式各樣市售鑄鐵煞車片的德國研究人員發現,無論煞車片是什麼材質,形成的摩擦膜總是會受到氧化鐵(Fe3O4)控制,其他成分的影響力則相當微弱。

「摩擦膜會控制散熱,且能減少摩擦力—它會主導性能,」柯沙利繼續說道。「煞車製造商很清楚這一點,調配自己的煞車片配方時會考量這一點。煞車片與煞車碟盤要互相搭配,才能產生最佳性能。只要你更動了任一個材料,就會改變界面產生的結果。」

柯沙利最近的研究關注鑄鐵煞車碟盤輕量替代物的摩擦表現,這些輕量煞車碟盤主要都是鋁製。不只有他這麼做—整個汽車產業都對減輕重量很執著,主要是因為汽車的重量愈輕,消耗的燃料就愈少,環境影響也愈少。目前是以鋁為主流。

「那是一種低密度金屬,約比灰鑄鐵(grey cast iron)還低 2.5 倍,所以減輕重量的可能性很高,」他跟我在電話中閒聊。「鋁的導熱性也很高,在表面形成的氧化物也具有一些防蝕效果。」把鋁合金與碳化矽等硬質陶瓷材料結合也能提升其強度。

-----廣告,請繼續往下閱讀-----

「但是鋁的問題在於當溫度高於400℃時會開始熔化。就煞車而言,這代表摩擦力突然銳減,也是你能想像最糟的狀況。所以更加促使工程師更努力找出方法,既能讓表面有比較好的熱穩定性,使用壽命又能更持久。」

工程師致力於找出剎車在溫度與磨損上的平衡。圖/envatoelements

對柯沙利而言,最有意思的其中一種方法是電漿電解氧化(plasmaelectrolytic oxidation, PEO),這是用一個電場在鋁的表面形成一層複雜又高度耐磨的薄層。當他測試各種不同以電漿電解氧化處理過的鋁盤性能時,發現有些可以撐過約 550℃。不過,許多案例的摩擦係數太低—低於實際煞車系統所需的最低閾值。

柯沙利並不洩氣。「煞車是整個系統一起作動。如果你拿到一個新的煞車碟盤,那你也需要把對位碟盤調整到最佳狀態。製造商設計出專供電漿電解氧化塗層煞車碟盤使用的新煞車片配方。」我只找到幾篇已發表的研究,結合了電漿電解氧化煞車碟盤與這些新的摩擦片,但是結果看起來大有希望。輕量的鋁製煞車在未來的道路車輛上可能有機會亮相。

F1 在 1970 年代晚期為它們的煞車碟盤和煞車片找到了不同的解決方法,從那時候起就沿用至今:一種稱為碳-碳(carbon-carbon)的材料,在石墨基質裡包埋高度有序的碳纖維。其散熱效果非常好,所以也用在太空梭上。雖然它聽起來可能跟F1 賽車底盤用的碳纖維很類似,但其實是非常不一樣的猛獸。

-----廣告,請繼續往下閱讀-----

製造碳-碳很緩慢且複雜,此材料是由原子薄層堆疊成層。它在摩擦力方面勝出,提供的抓力比傳統煞車配件高 2 倍(在其理想工作溫度範圍內)。但是那並非魔法。在競速的壓力之下,這種材料終究會磨耗殆盡,部分是由於摩擦,但也有化學方面的因素。溫度上升時,碳-碳會與空氣中的氧氣產生反應,而氧氣會提高其劣化程度。你有時候會看到F1 駕駛大力踩煞車時冒出黑塵,這就是原因。

藉由感測器數據調整剎車系統

這個過程代表車隊需要監測的煞車項目不只是溫度。馬歇爾跟我說,他們會使用壓力感測器留意流經管子的氣流。他們也有針對磨耗的電子感測器,可以測量胎側的活動。

「我們使用這些儀器測量煞車片還能接觸煞車碟盤多久。由此可以推論總磨耗程度—也就是煞車片與煞車碟盤的磨耗總和。」為了推算總磨耗比例與煞車片的關係,以及對煞車碟盤的磨耗程度,車隊會把感測器數據對照以往試駕和賽事所蒐集的煞車數據。

「我們可以從所有資料中追溯比賽時的磨耗速率。如果太快,我們可以調整煞車平衡,以免磨耗最高的車輛壽終正寢,或可以請駕駛找一些乾淨的空氣冷卻煞車。」不管怎麼做,目標都是確保駕駛在需要的時間和地點擁有阻擋能力。任一賽季都會面臨數以千計的彎道,這些系統,當然還有駕駛,都表現卓越。

-----廣告,請繼續往下閱讀-----

——本文摘自《黏黏滑滑》,2022 年 11 月,晨星出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----