Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

且看卡西尼號呈現泰坦眾相

臺北天文館_96
・2012/03/01 ・1101字 ・閱讀時間約 2 分鐘 ・SR值 564 ・九年級

-----廣告,請繼續往下閱讀-----

最近多名科學家發表一系列論文,利用卡西尼號太空船(Cassini)的觀測資料,呈現土星最大的衛星—土衛六(泰坦,Titan)隨著季節推移與晝夜變換的不同面貌;有趣的是,這泰坦眾相,竟與地球如此相似。

泰坦雖是土星的衛星,但具有主要由碳氫化合物組成的濃厚大氣;隨著季節不同,或是晝夜變換,泰坦大氣的溫度和表面特徵如大氣中的雲層、降雨、河谷和湖泊等也會隨之變化。這個現象,出乎科學家意料之外。其中,泰坦大氣最明顯的季節變換特徵之一,就是北極區上空的大片雲層。此外,由卡西尼五年多的可見光與紅外光譜資料,也可見泰坦北半球由冬入春之際的雲層厚度如何漸漸變薄的景象。

卡西尼號太空船是在2004年時抵達土星系統時,就開始偵測到泰坦大氣有雲朵漂浮,科學家認為這些雲朵的主要成分是乙烷(ethane)。在卡西尼號在2006年12月恰好飛越泰坦半明半暗的北極上空,有機會以光譜檢測此處大氣,此時的雲層覆蓋由北極至約北緯55度的整片區域上空。但在2009年類似機會所拍攝的光譜中,覆蓋在北極上空的雲層出現大量間隙,卡西尼號因而得以透過這些雲層間隙看到極區附近由碳氫化合物形成的海怪海(Kraken Mare)和周圍環繞的其他湖泊。這些不同時期拍攝的影像,是泰坦大氣會隨季節變化的直接證據。

由於特定紅外波長可穿透雲層阻擋,直擊地表狀況,經由卡西尼號的合成紅外光譜資料分析泰坦地表溫度,不僅讓科學家們直接看到泰坦表面會隨季節變化,而且還首度發現泰坦表面溫度也會隨晝夜變換而改變。泰坦表面溫度一般在絕對溫度90幾度左右,但如同地球表面一樣,在午後時分的地表氣溫會比清晨曙光時分還溫暖些,溫差大約1.5K左右,比地球晝夜溫差小很多。不過,雖然泰坦晝夜溫差變化模式與地球類似,但泰坦「一天」的長度卻相當於16地球日之多。

-----廣告,請繼續往下閱讀-----

此外,其中一篇論文經由電腦模擬與卡西尼號電波科學實驗觀測資料比對之後,提出關於泰坦謎樣的內部結構和其地表所見與地球表面類似的地質特徵的解釋,認為泰坦內部可能成完全分異(differentiated)狀態,意味著泰坦核心部分的密度比其他部分還高,不過核心密度還是沒有原本預期的那麼大,可能是因為核心仍然含有大量的冰,或是因為岩石與水交互作用過而形成低密度礦物。地球和其他類地行星都是完全分異狀態,擁有密度甚高的鐵核;不過這篇論文模擬結果剔除泰坦擁有金屬核心的可能,因而與卡西尼號的磁場強度計觀測 資料符合,所以泰坦內部應是溫度不高的含水岩石狀態。這個模擬同時可以解釋為何泰坦大氣中不太容易出現某些重要的氣體,例如甲烷或氬-40,主因就是因為它們根本逃出核心。

資料來源:The Many Moods of Titan[2012.02.23]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
10

文字

分享

0
6
10
如果天空少了月亮,地球會怎麼樣?——《有趣的天文學》
麥浩斯
・2022/04/25 ・1477字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

如果天空少了月亮?文學家應該會很難過,音樂家也會少了創作的題材,沒有中秋節就少了月餅,也沒有烤肉。不過夜晚少了一個大光害,天文學家絕對會很高興!

潮汐變小、一天變短

地球上的潮起潮落,主要是月球繞地球運行造成的。太陽也會影響地球的潮汐,不過對地球的潮汐力只有月球的 46%。如果沒有月球的話,造成地球潮起潮落就只剩下太陽,滿潮和乾潮的幅度就會變小。

月球讓地球產生的潮汐,使地球愈轉愈慢。數十億年前,地球剛形成時,地球自轉的速度比現在快許多;因為月球的潮汐力,讓地球自轉的速度漸漸變慢,慢到現在的一天 24 小時。如果沒有月球,地球的一天可能不到 10 小時。

月球讓地球產生的潮汐,使地球愈轉愈慢。圖/Pexels

左搖右晃的地球

月球就像是走鋼索的人握的平衡桿,讓地球自轉軸保持穩定,如果少了月球這個平衡桿,地球自轉軸左搖右晃的幅度就會變大。

目前地球自轉軸相對於公轉平面的傾斜角是 23.4 度,因為月球的存在,這個傾角的變化幅度不大,大約在 22.1 度和 24.5 度之間。傾角讓太陽直射地球的位置在北回歸線和南回歸線間移動,讓地球出現四季變化。

-----廣告,請繼續往下閱讀-----

如果沒有月球,地球的自轉軸變動的幅度就會變大,自轉軸的變動會對我們有什麼樣的影響?假設兩個極端的例子,地球的自轉軸傾角是 0 度和 90 度。

如果地球傾角是 0 度,太陽永遠直射赤道,地球上不會有北回和南回歸線,地球將不再有四季變化。

如果地球傾角是 90 度,太陽直射的區域會從北極到南極,也就是北回歸線位在北緯 90 度(也就是北極點),而南回歸線在南緯 90 度(南極點)。這種情況下,地球四季變化會非常劇烈,北半球夏天時,北極不會結冰,溫度比現在還高,南半球冰凍的區域比現在還大,這種極端氣候絕對不利現在地球上生物的生存。

未來人類可能先在月球建立基地,作為人類前進火星的跳板,在月球上測試火星裝備和訓練太空人,準備完成後再前往火星。如果少了月球的整備演練,要一步登陸火星將會困難重重。圖/麥浩斯出版

月球替地球擋子彈

月球是地球的衛星,一直以來它都保護著我們的地球。用望遠鏡看月球,會發現月球上有許多坑洞,這些坑洞幾乎都是隕石撞擊後形成的隕石坑,表示月球在早期受到許多的撞擊。如果少了月球擋下這些隕石,這些隕石可能就會撞上地球。

-----廣告,請繼續往下閱讀-----

隕石撞擊對地球的生命影響很大。6600 萬年前,一顆 10 公里左右的隕石撞擊地球,造成恐龍滅絕。恐龍滅絕後,哺乳類才能興起,人類才有機會出現在地球上。

那些沒有被月球擋下的隕石,如果撞上地球,可能會改變地球物種的演化,人類說不定就不會出現在地球! 最後,如果沒有月亮,阿姆斯壯和另外 11 名阿波羅太空人也就無法登陸月球。人類少了探索月球的寶貴經驗,要直接踏上其他行星表面(例如火星),難度會高許多,甚至變得不可能!

——本文摘自《噢!原來如此 有趣的天文學》,2022 年 3 月,麥浩斯出版
-----廣告,請繼續往下閱讀-----

0

2
1

文字

分享

0
2
1
冰與水之歌:零度以下不結冰,魔鬼藏在密度裡!
linjunJR_96
・2020/11/05 ・1932字 ・閱讀時間約 4 分鐘 ・SR值 537 ・八年級

-----廣告,請繼續往下閱讀-----

在座各位地球人肯定對「水」一點不陌生。不論是液態水還是固態冰,在生活中都隨處可見。但如果你以為我們已經完全了解水和冰的構成與變化,那你可就錯了,因為它可是超乎想像的複雜。

冰也會七十二變?常見的物質竟然有這麼多型態!

學校裡教過的三相圖將水區分成固、液、氣三種相(Phase)。不過除了這種簡單的分類,固態的冰在不同的壓力與溫度條件下其實還有許多不同面貌。

小時候學過水的三相固體、液體、氣體,除此之外,其實固態冰還有其他型態。圖/Pexels

一般條件下,自然結凍的水只會呈現六角結晶或立方結晶,兩種晶體結構合稱為「冰一」(Ice I)。你可能有些好奇:既然有一,那或許會有二(咦)

沒錯!目前已知的冰共有二十幾種型態,比 iPhone 的型號還多!只是除了冰一之外,其他的型態都極為少見。

-----廣告,請繼續往下閱讀-----

所謂少見是有多少見呢?

一直到 2017 年時,科學家才首次在實驗室中合成出冰七(Ice VII),這種稀有的結晶形態通常只有在彗星或系外行星上才見得到,因為它需要超大的壓力(例如:兩個含冰量豐富的小行星體對撞),才有可能形成。

實驗室中高壓環境下合成的冰七 。圖/實驗團隊(A. E. Gleason)提供

相隔一年後,另一組研究團隊利用 X 光繞射技術,在世界各地的鑽石中發現冰七的蹤影

為什麼鑽石中會有冰七?推測原因是由於當初在地底時,有少量水分被困在高溫高壓的鑽石礦脈中,而後這些水分隨著鑽石一同被挖掘到地表,雖然溫度下降到普通室溫,但堅固的鑽石內卻仍然維持著高壓。如此獨一無二的條件,讓冰七得以自然生成。

-----廣告,請繼續往下閱讀-----

零度以下也不結冰?神秘的過冷水!

光是固態冰就有這麼多花樣了,水結冰的過程同樣也是科學家有興趣的主題。在 Science 期刊上最新的研究發現,過冷水其實是由兩種結構不同的形態混搭而成。

一般的情況下,零度以下的水需要一些雜質或擾動來「啟動」結晶的過程,才能凝固成冰。在缺乏這些條件時,水可以在零度以下仍維持液態,也就是所謂的「過冷」。

關於過冷水的理論模型可說是眾說紛紜,因為這種狀態十分不穩定,輕微的干擾就會讓過冷水全部結晶,讓實驗學家十分頭痛。另外,也很難單從實驗中觀察並判斷過冷水不結晶到底是不是因為還未達到熱平衡。

過冷水的狀態不穩定,稍微干擾就會全部結晶,也讓實驗學家十分頭疼。圖/giphy

以往的相關研究通常只能依賴分子模擬,不過最近在實驗上有了最新突破。

-----廣告,請繼續往下閱讀-----

美國西北太平洋國家實驗室的研究人員準備了一片僅有 15 奈米厚的薄冰,接著利用短暫的雷射脈衝,極速加熱一小塊區域,使其轉為液態過冷水,直到它很快地降溫並重新結晶。

整個過程只有短短幾十奈秒,不過,這個突破已經足夠讓我們使用紅外線光譜來測量過冷水的分子結構。

結果發現,早在結晶開始的短短的幾十奈秒之間,過冷水就找到了它最舒服的平衡狀態;這個狀態還是由兩種結構不同的液體型態所組成,分為高密度與低密度結構,密度分別約為 0.9 和 1.1 g/cm3

實驗發現,過冷水中高密度水所佔的比例,會隨著溫度降低逐漸減少。也就是說,過冷水能在低於攝氏零度的環境下維持液態,很有可能是兩種不同密度的水比例不同所造成的。

-----廣告,請繼續往下閱讀-----

其實,這種特殊的二元性質也能在一般常溫的液態水中看到,分為四面體和非四面體結構。不過這類的現象在過冷水是首次被發現,也為水在低溫時的行為提供重要的實驗數據。關於水的各種理論模型,我們終於得以區分何者較接近真實。

  1. Water structure and science
  2. Gleason, A. E., Bolme, C. A., Galtier, E., Lee, H. J., Granados, E., Dolan, D. H., … & Swift, D. (2017). Compression freezing kinetics of water to ice VII. Physical Review Letters119(2), 025701.
  3. Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V. B., Ma, C., Rossman, G. R., … & Tait, K. (2018). Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle. Science359(6380), 1136-1139.
  4. Kringle, L., Thornley, W. A., Kay, B. D., & Kimmel, G. A. (2020). Reversible structural transformations in supercooled liquid water from 135 to 245 K. Science369(6510), 1490-1492.
  5. Shi, R., & Tanaka, H. (2020). Direct evidence in the scattering function for the coexistence of two types of local structures in liquid water. Journal of the American Chemical Society142(6), 2868-2875.
-----廣告,請繼續往下閱讀-----
linjunJR_96
33 篇文章 ・ 914 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。