0

0
1

文字

分享

0
0
1

氣候變遷時代,我們還需要林口燃煤電廠嗎?

鳥苷三磷酸 (PanSci Promo)_96
・2018/12/19 ・4995字 ・閱讀時間約 10 分鐘 ・SR值 573 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文/廖英凱

本次的系列文章中,我們討論了燃煤發電的三個重要的階段,包含前處理燃燒過程燃燒後處理。在本文中,就讓我們來認識設置於北台灣,擁有最新超超臨界技術的林口電廠的過去、現在、以及未來吧。

回首來時路:蓋建築前先蓋電廠是常識吧?

蓋建築前先蓋電廠?!圖/Pixabay

1960 年代,伴隨台灣工業起飛的用電需求攀升,台灣電力公司在台北縣林口鄉(現為新北市林口區)下福里的海邊興建了林口發電廠,廠內設置了兩座裝置容量各為 300 MW 的燃煤與燃油機組,為當時單一機組裝置容量最大的發電機組。1970 年代,能源危機使原油價格飆漲且供應不穩,林口電廠將燃油機組改建為燃煤機組以降低發電成本並提升能源穩定。由於燃煤機組不適用於尖峰時期的電力負載調度,1998 年,林口電廠另增設了兩座裝置容量各 150 MW 的天然氣/輕油雙燃料氣渦輪發電機。至 2011 年間,林口電廠可提供 900 MW 的電力,約為當時台電總裝置容量的 2%。

由於機組使用年限已逾 40 年,2005 年起林口電廠「先建後拆」的方式,於廠區空地開始規劃興建兩座裝置容量各 800 MW 的超超臨界燃煤機組;並於 2011 年將林口電廠的既有四部機組開始除役; 2016 年與 2017 年,新的兩部機組開始商轉供電。同時,於原機組拆遷後的空地興建第三座 800 MW 超超臨界燃煤機組,預計於 2019年商轉供電。屆時林口電廠將可提供 2400 MW 的裝置容量(註:中火燃煤為 5780 MW;大潭燃氣為 4984.2 MW)。

這煤很純,不來一點嗎(?)

煤炭的使用歷史悠久,自人類進入工業化時代,煤炭與工業的發展、與近代文明的進展高度相關。由於礦藏分佈世界各地且儲存容易,而使煤炭價格低廉且供應穩定,特別適合大型工業與發電業使用,在全世界的能源消費中,大約佔了 28%1,2,僅次於石油的消費。在台灣的情境中,台電所屬的燃煤電廠,每年也約消耗了 3000萬公噸的煤炭。

-----廣告,請繼續往下閱讀-----

雖然煤炭的主要成分是碳,但仍含有氫硫氧氮等元素,這是由於煤炭是古代植物的化石,經由長時間的生物與地質作用碳化而成。不同地區的煤礦碳化程度不同,依碳化程度由低至高,常分類為為泥煤、褐煤、亞煙煤(次煙煤)、煙煤(生煤)與無煙煤。由於碳化程度越低,雜質也越高,而容易在燃燒後產生氣體污染。例如,煙煤的碳含量大約是在 69% 至 89% 之間3;而無煙煤的碳含量則提高為 86% 至 98% 之間,其餘的雜質則為水、空氣、氫、硫、氮等物質組成。這些雜質導致煙煤的燃燒,比起無煙煤會產生更多的煙、氣體污染,且熱效率也較低。不過值得一提的是,含碳量略低於煙煤的亞煙煤,雖熱值較低,但因硫份也較低而較少污染。

因此,近幾年有部分地方縣市政府,試圖制定禁燒生煤條例或停止核發「生煤許可」,就是希望能避免燃燒雜質較高的煙煤,而加劇空氣污染的程度。只是由於越高品質的煤炭成本也會隨之提高,產量也較少,實務上燃煤電廠仍多使用亞煙煤與煙煤作為燃料,而高品質的無煙煤則較常見於家用燃料或暖氣,應用在無法裝設過濾與環保設施,且與人類生活更為接近的使用方式。

林口電廠實際所使用的煤炭,肉眼可見到煤炭上仍有少量磚紅色的雜質。攝影/廖英凱。

一約既定,山海難阻

由於煤炭需全部仰賴進口,煤炭的供需除須兼顧供給穩定與經濟效益以外,進口煤炭也應考量煤炭的成份以降低污染或提升效率。台電目前進口煤炭的國際合約,主要為印尼與澳洲,占總進口量的八成以上,其餘少部分則進口自俄羅斯、美國與哥倫比亞等。採購的種類則為亞煙煤與煙煤,並針對煤炭的熱值、水份、灰份與硫份訂定品質標準。

以主要進口國印尼和澳洲為例,印尼煤的熱值較澳洲煤低,代表電廠燃燒印尼煤的的發電效率較低,但澳洲煤的灰份與硫份卻比印尼煤高,使燃燒廢氣的污染較為嚴重,因此實務上當煤炭送進煤倉存放後,還會根據不同產地、批次的成分差異,以適當的比例混用入鍋爐燃燒,以同時達到燃燒效率與污染控制。

-----廣告,請繼續往下閱讀-----
台灣進口煤炭種類與相關數值資料。
AD, Air Dry Basis:空氣乾燥基,與空氣濕度達到平衡的煤炭做為比較基準。
Gar, Gross Calorific Value:一公斤燃料完全燃燒時所釋放的全部熱量。
資料整理/廖英凱。圖表/泛科學製作。

仰賴海運進口的煤炭,也需要有港口疏運的配合。雖然自 2015 年起,林口電廠已設置了專屬的卸煤碼頭接收來自各產煤國的煤炭。但如果行經林口電廠附近,會發現仍有部分閒置的鐵軌與鐵路設備。這條已停用的「桃林鐵路」,是 1968 年,為搭配林口電廠新建而設立的專屬運煤鐵路,連接林口電廠與桃園火車站以銜接西部縱貫鐵路,而能載運來自台中港的煤炭,至 2012 年底鐵路停用為止,提供了每年 160 萬噸,3000 車次的 40 餘年運煤歷史。

林口運煤火車。圖/台電提供。

2012 年底桃林鐵路停用後,林口電廠並未停止營運,而是改以台北港接收煤炭後,再以濱海公路的卡車運輸進廠。然而火車每車次運量約 500 噸,但卡車僅有 23 噸。使公路運輸期間,每天須從台北港轉運 200-250 車次的卡車,才能滿足一台新機組每日 4600-5750 噸的燃料需求。對於規劃中最終將有三部機組,預計每年最高可至 630 萬噸的用煤量來說,公路運輸除交通上完全無法負荷以外,也會增加煤塵溢散的空汙問題與運輸轉運的能源消耗。因此,專屬的卸煤碼頭與密閉式的輸送系統,正可以確保輸送的穩定、效率與避免污染。

台灣還需要林口電廠嗎?

儘管污染防制與管理的技術與思維可以不斷精進與投入,但相較起眾多發電方式,燃煤電廠對於環境的影響仍相對較大。對於燃煤電廠新建或營運的顧慮,在可預期的未來也必然存在,然而所有的工程開發本為權衡輕重後的選擇。因此,有必要來簡略盤點對於當代台灣,我們還有哪些需要林口電廠的理由。

回到燃煤發電的本質,若未來沒有更為嚴苛的碳稅等政策工具的制定,則燃煤電廠仍因燃料取得容易,而擁有價格低廉與較天然氣相對穩定的誘因。從燃料的運送與儲存角度來看,煤相比起石油、天然氣、核燃料來得更容易儲存及運送,林口電廠目前規劃的煤倉,就能提供電廠 30 天以上的安全存量,相比起天然氣安全存量在 2019 年僅有 7 天,預計至 2027 年才提升至 14 天。此外煤炭也沒有天然氣供應鏈中的外洩問題4。因此,雖然燃煤欠缺負載調度的能力,但其低廉與穩定的特性,對於在選擇基載發電廠時,燃煤絕對具有相當大的誘因。

-----廣告,請繼續往下閱讀-----

若回到台灣各區電力供需的狀況來看。長期以來北區均處於供不應求,而須仰賴中區的電力調度至北區。預估在 2025 年時,北區的電力需求為 14-15 GW(註:1 GW = 1000 MW),約為全台的 40%,而電力供給僅能提供 34% – 35%,而有約 5% 的電力缺口需從中南區調度。林口電廠 2.4 GW 的裝置容量,則可提供了 16% 的北區用電需求,在供需不平衡的狀況下,更顯其價值。

再以各區的電廠發電形式來考量 2025 年的情境,北區的燃煤電廠,屆時有花蓮和平電廠(1.3 GW)與林口電廠(2.4 GW)共計 3.7 GW 的裝置容量;中區的燃煤電廠則為台中電廠的燃煤機組(扣除4部機轉為備用機組之容量後,全廠縮減為 3.3 GW)與麥寮電廠(1.8 GW)共計 5.1 GW 的裝置容量;而南區的燃煤電廠則為興達電廠的燃煤機組( 2.1 GW)與大林電廠的燃煤機組(1.6 GW)共計 3.7 GW 的裝置容量。北中南三區的燃煤發電裝置容量比為 3:4:3 尚稱分配均勻,也意味者三分區的電力結構中,都仍保有相對低廉穩定的燃煤作為基載電力。

台灣電廠電網分布圖。圖/台電官網

從電力調度傳輸的風險和能量耗損來看,長途電力調度有主幹電網、變電所故障的風險,故需投資額外線路或設備以降低風險;長途電力傳輸也會有 4.5% – 4.6% 的線路耗損。因此,若有鄰近於重要工業區與人口密集區的大型電廠,則可以減少電力傳輸與電壓所造成的能量消耗。

最後考慮未來太陽光電與風力發電占比大幅提高的情境,在此情境中電力系統應有更高度的調度靈活性,而需大量仰賴燃氣機組與電池調度,但國際能源署在「World Energy Outlook 2018」的執行摘要中,亦指出傳統電廠仍是保持電力系統靈活性的主力,並應搭配新的電網互聯、儲電和需量反應技術做為支持,以確保電力系統的穩定5

-----廣告,請繼續往下閱讀-----

綜上所述,對於當代台灣的電力結構、區域發展與經濟考量,林口電廠等燃煤發電,確實有值得存在的理由,但也需要對污染防治持續性地投入與關注。

從此只有眼前路,煤有身後身

儘管燃燒廢氣中的重金屬、硫化物與微粒等污染,可仰賴環保技術的投入而能有效抑制。但在對空汙品質越發重視與擔憂的社會來說,燃煤的空汙狀況,仍是其先天的劣勢。更重要的,是使用煤炭等化石燃料過程中產生的二氧化碳,與其導致的氣候變遷、極端天氣,更是全體人類在未來數年亟需解決的難題。

從國際趨勢來看,國際能源署在「World Energy Outlook 2018」中,利用不同時期發電技術成本與電力系統價值的變化的估計,認為「幾乎在所有地方」太陽光電雖難以在沒有政策支持的情況下取代既存的燃煤電廠,但已比新建燃煤電廠更有競爭優勢。

政府間氣候變化專門委員會(IPCC)在 2018 年 10 月的「IPCC全球升溫 1.5ºC特別報告(SR15)」中指出,若要維持地球環境的適居性, 2030 年時的二氧化碳排放量需比 2010 年時減少 45%,並在 2050 年時實現零碳排。對於煤炭的使用,則應在 2050 年時降至所有一次能源的 1% – 7 %,且大部分燃煤,應搭配碳捕捉與封存(CCS)技術使用,以實現零碳排放6。為能有效減少二氧化碳排放,對於部分積極面對氣候變遷提出減碳作為的歐洲國家,如法國預計在 2021 年;英國與義大利預計在 2025 年;荷蘭、丹麥與葡萄牙則預計在 2030 年,即關閉所有燃煤電廠7

-----廣告,請繼續往下閱讀-----
2017歐洲各國預計未來減碳排放狀況8。圖/The European Power Sector in 2017

回顧台灣的情境,2018 年中華民國全國性公民投票第八案「您是否同意:確立「停止新建、擴建任何燃煤發電廠或發電機組(包括深澳電廠擴建)」之能源政策?」,公投結果以 38.46% 的「有效同意票數對投票權人數百分比」通過。有投票的人數中,有  76.41% 的投票者支持此項公投。在科學研究結果、國際趨勢與國內民意展現相互吻合的情況下,燃煤電廠在台灣幾無新建或擴建的機會。不過,台灣大概也難以如歐盟諸國,有相對優勢的環境或豐沛的資源能積極放棄燃煤發電。但燃煤電廠若能憑藉其低廉成本,投入更多資源強化煤炭的採購過程與標準制定;更節能與減污的運輸與儲存設施;提升燃燒效率的燃料加工與鍋爐技術;以及燃燒過程對廢氣品質的持續監測;燃燒後的集塵等環保技術。既存的燃煤電廠,仍可以保有其競爭優勢,又能盡可能減少對環境的衝擊。

在可預期的未來,面對氣候變遷帶來的衝擊,台灣要再興建下一座燃煤電廠自有其高難度。若既有的燃煤機組沒有延役或或提早退役的的計畫,則尚有一機組興建中、且各項技術新穎的林口電廠,將以末代燃煤電廠之姿,佇立於國門,持續肩負降低發電成本與支持電力穩定的重責大任。

延伸閱讀

參考資料

    1. BP-Statistical Review of World Energy
    2. International Energy Agency-Data & Publications-Coal Information 2018
    3. Indiana Center for Coal Technology Research-COAL CHARACTERISTICS 2008
    4. 泛科學:供應鏈中的甲烷外洩,抵銷了天然氣的減碳效益
    5. International Energy Agency-World Energy Outlook-Executive Summary 2018
    6. Intergovernmental Panel on Climate Change-Global Warming of 1.5 °C
    7. CarbonBrief-The EU got less electricity from coal than renewables in 2017
    8. Sandbag-The European Power Sector in 2017

本文由台灣電力公司委託/廣告,泛科學企劃執行

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

7
4

文字

分享

2
7
4
「氫」進你的生活,探索太陽能變成電的秘密——專訪東海化學系助理教授王迪彥
科技大觀園_96
・2021/04/28 ・4629字 ・閱讀時間約 9 分鐘 ・SR值 559 ・八年級

在氣候變遷的世代,綠色電力是各領域學者爭相研究的議題,而太陽能為綠電的一大重點。專精於奈米材料、光電領域的王迪彥教授,帶領「新世代能源研究團隊」研發出新型光電化學製氫技術。本次專訪中,王迪彥教授將與我們分享台灣綠電的現況,太陽能如何轉化為電能,以及未來的趨勢及展望。

地球暖化、能源耗竭是這個世代環環相扣的問題,雖然大家皆知北極熊正在瀕臨生存危機、每天呼吸的空氣越來越髒;但是,沒有電,手機就無法充電、電腦及各種電器設備就無法運轉,缺電的後果不堪設想。正因如此兩難,科學家們開始發展「綠色電力」(以下簡稱「綠電」)。太陽能是綠電的一大重點,如何將太陽能儲存起來供大眾使用更是目前學者們的競相研究的主軸。而在台灣,「新世代能源研究團隊」發現能把太陽能用「氫」儲存起來的方法,究竟是什麼樣的神奇技術呢?就讓身為團隊主力之一的王迪彥教授帶我們來一探究竟吧!

地球暖化、能源耗竭是這個世代面臨最嚴峻的問題之一。(圖/pixabay

王迪彥教授小簡介

王迪彥教授目前任職於東海大學化學系,專長是開發奈米材料於光電及催化方面之應用。王教授去年科技部計畫主要研究的方向著重發展新型態鋁離子電池之陰極材料,同時建立金屬離子電池測試平台。此外,王教授與台大教授陳俊維、臺灣科技大學教授黃炳照所組成的跨校際「新世代能源研究團隊」,突破了「太陽能轉換氫能」的技術門檻 :研發出以原子層材料石墨烯與矽基材料結合之新型的光電化學製氫技術。

關於綠電的大小事

火力發電通常是仰賴燃燒化石燃料,將鍋爐水加熱,產生高溫高壓的蒸氣後,將蒸氣導入汽渦輪機推動葉片轉動,而這類的機械能會帶動發電機產生電力,並將電力輸送至各地。但是,火力發電最大的缺點,就在於它會產生飛灰、底灰、二氧化碳、氮氧化物、硫氧化物及粒狀物等副產物,而破壞地球環境。

而綠電則是以減少對環境衝擊為前提的情況下生產電力,像是其發電所產生的二氧化碳排放量為零或趨近於零,目前大家時常聽到的風力發電、水力發電及太陽能發電均屬綠電的範疇。那麼……為何不用綠電取代火力發電呢?如果你也有相同的疑惑,以下這些事情,你必須知道!

-----廣告,請繼續往下閱讀-----

目前台灣綠電的比例占多少?

109年台電系統發購電量結構(圖/台灣電力公司「再生能源發電概況」

根據 109 年台電發電量統計結果:火力發電占 78.5%,核能發電占 12.7%,再生能源(綠電)僅占 5.8%。而當我們再細分這些再生發電的種類,當中太陽能發電的比例居冠 (43.6%),亞軍是水力發電 (21.8%),季軍則是風力發電 (15%),其他還有垃圾沼氣、生質、地熱發電也有少數貢獻。

109 年再生能源發購電量結構(圖/台灣電力公司「再生能源發電概況」

為什麼台灣綠電的比例那麼少?

這就得說到以下幾個層面的問題:

  1. 土地問題:無論是現階段的太陽能或是風力發電的陸上風機,若要達到以綠電為發電主力,均需要用到大面積的土地,進而會造成整合地權的問題。
  2. 制度問題:雖然當前經濟部標準檢驗局推動「再生能源憑證 (Renewable Energy Certificate,簡稱 REC) 」,它是綠電的「身分證」,讓國內的生產的綠電符合國際綠色供應鏈的要求,角逐國際競爭,也是國際企業進駐台灣投資的重要關鍵,更是綠能發展的加速器 。但這類憑證仍存在一些制度漏洞(例如經濟部標檢局似乎並未追蹤及註銷憑證的具體規劃),因此若要達到完善且明確的綠電使用制度需待加強。

用電習慣會是推動綠電的絆腳石嗎?

不管是炎炎夏日,抑或是酷寒冬日,大家都會下意識地打開冷氣、暖氣機讓自己舒服一下,加上去年疫情影響下,選擇在家辦公的人數激增,因此台灣 2020 年 1 到 10 月住宅用電量較同期成長足足 7% !幾乎現代人都 24 小時無法脫離用電,但現階段的綠電根本無法達到人們連續用電的需求。若要達成電力以綠電為主的目標,不僅僅是技術層面上的精進,也需要配合人們的節電意識。

如何將太陽能如何變「氫」?

本篇文章的重頭戲來了,上述提及太陽能發電占整個綠電的比例為大宗,那麼……太陽能究竟是如何變成氫的呢?就讓王迪彥教授來為大家解釋一下當中奧秘吧!

-----廣告,請繼續往下閱讀-----

將太陽能「存」起來的方法

傳統太陽能電池,是直接將太陽光轉換成電能,直接進入電網,提供給社會大眾所使用。但我們這項研究是希望先將太陽光能轉變成化學能—氫能,以方便儲存以及運輸。其常見的轉換方法有利用太陽能電解水、太陽能熱分解水及太陽能光電化學電池分解水製氫,但是這些方法有的耗能量高,有的轉換率不佳,而新世代能源研究團隊發現將矽結合石墨烯形成的蕭基介面 (Schottky Junction) 能大幅提升太陽能轉換成氫能的轉換率。

一般半導體的二極體內含有 P 型和 N 型半導體,而 P 和 N 型半導體的接面就叫做 PN junction(註一);而蕭基介面則是由 P 型矽基材料,與類金屬特性之石墨烯所形成,並在石墨烯表面沉積一層鉑奈米觸媒金屬,如此一來,觸媒和太陽能板一體成形,就同時兼顧吸收太陽能及轉換成氫氣之功能。此外,三維特殊結構(如金字塔造型)的矽晶材料也大幅降低了矽的反射率,增加其太陽光吸收效率高達 20%,因此也連帶增加產氫效率。

當太陽能轉成氫以後該如何儲存呢?王教授提及目前能想到的方法就是將氫氣儲存在鋼瓶中,而部分學者也試圖運用儲氫材料,將氫氣儲存在這些固體材料中,但現階段的儲氫材料能儲存的氫氣相對較低,大概 100 公斤的儲氫材料就只能儲存 6 公斤的氫氣。然而,將氫氣儲存在鋼瓶中仍有安全上的疑慮(例如不小心接觸到火源而爆炸),因此如何儲存氫氣仍是科學家們需要再琢磨的考量點。

氫能如何放電

當太陽能變成氫能後,可以作為氫燃料電池的原料,當位在燃料電池陽極的氫氣,與位在燃料電池陰極的氧氣,經過催化劑的作用下,使陽極的氫分子氧化分解成兩個氫質子 (proton) 和兩個電子 (electron) ,當中質子會通過到薄膜到達陰極,電子則由外電路形成電流到達陰極。在陰極催化劑的作用下,氫質子、氧分子及電子,發生還原反應形成水分子。而水就是燃料電池唯一的副產物,因此也稱為潔淨能源。

-----廣告,請繼續往下閱讀-----

與教授的問答時間

1. 為何化學元素週期表當中那麼多個元素,偏偏要變成氫呢?

由於氫的能量密度高,且地球廣泛存在氫,因此氫能作為太陽能的能量載體是再好不過的了!

2. 為什麼想選用石墨烯與矽作為太陽能轉換氫能的材料?

以前太陽能需要先轉換成電,再用這些電去電解水,但若直接將觸媒成長於石墨烯與矽所形成的蕭基介面,就可以省去另外在架設一電解槽進行電解轉換成電的步驟,而直接用太陽能轉換成氫能。

接著,公主通常都需要由守衛來保護,所以石墨烯還有做為保護矽不會強酸電解質所腐蝕之強大功能!由於矽身處的電池環境不是強酸,就是強鹼,而具高載子透明率(註二)的石墨烯能完整貼合包覆矽,使其免於環境的腐蝕,使其發揮最大效用。

3. 王教授在研發過程中曾經遇過什麼樣的難題?

之前遇過兩大難題:第一個,是如何讓石墨烯完整地貼附在矽晶板上?想像一下,若矽晶板是手機,而石墨烯就是螢幕保護貼,大家總希望自己的保護貼能完整貼附在自己的手機螢幕上,以達到最大的保護效果。同理,雖然石墨烯具有延展性,我們使用的是具有三維結構的矽基板,因此花了很大的功夫找到與矽晶板貼附率最好的轉印方法,才能發揮其最佳之光電轉換效果及保護程度。

-----廣告,請繼續往下閱讀-----

第二個,要如何增加矽晶板的吸光率?教授們也是費了一些精力,終於找到像金字塔造型的 3D 表面矽晶材料能達到最大的吸光率。

綠電的未來展望及應用

若太陽能轉換氫能的效率提升,王教授表示將來可望建造一座太陽能電解廠以將太陽光直接轉換成化學能進行儲存。另外,氫能電動車的興起也能減低汽車廢氣對環境的汙染。雖然將太陽能轉為氫能是對環境友善的第一步,但如何儲存這些氫能在目前技術仍是一大挑戰,想像一下,若一座太陽能電廠要儲存氫氣,現階段常見的方法就是用鋼瓶儲存,一旦鋼瓶外洩或是爆炸,其後果實在不堪設想。而當前氫能電動車,每跑 500 公里就需要消耗 3-4 公斤的氫氣,就算設立加氫站(相當於現在的加油站),也得思考是否有安全疑慮。

即便現階段發展的綠電離完全取代火力發電還有好幾大步的距離,但是,新世代能源研究團隊提升氫能轉換率的成果就像阿姆斯壯登上月球一樣,相信未來,透過團隊及科學家們的努力,能將綠能科技提升到另一個境界,讓人們普及使用。

給地球人的省思

王教授認為要發展綠電,需要考量綠電的產能與製造綠電設備耗能的比重(產能/製造耗能),現階段的再生能源仍需仰賴火力發電的支持才能進行,若是為了發展綠電,而耗掉更多能源,豈不是本末倒置了嗎?因此,綠電發展的最終目標,是以再生能源足以支持自身的耗能,以正向回饋的機制產能。

-----廣告,請繼續往下閱讀-----

另外,大家近期吵得熱烈的藻礁公投。燃燒天然氣發電能減少空汙問題,加上政府為了減少南電北送的成本,因此選擇將第三天然氣接收站蓋在桃園大潭一帶以支援當地的發電廠。但是,此舉會破壞當地稀有的藻礁生態,藻礁的形成速度非常緩慢因此珍貴,而大潭藻礁的分布規模尤其廣泛,是維持生物多樣性的關鍵角色。這是一個能源轉型與生態保育的取捨,雙方各持立場,兩方都沒有絕對的對錯,這是一個開放性問題。這個事件也值得大家思考,要擁有健全的綠電發展、能源轉型,其實不單靠專家投入心力,也需要大家共同商討及各界努力來達成。

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 2
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。