分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

氣候變遷時代,我們還需要林口燃煤電廠嗎?

  • 文/廖英凱

本次的系列文章中,我們討論了燃煤發電的三個重要的階段,包含前處理燃燒過程燃燒後處理。在本文中,就讓我們來認識設置於北台灣,擁有最新超超臨界技術的林口電廠的過去、現在、以及未來吧。

回首來時路:蓋建築前先蓋電廠是常識吧?

蓋建築前先蓋電廠?!圖/Pixabay

1960 年代,伴隨台灣工業起飛的用電需求攀升,台灣電力公司在台北縣林口鄉(現為新北市林口區)下福里的海邊興建了林口發電廠,廠內設置了兩座裝置容量各為 300 MW 的燃煤與燃油機組,為當時單一機組裝置容量最大的發電機組。1970 年代,能源危機使原油價格飆漲且供應不穩,林口電廠將燃油機組改建為燃煤機組以降低發電成本並提升能源穩定。由於燃煤機組不適用於尖峰時期的電力負載調度,1998 年,林口電廠另增設了兩座裝置容量各 150 MW 的天然氣/輕油雙燃料氣渦輪發電機。至 2011 年間,林口電廠可提供 900 MW 的電力,約為當時台電總裝置容量的 2%。

由於機組使用年限已逾 40 年,2005 年起林口電廠「先建後拆」的方式,於廠區空地開始規劃興建兩座裝置容量各 800 MW 的超超臨界燃煤機組;並於 2011 年將林口電廠的既有四部機組開始除役; 2016 年與 2017 年,新的兩部機組開始商轉供電。同時,於原機組拆遷後的空地興建第三座 800 MW 超超臨界燃煤機組,預計於 2019年商轉供電。屆時林口電廠將可提供 2400 MW 的裝置容量(註:中火燃煤為 5780 MW;大潭燃氣為 4984.2 MW)。

這煤很純,不來一點嗎(?)

煤炭的使用歷史悠久,自人類進入工業化時代,煤炭與工業的發展、與近代文明的進展高度相關。由於礦藏分佈世界各地且儲存容易,而使煤炭價格低廉且供應穩定,特別適合大型工業與發電業使用,在全世界的能源消費中,大約佔了 28%1,2,僅次於石油的消費。在台灣的情境中,台電所屬的燃煤電廠,每年也約消耗了 3000萬公噸的煤炭。

雖然煤炭的主要成分是碳,但仍含有氫硫氧氮等元素,這是由於煤炭是古代植物的化石,經由長時間的生物與地質作用碳化而成。不同地區的煤礦碳化程度不同,依碳化程度由低至高,常分類為為泥煤、褐煤、亞煙煤(次煙煤)、煙煤(生煤)與無煙煤。由於碳化程度越低,雜質也越高,而容易在燃燒後產生氣體污染。例如,煙煤的碳含量大約是在 69% 至 89% 之間3;而無煙煤的碳含量則提高為 86% 至 98% 之間,其餘的雜質則為水、空氣、氫、硫、氮等物質組成。這些雜質導致煙煤的燃燒,比起無煙煤會產生更多的煙、氣體污染,且熱效率也較低。不過值得一提的是,含碳量略低於煙煤的亞煙煤,雖熱值較低,但因硫份也較低而較少污染。

因此,近幾年有部分地方縣市政府,試圖制定禁燒生煤條例或停止核發「生煤許可」,就是希望能避免燃燒雜質較高的煙煤,而加劇空氣污染的程度。只是由於越高品質的煤炭成本也會隨之提高,產量也較少,實務上燃煤電廠仍多使用亞煙煤與煙煤作為燃料,而高品質的無煙煤則較常見於家用燃料或暖氣,應用在無法裝設過濾與環保設施,且與人類生活更為接近的使用方式。

林口電廠實際所使用的煤炭,肉眼可見到煤炭上仍有少量磚紅色的雜質。攝影/廖英凱。

一約既定,山海難阻

由於煤炭需全部仰賴進口,煤炭的供需除須兼顧供給穩定與經濟效益以外,進口煤炭也應考量煤炭的成份以降低污染或提升效率。台電目前進口煤炭的國際合約,主要為印尼與澳洲,占總進口量的八成以上,其餘少部分則進口自俄羅斯、美國與哥倫比亞等。採購的種類則為亞煙煤與煙煤,並針對煤炭的熱值、水份、灰份與硫份訂定品質標準。

以主要進口國印尼和澳洲為例,印尼煤的熱值較澳洲煤低,代表電廠燃燒印尼煤的的發電效率較低,但澳洲煤的灰份與硫份卻比印尼煤高,使燃燒廢氣的污染較為嚴重,因此實務上當煤炭送進煤倉存放後,還會根據不同產地、批次的成分差異,以適當的比例混用入鍋爐燃燒,以同時達到燃燒效率與污染控制。

台灣進口煤炭種類與相關數值資料。
AD, Air Dry Basis:空氣乾燥基,與空氣濕度達到平衡的煤炭做為比較基準。
Gar, Gross Calorific Value:一公斤燃料完全燃燒時所釋放的全部熱量。
資料整理/廖英凱。圖表/泛科學製作。

仰賴海運進口的煤炭,也需要有港口疏運的配合。雖然自 2015 年起,林口電廠已設置了專屬的卸煤碼頭接收來自各產煤國的煤炭。但如果行經林口電廠附近,會發現仍有部分閒置的鐵軌與鐵路設備。這條已停用的「桃林鐵路」,是 1968 年,為搭配林口電廠新建而設立的專屬運煤鐵路,連接林口電廠與桃園火車站以銜接西部縱貫鐵路,而能載運來自台中港的煤炭,至 2012 年底鐵路停用為止,提供了每年 160 萬噸,3000 車次的 40 餘年運煤歷史。

林口運煤火車。圖/台電提供。

2012 年底桃林鐵路停用後,林口電廠並未停止營運,而是改以台北港接收煤炭後,再以濱海公路的卡車運輸進廠。然而火車每車次運量約 500 噸,但卡車僅有 23 噸。使公路運輸期間,每天須從台北港轉運 200-250 車次的卡車,才能滿足一台新機組每日 4600-5750 噸的燃料需求。對於規劃中最終將有三部機組,預計每年最高可至 630 萬噸的用煤量來說,公路運輸除交通上完全無法負荷以外,也會增加煤塵溢散的空汙問題與運輸轉運的能源消耗。因此,專屬的卸煤碼頭與密閉式的輸送系統,正可以確保輸送的穩定、效率與避免污染。

台灣還需要林口電廠嗎?

儘管污染防制與管理的技術與思維可以不斷精進與投入,但相較起眾多發電方式,燃煤電廠對於環境的影響仍相對較大。對於燃煤電廠新建或營運的顧慮,在可預期的未來也必然存在,然而所有的工程開發本為權衡輕重後的選擇。因此,有必要來簡略盤點對於當代台灣,我們還有哪些需要林口電廠的理由。

回到燃煤發電的本質,若未來沒有更為嚴苛的碳稅等政策工具的制定,則燃煤電廠仍因燃料取得容易,而擁有價格低廉與較天然氣相對穩定的誘因。從燃料的運送與儲存角度來看,煤相比起石油、天然氣、核燃料來得更容易儲存及運送,林口電廠目前規劃的煤倉,就能提供電廠 30 天以上的安全存量,相比起天然氣安全存量在 2019 年僅有 7 天,預計至 2027 年才提升至 14 天。此外煤炭也沒有天然氣供應鏈中的外洩問題4。因此,雖然燃煤欠缺負載調度的能力,但其低廉與穩定的特性,對於在選擇基載發電廠時,燃煤絕對具有相當大的誘因。

若回到台灣各區電力供需的狀況來看。長期以來北區均處於供不應求,而須仰賴中區的電力調度至北區。預估在 2025 年時,北區的電力需求為 14-15 GW(註:1 GW = 1000 MW),約為全台的 40%,而電力供給僅能提供 34% – 35%,而有約 5% 的電力缺口需從中南區調度。林口電廠 2.4 GW 的裝置容量,則可提供了 16% 的北區用電需求,在供需不平衡的狀況下,更顯其價值。

再以各區的電廠發電形式來考量 2025 年的情境,北區的燃煤電廠,屆時有花蓮和平電廠(1.3 GW)與林口電廠(2.4 GW)共計 3.7 GW 的裝置容量;中區的燃煤電廠則為台中電廠的燃煤機組(扣除4部機轉為備用機組之容量後,全廠縮減為 3.3 GW)與麥寮電廠(1.8 GW)共計 5.1 GW 的裝置容量;而南區的燃煤電廠則為興達電廠的燃煤機組( 2.1 GW)與大林電廠的燃煤機組(1.6 GW)共計 3.7 GW 的裝置容量。北中南三區的燃煤發電裝置容量比為 3:4:3 尚稱分配均勻,也意味者三分區的電力結構中,都仍保有相對低廉穩定的燃煤作為基載電力。

台灣電廠電網分布圖。圖/台電官網

從電力調度傳輸的風險和能量耗損來看,長途電力調度有主幹電網、變電所故障的風險,故需投資額外線路或設備以降低風險;長途電力傳輸也會有 4.5% – 4.6% 的線路耗損。因此,若有鄰近於重要工業區與人口密集區的大型電廠,則可以減少電力傳輸與電壓所造成的能量消耗。

最後考慮未來太陽光電與風力發電占比大幅提高的情境,在此情境中電力系統應有更高度的調度靈活性,而需大量仰賴燃氣機組與電池調度,但國際能源署在「World Energy Outlook 2018」的執行摘要中,亦指出傳統電廠仍是保持電力系統靈活性的主力,並應搭配新的電網互聯、儲電和需量反應技術做為支持,以確保電力系統的穩定5

綜上所述,對於當代台灣的電力結構、區域發展與經濟考量,林口電廠等燃煤發電,確實有值得存在的理由,但也需要對污染防治持續性地投入與關注。

從此只有眼前路,煤有身後身

儘管燃燒廢氣中的重金屬、硫化物與微粒等污染,可仰賴環保技術的投入而能有效抑制。但在對空汙品質越發重視與擔憂的社會來說,燃煤的空汙狀況,仍是其先天的劣勢。更重要的,是使用煤炭等化石燃料過程中產生的二氧化碳,與其導致的氣候變遷、極端天氣,更是全體人類在未來數年亟需解決的難題。

從國際趨勢來看,國際能源署在「World Energy Outlook 2018」中,利用不同時期發電技術成本與電力系統價值的變化的估計,認為「幾乎在所有地方」太陽光電雖難以在沒有政策支持的情況下取代既存的燃煤電廠,但已比新建燃煤電廠更有競爭優勢。

政府間氣候變化專門委員會(IPCC)在 2018 年 10 月的「IPCC全球升溫 1.5ºC特別報告(SR15)」中指出,若要維持地球環境的適居性, 2030 年時的二氧化碳排放量需比 2010 年時減少 45%,並在 2050 年時實現零碳排。對於煤炭的使用,則應在 2050 年時降至所有一次能源的 1% – 7 %,且大部分燃煤,應搭配碳捕捉與封存(CCS)技術使用,以實現零碳排放6。為能有效減少二氧化碳排放,對於部分積極面對氣候變遷提出減碳作為的歐洲國家,如法國預計在 2021 年;英國與義大利預計在 2025 年;荷蘭、丹麥與葡萄牙則預計在 2030 年,即關閉所有燃煤電廠7

2017歐洲各國預計未來減碳排放狀況8。圖/The European Power Sector in 2017

回顧台灣的情境,2018 年中華民國全國性公民投票第八案「您是否同意:確立「停止新建、擴建任何燃煤發電廠或發電機組(包括深澳電廠擴建)」之能源政策?」,公投結果以 38.46% 的「有效同意票數對投票權人數百分比」通過。有投票的人數中,有  76.41% 的投票者支持此項公投。在科學研究結果、國際趨勢與國內民意展現相互吻合的情況下,燃煤電廠在台灣幾無新建或擴建的機會。不過,台灣大概也難以如歐盟諸國,有相對優勢的環境或豐沛的資源能積極放棄燃煤發電。但燃煤電廠若能憑藉其低廉成本,投入更多資源強化煤炭的採購過程與標準制定;更節能與減污的運輸與儲存設施;提升燃燒效率的燃料加工與鍋爐技術;以及燃燒過程對廢氣品質的持續監測;燃燒後的集塵等環保技術。既存的燃煤電廠,仍可以保有其競爭優勢,又能盡可能減少對環境的衝擊。

在可預期的未來,面對氣候變遷帶來的衝擊,台灣要再興建下一座燃煤電廠自有其高難度。若既有的燃煤機組沒有延役或或提早退役的的計畫,則尚有一機組興建中、且各項技術新穎的林口電廠,將以末代燃煤電廠之姿,佇立於國門,持續肩負降低發電成本與支持電力穩定的重責大任。

延伸閱讀

參考資料

    1. BP-Statistical Review of World Energy
    2. International Energy Agency-Data & Publications-Coal Information 2018
    3. Indiana Center for Coal Technology Research-COAL CHARACTERISTICS 2008
    4. 泛科學:供應鏈中的甲烷外洩,抵銷了天然氣的減碳效益
    5. International Energy Agency-World Energy Outlook-Executive Summary 2018
    6. Intergovernmental Panel on Climate Change-Global Warming of 1.5 °C
    7. CarbonBrief-The EU got less electricity from coal than renewables in 2017
    8. Sandbag-The European Power Sector in 2017

本文由台灣電力公司委託/廣告,泛科學企劃執行


泛科學院精選線上課程:科學思辨力

無論是自然環境或是社會體制,地球正在發生的改變難以預測是好是壞,但是我們可以確定,每個人都需要 科學思辨力 以迎接來得又快又猛的新時代🧠


泛科學院精選實體課程:兒童冬令營

報名泛科冬令營,幫孩子預約一個充滿科學和歡樂的寒假,從此愛上知識與學習!📚

關於作者

PanSci

PanSci的管理者通用帳號,也會用來發表投稿文章跟活動訊息喔。

網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策