0

0
0

文字

分享

0
0
0

各位觀眾:突破光學繞射極限,打造奈米雷射元件!

研之有物│中央研究院_96
・2017/10/28 ・3966字 ・閱讀時間約 8 分鐘 ・SR值 560 ・八年級

電漿光子奈米雷射研究

如同摩爾定律的預測般,電晶體元件的尺寸在過去數十年間不斷縮小至奈米尺度,帶來了科技與工藝的精進創新。但發光與雷射元件,卻受限於繞射極限而難有突破。然而,中研院應用科學研究中心的呂宥蓉助研究員,在碩博士時期與團隊不斷突破光學和自我極限,成功開發出半導體奈米雷射。

中研院呂宥蓉博士與團隊所開發的電漿光子奈米雷射,利用金屬與介電質之間會產生表面電漿極化子的特性,成功開發出史上最小的半導體奈米雷射,圖/廖英凱。

雷射的原理與光學繞射極限

1916 年,愛因斯坦首次探討描述了原子有「自發輻射」與「受激輻射」的可能性。他認為被激發的高能態原子,會有兩種回到低能量狀態的過程。一種是自行釋放出光子而回到低能態的自發輻射;另一種則是如果照射「特定波長」的光子,可以刺激原子提前釋放出,與原照射光波長相同光子的受激輻射。

1958 年, Charles H. Townes 在分子光譜學的研究中,構想出可利用「受激輻射」的原理來得到指定波長的光;他的同事 Arthur L. Schawlow 提出在激發出光的物質兩端,裝上兩面反射鏡,讓激發光不斷在物質內部來回來反射,由於「受激輻射」的發射速率超過吸收速率,透過此構想,便可實現光放大效應,讓指定波長的光不斷地增強。

1960 年, Theodore Maiman 實踐「利用受激輻射的原理來得到指定波長的光」這個理論,成功開發出「紅寶石雷射」,圖/by Daderot@wikipedia。

1962 年, Robert N. Hall 等人,提出利用外加偏壓,讓半導體中價電帶的電洞與導電帶的電子產生能階差,當高能階的電子躍遷回價電帶與電洞結合時,能量便會以「光子」的形式釋出,釋出的光子會在半導體 PN 接面之間,因為半導體的光滑晶格面,而不斷反射累積光能量,形成「共振腔」的結構,而設計出「半導體雷射」。

今日我們所稱的「雷射 (LASER) 」,就是「受激輻射所產生的光放大 (Light Amplification by Stimulated Emission of Radiation)」的縮寫。

「雷射」其原理是先利用輻射,刺激特定的物質,讓物質內原子受到激發,使其最外層的電子躍遷至較高的能階。

雷射產生示意圖,資料來源/雷射知識網,圖/廖英凱、張語辰。

當電子處於高能階時,再給予特定頻率的輻射(光)照射,而使電子躍遷回較低的能階,並釋放出與照射光相同頻率的光子。如果,我們將產生光子的原子,利用兩個設置於雷射物質兩端的反射鏡,讓光子在雷射物質內來回反射,而繼續激發更多的電子躍遷,就能夠不斷累積同頻率的光子。

在這兩面反射鏡中,其中一面能完全反射光子,另一面則允許小部分光子穿過,所穿過的光子束即為雷射,具有發散低、功率高的特性。小至單一晶片的二極體雷射,大至用作促成核融合的釹玻璃雷射,都是雷射的應用尺度。

然而,對於微電子元件的設計上,雷射元件的「微型化」一直有其阻礙。這是由於能促成雷射功率不斷放大增強的關鍵,是由兩個具有反射效果的反射鏡或反射材質,所組成的共振腔。

在過往的研究中,共振腔受到「繞射極限」的限制,最短需要半個波長的大小,以波長 650 奈米的紅光雷射來看,共振腔的長度至少需要 325 奈米。相比起今日各類電晶體元件已能做到十幾奈米的尺寸,光子元件的微型之路,因為光學「繞射極限」這個基本物理限制,而遭受到了阻礙。

電漿子共振腔 縮小雷射元件的體積

以「電漿子共振腔」取代「傳統光學共振腔」,就能將雷射元件體積減少到遠小於可見光波長的奈米尺度!

2012 年,還在就讀清華大學物理學系博士班二年級的呂宥蓉,在果尚志教授的研究團隊中,將「單根氮化銦鎵奈米柱」與「電漿子共振腔 (plasmonic cavity)」 結合,取代傳統光學共振腔,將雷射元件體積減少到遠小於可見光波長的奈米尺度,開發出史上最小的電漿光子奈米雷射。並證明利用電漿子共振腔,可使半導體雷射元件不受限於光學繞射極限,而能大幅縮小雷射元件尺寸。

電漿光子奈米雷射的微觀結構:由下而上是矽基板上的磊晶銀膜、二氧化矽介電層、氮化銦鎵核殼結構奈米柱,來源/Lu, Yu-Jung, et al. “Plasmonic nanolaser using epitaxially grown silver film.” science 337.6093 (2012): 450-453.,圖/廖英凱、張語辰。

這是由於研究團隊所開發的電漿光子奈米雷射中,對於雷射功率的增益,並非利用傳統由兩面具有反射效果的材質所組成的光學共振腔,而是改以「電漿子共振腔」取代。

電漿子共振腔是由「金屬-氧化物-半導體 (Metal-Oxide-Semiconductor, MOS) 」所組成的奈米結構。這是利用金屬在與介電質(氧化物)的交界面,會有形成表面電漿極化子 (surface plasmon polariton, SPP)的特性。

因此,研究團隊在矽基板上,與德州大學奧斯丁分校物理系施志剛教授合作,利用磊晶技術長出一片原子層平坦的銀膜 (Epi-Ag film)作為低損耗的電漿子傳遞平台,在其上鍍一層五奈米厚的二氧化矽 (SiO2) 作為低折射率的介電層,最後放上利用分子束磊晶技術製作的氮化銦鎵/氮化鎵核殼結構奈米柱 (InGan@GaN core-shell nanorods)作為雷射必須的增益介質。

氮化銦鎵/氮化鎵核殼結構奈米柱是一個各邊邊長 30 奈米的六角形晶柱。當外加能量激發奈米柱時,氮化銦鎵會釋放出「光子」。這些光子,與銀膜和二氧化矽介電層之間的表面電漿極化子共振頻率均在「可見光」波段,光子與表面電漿極化子之間並有一對一的對應狀態,能讓光子與表面電漿極化子產生耦合形成混成態。

表面電漿極化子的色散關係。當波向量(電子動量)較低時,表面電漿極化子的色散曲線(紅線),近似於光子(藍線),來源/ScottTParker,圖/廖英凱、張語辰。

這讓「光子」因為與「電漿子」耦合,而被侷限在「二氧化矽介電層」之中不斷累積能量,如同傳統雷射的光學共振腔,但卻不受繞射極限的限制。

光運算、光通訊效能 有機會大幅提升

不受繞射極限的電漿共振腔,讓雷射元件的尺寸大幅縮小至數十奈米的級別,不僅尺寸上與今日積體電路製程常用的「互補式金屬氧化物半導體 (Complementary Metal-Oxide-Semiconductor, CMOS)」可互相匹配,且同為 MOS 的結構。

「電漿子奈米雷射元件」的發明,意味我們將有機會在電子元件的架構上,利用雷射元件發展高速、寬頻、低功耗的光運算器與光通訊系統。

突破光學的繞射極限,為光運算與光通訊時代奠定了關鍵的基礎。但呂宥蓉認為這個領域在未來仍有許多有待發展的方向,例如研發「電激發光」的奈米雷射來取代現有的「光激發」奈米雷射;或是將雷射的應用環境,從目前主流的低溫研究拓展至室溫中,可為未來在積體電路上整合光電元件有所助益。

另外,該研究也有助於在生物醫學應用上發展超高解析生物影像;在材料上減少貴金屬的使用,改研發低損耗的陶瓷電漿子材料——氮化鈦、氧化銦錫、氮化鋯,此為在美國加州理工做博士後研究兩年期間獲得的靈感。同時因應目前單光子材料開始受到重視,呂宥蓉也計畫研究可以電壓控制之單光子的行為。

最終能更理解材質與光的特性,化為操作光的技術,應用至生物感測器、量子電腦、可撓式顯示器等尖端科技。

「我喜歡思考有什麼可以做,並真的做出來!」

傑出的研究成果與高瞻遠矚的發展眼光,往往來自長年努力的累積與幸運的眷顧。呂宥蓉在碩二、博一期間連續在以第一或主要作者,登上 APL 封面論文,博二時更以不受限於光學繞射極限的「電漿光子奈米雷射」研究成果,刊登於 Science 期刊。

面對如此進展迅速的研究成果,呂宥蓉謙虛地表示,這其實沒有什麼特別的秘訣,也不能算是進展比別人快,只是把一天 24 小時當成 36 小時用,犧牲了睡眠與娛樂機會,才能有這些成果。

奮不顧身的研究投入,植基於對科學的熱愛、對自我專長的理解、與環境的支持。呂宥蓉從大學期間,就發現自己熱愛實驗與儀器組裝、操作,喜歡想像並嘗試各種材料與理論的組合。更重要的,是求學期間指導教授果尚志老師,認為研究生應有獨立研究能力與追求科學價值的治學理念。

並不見學霸般地狂氣,難以忽視的亮麗外型更不掩對科學探索的赤子之心,與對無垠知識的好問則裕。(備註:此光學桌並非本文所提之奈米雷射,而是呂宥蓉團隊正在進行的光學研究),圖/廖英凱。

知止而後有定,定而後能靜,靜而後能安,安而後能慮,慮而後能得。

呂宥蓉特別引用了《大學》裡的前人智慧,與同在研究之路上的學弟妹們勉勵,也為今日的成就下了安心踏實的註腳。

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3871 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
靜脈曲張不只是外觀問題,治療選擇與術後保養要點
careonline_96
・2025/09/05 ・2486字 ・閱讀時間約 5 分鐘

提問:請問靜脈曲張的常見症狀?

李應陞醫師:通常在門診看到靜脈曲張的常見症狀,都是有下肢腫脹或是痠麻,走路走久會有疼痛的情形。有些患者會有抱怨半夜會有抽筋的症狀。常見的就是表淺會有浮出一些靜脈叢,我們俗稱蚯蚓在皮膚上面爬的情形。

提問:請問靜脈曲張可能出現哪些嚴重併發症?

李應陞醫師:常見的嚴重的併發症包含下肢會逐漸出現水腫,然後會有冒汁液的情形,甚至嚴重會產生蜂窩性組織炎。更嚴重的可能會產生下肢的傷口、潰瘍的情形,因為靜脈的壓力非常高,所以這類的潰瘍傷口其實都是很潮濕的,而且都會有發生一些惡臭的情形。如果不積極治療的話,都會讓傷口無法癒合。

-----廣告,請繼續往下閱讀-----

提問:請問靜脈曲張的危險因子?

李應陞醫師:事實上在現代的社會上,久坐久站的工作者,譬如說護理師、公車司機、計程車司機等等,都需要去預防自己有可能會有靜脈曲張的發生。再來包括體重過重者,因為腹腔壓力過大,導致下肢的靜脈壓力過大,導致靜脈曲張等。然還有一些是有遺傳因子或家族病史等等,都應該要特別去注意自己是否有靜脈曲張的症狀。因為有荷爾蒙的關係,所以女性其實更應該去注意自己有沒有靜脈曲張的發生。

提問:請問要如何評估靜脈曲張的嚴重度?

李應陞醫師:靜脈曲張的嚴重度從腿部的外觀看是否有蚯蚓狀的浮現的靜脈,這個大部分都是在中級左右。再用病史去詢問病人,包括你是否有黃昏的時候比較容易水腫,或是覺得腳部因為久坐久站而導致的腫脹、難受,甚至半夜抽筋等等,都可以去區分出這個大概就是屬於中後期。再更嚴重一點的話,包括慢性傷口的產生,大部分都會出現在腳踝的內側。當發現這樣的傷口部位的時候,其實大部分可以斷定就是為比較末期的靜脈曲張的症狀。最標準的一個黃金診斷工具當然是超音波,我們會用超音波去看靜脈曲張的瓣膜,一旦有產生逆流的話,表示它是一個形態上面的缺損,就應該去跟病患討論是否需要積極做處理。

-----廣告,請繼續往下閱讀-----

提問:請問該如何治療靜脈曲張?

李應陞醫師:靜脈曲張的治療有很多種,包含了最保守型的治療,建議病人穿醫用型的彈性襪,然後多抬腳,盡量避免泡熱湯。如果以介入處理來講的話,第一種是傳統型態,就是用靜脈曲張剝離手術。另外幾種微創的治療方式,包含以熱能為主的靜脈雷射治療,以膠水為主的屬於非熱能的治療,就是以現在俗稱的超級膠水,去做靜脈瓣膜閉合的治療。

提問:請問傳統手術會如何進行?

李應陞醫師:傳統手術通常都需要用全身麻醉的方式,而且病患需要住院。我們從整隻腿的上端跟下端各開一個洞,用醫用的鐵絲沿著靜脈往上走,然後兩端勾起來,直接抽取靜脈。術後病患產生的不適感會很嚴重,而且病患其實最擔心的就是他旁邊的神經會受到缺損,而導致病患在多年後都有可能會抱怨肢體麻木等情形。

-----廣告,請繼續往下閱讀-----

提問:請問什麼是微創靜脈膠水治療?

李應陞醫師:顧名思義就是用一個特殊的醫用生物膠水,從一個微創的傷口放一個導管進去,大隱靜脈或者是小隱靜脈,從近端到遠端,做一個靜脈膠水的閉合的手術,使靜脈不再逆流,減少它的臨床症狀。

提問:請問微創靜脈膠水治療能帶給患者哪些幫助?

李應陞醫師:微創靜脈膠水帶給病患最大的幫助應該就是不需要全身麻醉,而且手術當日就可以離院等方便性。因為它是用微創的方式去進行的,只需要一個小洞給導管進去,把靜脈閉合起來即結束。所以說帶給病患最大的好處就是舒適感跟方便性,然後可以手術完直接離院,回歸日常生活作息。

-----廣告,請繼續往下閱讀-----

提問:請問什麼是微創靜脈雷射治療?

李應陞醫師:微創靜脈雷射治療,顧名思義就是用一根熱能的導管,沿著大隱靜脈往上走,然後一路用熱能的方式去燒灼靜脈壁使之閉合。由於它是有熱能的形式,所以在術中都必須施打一些局部的腫脹藥劑,保護旁邊的神經,避免病患術後有疼痛感和麻木感。

提問:請問微創靜脈雷射治療能帶給患者哪些幫助?

李應陞醫師:雷射微創靜脈的處理方式,它和傳統的方式的最大差異,就是一個需要全身麻醉,一個只需要局部麻醉即可進行。微創靜脈雷射治療,它事實上閉合率極高,跟傳統的方式處理基本上是一樣的。它的優點就是當天即可出院。

-----廣告,請繼續往下閱讀-----

提問:請問要如何避免靜脈曲張復發?

李應陞醫師:我們會叮嚀說,盡可能還是要去改變自己的生活型態。如果無法及時的改變,或者是因為工作的需求,還是無法避免久坐、久站的話,我們還是會溫馨提醒,需要穿著彈性襪工作。腳部泡熱湯其實是一個禁忌,如果有在泡熱水、熱湯的習慣,一定要減少這個次數,才能維持一個長期的良好預後。

李應陞醫師:趨近六十歲的一個男性病患,長期久坐,導致他的靜脈曲張的症狀非常非常嚴重,就是雙腳嚴重靜脈潰瘍,然後流著大片的汁液,完全無法癒合。在經過了靜脈曲張治療後,他的潰瘍在一年內逐漸的恢復,最後幾次來門診的時候,他的靜脈曲張的傷口完全癒合。他兒子跟病患本人都非常非常的開心。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
一顆科技巨星的隕落(下)—英特爾的沒落
賴昭正_96
・2025/03/20 ・4190字 ・閱讀時間約 8 分鐘

商業上的成功蘊含著自身毀滅的種子:成功會滋生自滿,自滿會導致失敗。只有偏執狂才能生存。
-Andrew Grove(英特爾首席執行官)

話說英特爾於 1986 年冒著丟掉大客戶百年 IBM 的危險,轉向成立僅 3 年多的小電腦公司推銷其最新微處理器的賭博,得到了回報:康柏電腦公司一炮而紅的成功加速客戶對新 80386 晶片的要求。90 年代中後期英特爾更大力投資新的微處理器設計,促進了個人電腦產業的快速成長,成為市場佔有率高達 90% 的微處理器主要供應商,使其自 1992 年以來一直保持半導體銷售額排名第一的地位,於 1999 年將英特爾推上代表美國 30 主要工業的道瓊指數之一成員。

但到了 2000 年代,特別是 2010 年代末期,英特爾面臨日益激烈的競爭,導致其在 PC 市場的主導地位和市場佔有率下降。儘管如此,截至 2024 年第三季度,英特爾仍以 62% 的市佔率遙遙領先 x86 市場、更是筆記型電腦的明顯贏家(72%)。可是為什麼今天英特爾股價竟然倒退了 28 年,回到 1996 年底的價位呢(註一)?為什麼它已經不能再代表美國主要工業,於 2024 年 11 月 8 日被踢出道瓊工業指數,為英偉達(Nvidia,臺灣與香港譯為「輝達」)取代呢?

是什麼原因讓英特爾失去產業龍頭的位置? 圖/pixabay

英特爾的失足

在回答此問題之前,筆者得先指出:個人電腦到了 2000 年初已不再是一高利潤的高科技,而是一種日用商品。當初將英特爾培養壯大的 IBM 於 2004 年年底完全退出了個人電腦的市場;而避免侵權透過逆向工程、製造出第一台 IBM 個人電腦相容機的康柏公司,也在個人電腦市場的價格競爭日益激烈、及想打入主機電腦市場的錯誤政策下,於 2002 年被惠普 ( Hewlett-Packard ) 收購「消失」了。

冰凍三尺,非一日之寒。Google 的人工智慧謂:「英特爾在晶片產業落後的主要原因是多種因素」,包括:
(1)未能洞悉智慧型手機的崛起,在行動晶片市場明顯落後,錯失創新機會給高通(Qualcomm Inc.)等競爭對手;
(2)依賴過時的製造流程,未能像台積電、AMD、和英偉達(註二)一樣採用更靈活晶片設計和外包製造,來應付快速不斷變化的市場需求,導致失去了高效能運算和人工智慧等關鍵領域的市場;
(3)一些分析師認為英特爾在個人電腦市場長期佔據主導地位可能導致高階主管自滿,不願適應不斷變化的產業動態。

-----廣告,請繼續往下閱讀-----

筆者認為前述的(1)及(2)都是果,真正的原因只有(3)一個。80 年代,當英特爾的晶片和微軟的軟體成為快速發展之個人電腦行業的雙引擎時,公司充滿活力,專注於其在個人電腦和資料中心伺服器的特殊領域。英特爾高層曾半開玩笑地將公司描述為「地球上最大的單細胞有機體」:一個孤立的、獨立的世界。像 IBM 一樣,數十年的成功和高利潤也催生了英特爾目中無人及自大之企業文化!這種開會又開會、討論又討論、開不完的會、討不完的論正是公司成熟的標註。

英特爾企業文化

想當初英特爾剛成立時,諾伊斯只聽了幾秒鐘霍夫有關微處理器的激進想法後,就立即說:「做吧」!真是不可同日而語。又如到了 1983 年,其主要記憶體晶片業務受到日本半導體製造商加劇競爭而大大降低獲利能力時,格羅夫立即迅速地不怕「…微處理器是個非常大的麻煩」,脫胎換骨成為微處理器主要供應商━又豈是 90 年代不遺餘力地捍衛其微處理器市場地位而與 AMD 鬥爭的英特爾所能比?

事實上英特爾也曾多次嘗試成為人工智慧晶片領域的領導者,但都以失敗告終(註三):專案被創建、持續多年,然後要麼是因為英特爾領導層失去耐心,要麼是技術不足而突然被關閉。為了保護和擴大公司的賺錢支柱(x86 的數代晶片),英特爾對新型晶片設計的投資總是退居二線。史丹佛大學電機工程教授、英特爾前董事普盧默 ( James Plummer ) 曾謂:「這項技術是英特爾皇冠上的寶石——專有且利潤豐厚——他們會盡一切努力來維持這一點的」。英特爾的領導者有時也承認這個問題,例如英特爾前執行長巴雷特 ( Craig Barrett ) 就曾將 x86 晶片業務比作一種毒害周圍競爭植物的雜酚油灌木叢。

微軟 Copilot AI

英特爾能再放光芒嗎?

在一連串的機會錯失,決策錯誤及執行不力下,英特爾於 2021 年任命曾經主導其發展人工智慧晶片、2009 年離職去擔任 EMC 總裁的基辛格(Patrick Gelsinger)回來當執行長,積極嘗試透過其所謂的「五年、四個節點」進程追趕台積電。這位浪子回頭,被請回來拯救公司的基辛格於去年 4 月 25 日宣稱:即將推出的英特爾 3 奈米製程伺服器晶片的需求很高,可以贏得那些轉找競爭對手的客戶,謂『我們正在重建客戶信任。他們現在看著我們說:「哦,英特爾回來了。」』…但半年後,董事會對他的扭虧為盈計畫完全失去了信心,給了他辭職或被解僱的選擇。基辛格於 12 月 1 日辭職,現由領導英特爾全球財務部門和投資者關係的津斯納 ( David Zinsner ) 擔任臨時聯合執行長,正在務色下一任執行長。

-----廣告,請繼續往下閱讀-----

英特爾現在的處境事實上很像 1993 年的 IBM:在官僚體制、大型電腦利潤下滑,及失去個人電腦的主導權後,其股票從 1987 年 7 月的最高點倒退了 26 年!當總裁兼執行長阿克斯(John Ackers ) 於當年元月宣布首次下調股息 55% 及離職後,遴選委員會竟然找不到任何人願意來收拾這個爛攤子━曾幾何時 IBM 執行長還是眾人夢寐以求的職位呀!最後選委會只好推薦自告奮勇、完全外行(註四)、銷售菸草和食品的 RJR Nabisco 公司的首席執行官郭士納(Louis Gerstner Jr.)!郭士納在自傳中回憶說:重振 IBM 所面臨的最嚴峻挑戰是改變其企業文化。現 IBM 雖然不再像以前在科技界一言九鼎,但其股票已「趕上時代」屢創歷史新高,為道瓊工業指數中歷史最悠久的高科技成員(1979 年起);郭士納也被視為美國商界的偶像,IBM 轉型和重拾技術領導地位的救星。

IBM 和英特爾的股價走勢圖。圖/作者提供

股票名嘴克萊默(Jim Cramer)在年初謂:「我們需要將英特爾視為資產負債表非常糟糕的國寶」,因此有必要幫助英特爾公司渡過難關。美國政府顯然也同意,商務部根據 CHIPS 激勵計劃的商業製造設施資助機會,已經給英特爾公司提供高達 78.65 億美元的直接資助。但如前面所提到的 IBM 如何啟動發展個人電腦,錢真的是萬能嗎?英特爾能重新燃燒發光嗎?

英特爾不像 1993 年的 IBM 具有百年的歷史,各方面人才濟濟:多項技術創新和最多的專利,包括自動櫃員機、動態隨機存取記憶體 、軟碟、硬碟、磁條卡、關聯式資料庫、Fortran 和 SQL 程式語言、UPC 條碼、以及本文所提到之個人電腦等;其研究部是世界上最大的工業研究機構,員工因科學研究和發明而獲得了各種認可,包括六項諾貝爾獎和六項圖靈獎(Turing Award,註五)。因此筆者懷疑英特爾能夠重新奪回業界領先地位;CFRA Research 技術分析師齊諾 ( Angelo Zino ) 表示:「目前來看,它們重返輝煌的可能性非常渺茫。」

以目前來看,英特爾技術劣勢難以逆轉,重返業界領導地位機會渺茫。圖/unsplash

結論

這顆科技巨星真的要隕落了嗎?真的是「一失足成千古恨,再回頭已百年身」嗎?英特爾第三任首席執行官(1987-1998)格羅夫真的不幸言中了嗎:「商業上的成功蘊含著自身毀滅的種子」?當然,像英特爾這麼有成就的公司要徹底消失是不太可能,因此最可能的命運應該是分割拍賣或像仙童半導體公司一樣被其它公司收購(註六)。事實上去年高通公司就曾與英特爾洽談收購事宜,但最終放棄了這個想法。

-----廣告,請繼續往下閱讀-----

最後讓我們在這裡以同時被 IBM 培養狀大、在個人電腦上一起嘯吒風雲的微軟公司,其創辦人蓋茨(Bill Gates)元月 8 日的美聯社訪談來結束本文吧。蓋茨聲稱:如果英特爾沒有在 70 年代初期取得技術突破,創造出能夠驅動個人電腦的微型晶片,他的職業道路可能會有所不同。他接著表示:微軟也像英特爾一樣,在 18 年前錯過了從個人電腦到智慧型手機的轉變,但微軟已經恢復元氣,而英特爾的困境卻惡化到需要尋找新執行長的地步(註七),他說:

他們錯過了人工智慧晶片革命,(因為晶片設計和製造方面落後)其製造能力達不到英偉達和高通等公司認為是簡單的標準。我認為基辛格非常勇敢,他敢說:「不,我要解決設計方面的問題,我要解決晶圓廠方面的問題。」我(曾)希望為了他自己、為了國家,他能夠成功。我希望英特爾能夠復甦,但目前看來它們的處境相當艱難。

今天微軟公司已是全美市值最大的前三名公司之一,而英特爾卻淪落至此,能不讓人感嘆造化弄人嗎?

(2025 年 2 月 3 日補註)本文完稿於元月 15 日;英特爾元月 30 日第四季業績報告謂:營收連續三季下滑,較去年同期下降 7%;本季淨虧損總計 1.26 億美元(即每股 3 美分),而去年同期的淨收入為 26.7 億美元(即每股 63 美分)。今年第一季的業績指引令分析師失望!

備註

  • (註一)同一期間道瓊股指上升了 7 倍多。
  • (註二)這三家公司現在全是中國人在主導。在英特爾全盛時期,這三家全是在後者的陰影下求生存;而現今這三家的市值均遠遠超過英特爾!
  • (註三)2005 年,當英特爾的晶片在大多數個人電腦中充當了大腦時,執行長歐德寧( Paul Otellini)就已經意識到了圖形晶片最終可能會在資料中心承擔重要的工作,向董事會提出了一個令人震驚的想法:以高達 200 億美元收購電腦圖形晶片的矽谷新貴英偉達(英偉達的市值現已超過 3 兆美元)。但因英特爾在吸收公司方面的記錄不佳,董事會拒絕了這個提議,歐德寧退縮了!反觀 AMD 於 2006 年收購英偉達對手 Array Technology Inc. 後,現正挑戰英偉達的圖形晶片市場。
  • (註四)在 1993 年三月宣布將擔任執行長的記者招待會上,被問及用什麼牌子的計算機時,新執行長說他有一台筆記本電腦,但不記得是什麼牌子。
  • (註五)公認為計算機科學領域的最高榮譽,被稱為「計算機界的諾貝爾獎」。
  • (註六)仙童半導體公司於 2016 年 9 月被安森美(ON)半導體收購,品牌已不存在。
  • (註七)英特爾於 2025 年 3 月任命陳立武出任新執行長。

延伸閱讀:圖形處理單元與人工智能

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
50 篇文章 ・ 61 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。