0

0
0

文字

分享

0
0
0

恆星天文學之父:赫歇爾誕辰|科學史上的今天:11/15

張瑞棋_96
・2015/11/15 ・1113字 ・閱讀時間約 2 分鐘 ・SR值 462 ・五年級

-----廣告,請繼續往下閱讀-----

《銀河系大定位》一書中如此描述赫歇爾:「他像個先知般,領先運用現代方法展開深遠太空的天文學研究。當許多天文學家仍在使用視野狹窄的折射式望遠鏡窺視行星時,他已經截獲無數由極遠星雲和星系在遠古時代所發出的光芒。當其他天文學家正在將太陽系裡的各項距離修正至小數點後第二位時,他已經在測繪星系與星系之間的一些星群了。當他們還在以估計出來的光速調整木衛的軌道計算時,他已經探索至宇宙深處,並知道他所見者為數百萬年前的宇宙模樣。」誰能想像這位領先時代,被稱為「恆星天文學之父」的赫歇爾其實正職是音樂家,而且在35歲之前都還沒碰過望遠鏡!

威廉·赫歇爾。圖片來源:wikipedia

出生於漢諾威的赫歇爾原本在軍樂隊裏吹奏雙簧管,逃到英國後因為展現各項音樂才華而很快就擔任要職,躋身上流社會。然而當他將目光轉向夜空,心思從此被閃閃發亮的星星佔據,甚至在不惑之年放棄名利,全心投入孤寂的觀測工作。
赫歇爾為了能看到更多星星,決定自製反射式望遠鏡,連鏡片與金屬鏡都親自打磨。他望遠鏡越做越多,越做越大;前後一共做了四百多具,最大的一具口徑126公分,鏡筒長12米,重達一噸。進行觀測時必須爬上15公尺高的鷹架,才能將眼睛湊上目鏡。

由於當時還沒有可以抵銷地球自轉的驅動裝置,赫歇爾不得不發展出逐次觀察一段狹長區域的「掃描法」,並大聲讓妹妹卡凱若琳記錄下來;久而久之,北半球的星圖也刻印在赫歇爾的腦海裏。也因此當他在1781年瞥見天王星時,馬上就警覺到那個位置不該有恆星。於是赫歇爾因為發現天王星而聲名大噪,獲選為英國皇家學會會員,並被任命為宮廷天文學家,也因而得以建造前述那具最大的望遠鏡,啟用後很快就發現了土衛二和土衛一。

赫歇爾不斷探索更深遠的太空,他將當時已知的星雲數目由100個擴增至2,500個。他根據恆星的分佈推測銀河系像個圓盤;並且發現太陽並非宇宙的中心,而是繞著銀河系中心移動。

-----廣告,請繼續往下閱讀-----

赫歇爾如此豐碩的成果當然要歸功於他數十年如一日的勤奮工作。只要天候許可,他就整晚用望遠鏡觀測星空;八十歲時他仍興奮地寫信給妹妹凱若琳,要她過來幫忙一起觀測彗星。支持著赫歇爾一輩子鞠躬盡瘁,死而後已的,無非是對於點點繁星與浩瀚宇宙的熱愛與好奇;或許是受到如此巨大的熱情感染,妹妹凱若琳與兒子約翰·赫歇爾也都成為著名的天文學家。在太空中有個以他為名的赫歇爾太空望遠鏡,也是鞠躬盡瘁,運作四年後才在2013年四月底因冷卻劑耗盡而停止工作。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1017 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

2

15
3

文字

分享

2
15
3
來認識「躺著自轉」的天王星!——太陽系內唯二的冰巨行星
ntucase_96
・2021/10/31 ・2771字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

天王星是非常有趣的行星。希臘羅馬神話中,它是土星的爸爸、木星的爺爺、火星的曾祖父。比起其他行星是「站著自轉」,天王星是「躺著自轉」。太陽系 8 顆行星當中大多都觀測到了 X 光的訊號。唯獨兩顆冰巨行星:天王星、海王星沒有。終於,研究團隊從 2002 年以及 2017 年的資料中找到了天王星上 X 光訊號的證據。本文帶大家認識一些天文星有趣的歷史、文化、以及認識這一篇 X 光的研究成果。

天王星的發現與特色

天王星的視星等大約為 5.5,是一顆非常暗的星,幾乎接近人眼的極限。平時在一般都市環境中非常不容易直接用肉眼看到,只有在晴朗、沒光害的夜空中比較有機會。

航海家 2 號於 1986 年拍攝的天王星。圖/維基百科

正式的發現、命名者是英國的威廉.赫雪爾(William Herschel)。一開始猜測是個彗星,後來才確認是個行星。英國國王喬治三世還因此以一年 200 英鎊的薪水聘僱他,依照零售物價指數(Retail Prices Index)來推算的話,相當於現今一年一百萬台幣的薪水 [2]

這筆薪資顯然相當優渥,本來赫雪爾想要將這顆星命名為「喬治之星」(Georgium Sidus)。不過當時除了喬治三世和赫雪爾以外,當時喜歡這個點子的人並不多。畢竟其他的行星都用希臘神話來命名,突然冒出一顆用英國國王命名的行星怎麼樣看都不合適。

最後由柏林天文學家約翰.波德(Johann Bode)的建議定案為「Uranus」,這個字的詞源是希臘神話中的天空之神「烏拉諾斯」。幾乎每個希臘神話中的腳色都能在羅馬神話中找到對應。「烏拉諾斯」對應到的就是「凱路斯(Caelus)」,是「薩圖恩(Saturn,即土星)」的爸爸;是「朱比特(Jupitar,即木星)」的祖父;更是「馬爾斯(Mars即火星)」的曾祖父。

-----廣告,請繼續往下閱讀-----

因此在希臘羅馬神話當中,天王星、土星、木星、火星可是祖孫四代呢。

恆星一般在天空中的相對位置幾乎是不變的,要花千年、甚至萬年才有可能看到一些變化。離太陽愈遠的行星,在天上的相對位置變化愈慢。木星要回到原來的位置要花 12 年、土星更要花上 30 年,天王星更慢,要 84 年!因為天王星在天上的相對位置實在變化得太慢了,以至於早期先民即使看到了天王星,也認為它是一顆恆星。

航海家 2 號(Voyager 2)即將跟隨它的前輩航海家 1 號(Voyager 1)離開太陽圈(Heliosphere)了。圖/NASA[3]

與其它的行星比起來,天王星離地球非常遙遠。唯一抵達天王星過的太空探測器是 1977 年發射,飛了將近 9 年後才抵達的航海家 2 號(Voyager 2)。這台探測器從地球出發,觀測了木星、土星、天王星、海王星之後,繼續一路向外飛,現在幾乎已經離開了太陽系。

上面大多數的儀器都已經缺少電力、無法運作,只保留了最基本的功能。去年底對它發射訊號時,在將近 35 小時之後還是收到了回應。

-----廣告,請繼續往下閱讀-----

天王星在太陽系的八顆行星裡面,有著一個非常奇特的性質:「躺著自轉」。其他七顆行星的自轉與公轉差不多是在同一個平面上,以地球為例子,地球的自轉軸與公轉軸只差了 23.5° 左右。

但是天王星的自轉軸與公轉軸相差了 98°。如果把公轉面想像成水平面的話,地球的自轉就像是一個旋轉的陀螺,而天王星則是電風扇的扇葉。

太陽系各顆行星的自轉方向及轉軸,大多數的行星都像陀螺一樣、自轉平面與公轉一致,但是天王星卻是躺著的。圖/NASA[4]

天王星上的 X 光訊號!

太陽系的行星成員當中,除了地球以外,水星、金星、火星、木星、土星都偵測到過 X 光的訊號,甚至連彗星、以及矮行星冥王星都偵測到過 X 光。在最近這篇研究出來之前,行星當中就只剩下兩顆冰巨行星:天王星、海王星還沒有量測到 X 光。

最近,研究團隊檢視了「錢卓拉 X 射線天文台(Chandra X-ray Observatory)」的觀測數據,研究團隊量測到了天王星上的 X 光,研究結果發表在期刊《地球物理研究期刊:太空物理學(JGR: Space Physics)》當中 [5]

-----廣告,請繼續往下閱讀-----
圖/NASA [1]

錢卓拉 X 射線天文台是當代最重要的 X 射線望遠鏡。自 1999 年發射升空服役到現在,累積了非常多的觀測資料,有許許多多 X 光的重要觀測貢獻都來自於這台望遠鏡。然而宇宙間能觀測的天體實在太多啦,對天王星的觀測其實非常稀少。截至 2020 年 6 月,只有三次對天王星的觀測:2002 年 1 次、2017 年 2 次。到了這一兩年研究團隊才從這些資料中找到了天王星上 X 光的訊號。

錢卓拉 X 射線天文台(Chandra X-ray Observatory)。圖/NASA [1]

X 光是電磁波頻譜上高頻率、高能量的波段。要產生 X 光,一般來說要有特殊的環境才可以。天王星上 X 光最主要的來源是對太陽光的散射。太陽光本身是一個很強的 X 光光源,即便天王星離太陽這麼遠,太陽所發出來的X光到了天王星以後,被天王星的氣體分子散射開。這個機制是天文學家已知的,過去在木星、土星上面看到的 X 光也都是這一類。

特別的事情是,天文學家藉由木星、土星的數據推算了一個天王星上可能量測到的 X 光強度。但研究量測後卻發現 X 光的強度比推算的數值還要更強。這有幾個可能,一個是天王星對太陽 X 光散射的效果比木星、土星更好。另外一個可能性就是天王星有額外的 X 光產生機制。

目前推論與天王星周遭的帶電粒子有關。比方說,天王星和土星一樣,周圍有一圈環。當帶電粒子撞擊到天王星環的時候,就有機會放出 X 光。另外一個可能性是「極光」,當帶電粒子因為磁場等效應掉進大氣層、與大氣分子相撞後,也有機會放出 X 光。這個現象在木星上也看到過。不過到底是哪個機制就仰賴未來更多的觀測了。

-----廣告,請繼續往下閱讀-----

天王星在太陽系是很重要的存在,它是離我們最近的冰超巨星、而且還躺著自轉,讓我們有機會以不同的角度觀測行星。太陽系的冰超巨星只有兩顆,由於距離遙遠,都很不容易觀測。現在好不容易在天文星上看到了 X 光的影像,使我們得以更全面地了解冰超巨星的性質。對太陽系內、太陽系外的行星都能有更全面的理解。

參考資料:

  1. NASA / First X-rays from Uranus Discovered
  2. Measuring Worth
  3. NASA Planetary Photojournal / NASA Voyager 2 Could Be Nearing Interstellar Space
  4. WASP Planets
  5. R. Dunn et al., A Low Signal Detection of X-Rays From Uranus, Journal of Geophysical Research,  (2021)
  6. SciTechDaily / First Detection of X-rays From Uranus
-----廣告,請繼續往下閱讀-----
所有討論 2
ntucase_96
30 篇文章 ・ 1472 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

5

70
2

文字

分享

5
70
2
穿越兩百億公里的家書,航海家二號妳收到了嗎?
陳子翔_96
・2020/12/21 ・2312字 ・閱讀時間約 4 分鐘 ・SR值 510 ・六年級

-----廣告,請繼續往下閱讀-----

距離我們大約兩百億公里的太空中,有一架名為航海家二號的探測器已經工作了數十年,就在不久前,NASA 送出了久違的訊息試圖再次與她連絡上……

為什麼說久違呢?是這樣的,今年初因為位在澳洲坎培拉,負責聯繫航海家二號的訊號收發站要進行天線設備升級,然而這又是目前唯一能和航海家二號聯繫上的訊號收發站,也因此必須暫停與航海家二號的聯繫。

負責聯繫航海家二號的訊號收發站——CDSCC。圖/Wikipedia

43 年從未斷訊的航海家二號

雖然說這次與航海家二號數個月的斷訊是計畫之中的事情,但其實還是讓 NASA 的工程師與科學家們有些緊張。各位可以回想看看,自己用過壽命最長的電子產品或家電用品是什麼呢?也許你會想到用了五年的手機,十年的電視機,又或是用了二、三十年的電鍋或冰箱。但相信應該很少人家裡有超過四十年,而且完全沒有維修過卻還能使用的電器吧。然而航海家二號從發射至今已經獨自在廣大的太空中運作超過 43 年了,在她離開地球時,台灣第一條高速公路與電氣化鐵路都還在建設中呢!也因此要與一架骨董級探測器斷訊八個月的確滿讓人擔心的。

不過話說現在科技已經進步非常多,近年也不乏許多先進的新探測器持續進入太空探索,為什麼我們仍這麼關心航海家二號的動向呢?其中有個很大的原因是,即便新的探測器有著更先進的儀器設備,航海家二號帶來的貢獻和歷史意義仍然難以被超越。

-----廣告,請繼續往下閱讀-----

就讓我們藉由著個機會來重溫這架傳奇探測器光輝的故事吧!

航海家二號的誕生:太空「大航海時代」的序章

在太空探索的歷史上,1960 年代是載人太空任務發展的黃金年代,第一位進入到太空的人與第一位踏上月球的人都是在 1960 年代發生的。而 1970 年代,就可說是探索太陽系的「大航海時代」了,在這十年間,許多無人探測器先後出發探訪太陽系的各大家族成員,像是首次登陸火星、首次飛掠各大行星的成就都在這幾年間達成,而航海家二號可說是其中最具代表性的探測器之一。

1973 先鋒十號史上首批飛掠木星旁拍攝的照片。圖/NASA
1976 年維京 1 號探測器 史上首批火星表面的照片。圖/Wikipedia

揭開太陽系外圍的神秘面紗,乘載希望奔向宇宙深處

有別於先前多數的太空探測器都是以一顆特定星球作為目標,航海家二號最特別之處,就在於她造訪了所有外太陽系的氣體行星—木星、土星、天王星和海王星。而要完成這樣的壯舉必須仰賴這四顆行星特殊的排列位置,讓探測器在每在造訪一顆行星的同時,也正好能巧妙地讓該行星的重力拉自己一把,幫助探測器用最節省燃料的方式飛向下一顆行星,而這樣的機會每隔 176 年才會有一次呢!

航海家二號的飛行路線,由內而外造訪四顆氣體行星。圖/Wikipedia

把握住這樣的機會,航海家二號在 1977 年八月升空,並在接下來的十年先後收集了四顆氣體行星的重要科學資料,同時也傳回了許多令人屏息的經典照片。更特別的是,在四十多年後的今天,航海家二號仍然是唯一造訪過天王星和海王星的探測器,因此下次看到像是下圖這樣清晰漂亮的天王星和海王星影像,就可以跟朋友說這個照片是航海家二號拍攝的,也許朋友就會以崇拜的眼光看你(並不會)

-----廣告,請繼續往下閱讀-----
航海家二號所拍攝的天王星海王星。圖/NASA

1989 年航海家二號飛掠了最後一個計劃中的目標天體—海王星,然而她的任務卻還會持續下去,繼續為我們帶來外太陽系,甚至是「太陽系外」的第一手資訊,例如太陽磁層頂的位置、星際空間的磁場與宇宙射線強度等等……

同時,航海家二號也帶著地球人想送給外星人的「小禮物」,一張收錄用全球各種語言打招呼的錄音,以及數張影像檔案的唱片和唱片播放器。雖然說要在茫茫宇宙中「不小心撿到」這個禮物的機率實在太低,但這樣的紀念品某種程度也象徵著人類踏出航向宇宙的步伐時,做出的浪漫宣示吧!

航海家二號的金唱片與背景中的航海家二號。圖/NASA

重新連繫航海家二號

今年十月天線更新完成後,NASA 終於能送出睽違八個月,一封「來自地球的家書」給航海家二號,而她也順利收到並有所反應,彷彿對地球上的我們說:「哈囉地球上各位,好久沒有各位的消息了,很高興又收到你們的信,我在遙遠的太陽系外也都還好喔!」

這次成功的聯繫也代表著航海家二號的任務依然持續進行著,不過 NASA 的工程師也估計探測器的電力應該所剩不多了,我們終究在未來的某一天必須和這部偉大的探測器告別,但航海家二號仍將繼續帶著人們探索未知世界的精神,航向星空深處。

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 5

0

2
1

文字

分享

0
2
1
重力理論的演進與環繞黑洞的恆星
科學大抖宅_96
・2020/05/26 ・2647字 ・閱讀時間約 5 分鐘 ・SR值 524 ・七年級

-----廣告,請繼續往下閱讀-----

十七世紀末,牛頓提出的萬有引力理論象徵現代天體力學的開始;人們利用物理原理來描述天體運行,並藉由天文觀測逐步修正理論或計算方法的缺失。以天王星的發現為契機,科學家開啟了一連串對行星軌道的研究;這些事件不但成為天體力學發展史的重要標誌,最終竟促成重力理論的演進,甚至延續到現今,反應在我們對黑洞的觀察上。

這一切,都要從 1781 年,英國天文學家赫雪爾(William Herschel,1738-1822)在自家庭院,從望遠鏡中看到一顆彗星說起……

天王星的詭異行徑

在赫雪爾將發現回報給皇家學會後,其他科學家也紛紛對這顆彗星進行調查。很顯然的,它似乎沒有彗星尾巴,而且運行軌跡較接近圓形,不像其他彗星以非常扁的橢圓軌道繞行太陽;與其說是彗星,它更像是在土星軌道之外環繞太陽的行星──這就是天王星的發現。

儘管已驗明正身,天王星仍然困惑著接下來數十年的天文學者:它的實際軌道和牛頓萬有引力理論的預測並不相同。這是牛頓理論的失敗嗎?還是觀測錯誤了呢?1846 年,法國天文學家勒維耶(Urbain Le Verrier,1811-1877)利用數學計算提出預測:存在某個未知星體影響了天王星的運行,造成理論和觀測的差異;他也指出該星體的軌道、質量和位置大約為何。

-----廣告,請繼續往下閱讀-----

一陣子之後,柏林天文台收到勒維耶的報告,便馬上著手進行未知星體的搜尋工作;只花不到一個小時,海王星就被找到,與勒維耶預測的位置相差不到一度──史上第一次,單純憑藉數學計算發現新行星[1]

奧本‧勒維耶(圖片來源

水星的運行軌道也存在異常

隨著海王星的發現,牛頓萬有引力理論可說獲得空前勝利。然而,天文學家拿重力理論來推估行星運行的嘗試並未到此為止。1859年,勒維耶再度出擊,聲明水星軌道的進動也跟牛頓萬有引力理論的計算有所出入。

在理想狀況下,依據牛頓萬有引力理論,水星環繞太陽的運行軌道應該要固定不變;然而在實際上,因為受到其他行星的重力拉扯(和另外一些次要因素),水星軌道的近日點(以及軌道本身)會緩慢產生變化──這稱為水星的近日點進動。

-----廣告,請繼續往下閱讀-----

不止水星,其他行星也都會有進動;只是水星距離太陽最近,進動效應最明顯。圖為地球繞行太陽的軌道進動示意;進動效應被刻意放大。(圖片來源

勒維耶分析了從 1697 年到 1848 年的水星觀測資料,發現水星的近日點進動,與用牛頓萬有引力理論考慮其他行星的影響所算出來的進動數值,每世紀差了三千六百分之三十八(38/3600)度[2]──這是多麼微小的數值,卻又真實存在!

因為之前海王星的成功經驗,勒維耶猜想:介於太陽和水星軌道之間,可能存在未曾發現過的星體,影響了水星的運行;他將其命名為瓦肯星(Vulcan)[3]

無奈地,這一次任憑天文學家花費幾十年尋找,甚至勒維耶也已去世良久,瓦肯星始終不見蹤影;而水星近日點進動問題便懸而未決,延續到二十世紀。在 1915 年,愛因斯坦才利用廣義相對論成功將此問題劃上句點。

-----廣告,請繼續往下閱讀-----

愛因斯坦在1915年的論文中,運用廣義相對論解決了水星的近日點進動問題。(圖片來源

根據我們目前所知,水星的近日點每世紀會移動約 574/3600 度,其中牛頓萬有引力效應佔了 532/3600 度,而廣義相對論造成的效應幾乎剛好就是兩者之差。廣義相對論針對牛頓萬有引力定律所描述的重力,做出了細緻的修正──這個修正在大多數狀況下,微小到可以忽略;只有在水星近日點進動這樣的例子,差異才會顯現出來。可以說,水星近日點進動問題的解決,是幫助廣義相對論得到世人認可的重要原因之一。

廣義相對論的黑洞測試

科學家拿星體運行來測試重力理論的故事就到此為止了嗎?非也。既然原本得到廣泛驗證的牛頓萬有引力定律,因水星近日點進動現象而被找到缺陷,那麼現在大獲全勝的廣義相對論,自然也有可能在某種特殊環境下暴露弱點──科學家於是把腦筋動到了黑洞頭上。

黑洞堪稱宇宙裡數一數二極端的天體,龐大的重力吞噬一切,無疑是測試重力理論的理想選擇。就像水星繞行太陽會產生進動,是否,繞行黑洞的星體,其軌道也會有進動現象呢?又是否完全可以用廣義相對論來解釋?

-----廣告,請繼續往下閱讀-----

針對廣義相對論的正確性問題,一群科學家團隊花了二十七年,觀測環繞無線電波源人馬座A*(Sagittarius A*)運行的恆星S2,並於今年(2020)四月,在《Astronomy & Astrophysics》期刊發表最新成果

人馬座A*位於銀河系中心,距離地球約兩萬六千光年,質量估計為四百多萬倍太陽質量,據信極可能是超大質量黑洞;環繞於外的 S2 具有十多倍太陽質量,與人馬座A*的最近距離是十七光時(海王星到太陽距離的四倍),軌道週期為 16 年(海王星軌道週期是 165 年)。研究發現,S2近心點(pericenter,最靠近重力中心的點)的進動約為每軌道週期 12/60 度,與廣義相對論的預測相符──即使在重力如此強大的環境,廣義相對論依舊通過試煉。

藝術家描繪的S2繞行人馬座A*示意圖;為了清楚顯現 S2 軌道因為進動而逐漸改變位置,進動效應被特意放大。(ESO/L. Calçada

本次研究的意義

儘管沒有發現廣義相對論的破口,這次的成果仍然別具意義:它是人類第一次確認以黑洞為中心的進動現象;再者,若人馬座A*附近存在某些看不見的物質(如暗物質,或其他小型黑洞等等),科學家也能依據數據給出嚴格的質量上限。可以肯定的是,隨著觀測技術的發展,我們對於宇宙、或者黑洞的理解,將持續進步;說不定哪天,還真能發現廣義相對論的問題呢。

-----廣告,請繼續往下閱讀-----

參考資料

註釋

  • [1] 實際上,勒維耶計算出的海王星軌道,與真正的海王星軌道仍有一些差距。但這並無礙於發現海王星的偉大成就。
  • [2] 多年後,其他科學家重新評估牛頓萬有引力理論和實際觀測的差距,得出每世紀三千六百分之四十三(43/3600)度的數值,跟現代觀測吻合。
  • [3] 就跟《星際爭霸戰》(Star Trek)裡的瓦肯星同名。不過可以確定勒維耶並不是因為看了《星際爭霸戰》才這麼命名的。
-----廣告,請繼續往下閱讀-----
科學大抖宅_96
36 篇文章 ・ 1854 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/