0

1
0

文字

分享

0
1
0

不是只有數字才是數據,語意分析讓電腦掌握文字背後的情感-專訪意藍科技董事長楊立偉

陳妤寧
・2016/05/24 ・2677字 ・閱讀時間約 5 分鐘 ・SR值 554 ・八年級

採訪 / 陳妤寧
撰文 / 李允誠

2013年時,哈利波特作者 J.K. 羅琳化名 Robert Galbraith 創作了一本偵探小說《Cuckoo》,評價雖高,銷量卻不好。英國的電腦科學家透過語意分析技術,將此著作和羅琳以往寫作文本比對,發現寫作手法極為接近,這也讓 J.K. 羅琳為真實作者一事曝光,《Cuckoo》因此大受關注,立刻竄上亞馬遜暢銷榜第一名。

上述案例中,語意分析可謂關鍵角色,但語意分析究竟如何運作?如何快速解構文本類型的「大數據」?本篇專訪中,鑽研中文語意分析的意藍科技董事長楊立偉,從技術原理談到語意分析各種應用和挑戰,深入分析了語意分析背後的眉角。

從單詞到文章,文本分析更深、更廣、更快

過去的資料探勘,大多侷限於結構化資料,像是論文、專利、論文、新聞稿等經過嚴謹撰寫完成的文章。隨著社群網站興起,人們在網路上發表意見變得越來越容易、卻也更零碎、甚至參雜許多錯字讓電腦難以精準判讀。而透過大數據為基礎發展演算法的語意分析,能夠分析非結構化的資訊,像是散文、小說等較無固定格式的文本,加深文本分析的廣度,同時納入圖片、影音各種非結構化資料所能提供的資訊。

-----廣告,請繼續往下閱讀-----

假設你現在想查詢一個新聞事件,並分析網友、鄉民的看法,最直覺的方式便是利用 Google 進行關鍵字搜索,但這樣只能做到關鍵字比對,如此一來搜索出的資料將有幾百萬、幾千萬之譜,該如何進行整理、重點摘要?總不可能人工比對吧,這時,語意分析的優點便顯現出來了。楊立偉表示,語意分析透過爬梳大量網路資料,每日能夠搜索 60 億筆中文字詞,快速找出每日重要資訊。

2014 年 5 月時,越南發生排華暴動。楊立偉以當時分析越南地區的中文內容為例,除了字詞分析,也利用了情感分析。原先的文本內容大多為正面字詞,例如「建廠」、「投資」等等,但暴動當天開始出現許多負面字詞,例如「害怕」、「被砸」、「快跑」等等,情感分析的正負評比大為下滑。相對於傳統媒體可能是透過駐越記者或是當地新聞媒體報導才得知相關資訊,語意分析利用網路輿情觀察,足足快了十小時掌握新聞事件。

範例引導進行教學,機器學習增加準確率

楊立偉解釋,演算法為了能做到通篇分析,多採用機器學習的方式,就像教小孩念書,透過範例引導,結合答案輔助,電腦便能找出其中關聯。同時藉由資料庫的「語料」提供範例,輔以人工提供正確答案,電腦便能找出其中邏輯關係。

語意分析和關鍵字比對最大差異在於處理層級的不同。除了比對單詞外,它能以閱讀的概念進行分析,從前後文、段落乃至通篇文章進行分析。假設現在要分析「全家」便利商店的相關新聞,若以關鍵字比對,可能會抓出「全家一起玩」等無關字詞,但在語意分析下,此類句子會被過濾掉,只會抓出「全家推出新產品」等相關度較高的句子。

-----廣告,請繼續往下閱讀-----

回家功課寫錯了要訂正,那語意分析錯了也要訂正嗎?「對於機器學習來說,我們只要告訴機器這樣的結果好不好,透過多次嘗試,機器會將不好與好的結果都學習下來,進而進行更準確的運算。」

語意分析的多種應用

1. 自動摘要:手機滑到一篇有興趣的文章,卻嫌文章太長不想看?透過語意分析,能夠找出一篇文章的重要字詞、摘要,讓人能短時間快速瞭解內文。楊立偉說明,通篇文章中,機器會先挑出具有代表性、特殊意義的字詞,再找出相關字詞的句子、段落,將分析出的摘要列出來,最後以人工的方式給摘要打分,如此一來機器在多次嘗試學習下,高分的摘要會愈來愈多,藉此發展出自動摘要的應用程式。

2. 以文找文:語意分析能透過文章中的重要、關鍵字詞,進而並找出相關文章。例如 Google新聞把相關性、類似的文章聚集,便是利用語意分析的技術。

3. 廣告信偵測:以 Gmail 為例,語意分析能判斷一封信中是否包含廣告信的常用字詞,協助信箱進行篩選。有時雖然也會誤判,但長時間下來,全世界的使用者亦會幫忙修正,不斷累積下,判斷準確率也愈來愈高。

-----廣告,請繼續往下閱讀-----

4. 意見分析與情感分析:分析企業在網路上的口碑、評價。根據提到相關企業或產品的文章進行分析,篩選通篇文裡的正負面字詞,分析網友的觀點與情感。並透過通篇上下文,加強判斷正負面情緒的判讀。這項功能也能運用在企業客服中,偵測消費者的抱怨內容,轉介給適合處理的單位。

5. 寫作輔助:機器與人工能共同創作,協助文本效正。比如說台灣人若要以英文撰寫論文,語意分析便能幫助選詞、文法。

6. 電腦問答:如同 Siri,語意分析也能應用在人工智能對話,協助使用者利用問與答(Q&A)的方式找尋所需的資訊。

語意分析並非萬能,發展瓶頸和隱憂是?

語意分析並非百分百正確,目前仍多以機器學習的方式增加準確度,因此機器獲得的「語料」愈多愈好,也因此需要建立具大的資料庫,而系統的硬體設備也要有一定水準,才能快速進行分析。

-----廣告,請繼續往下閱讀-----

除了硬體條件,語意分析現階段也仍需要以人工評量系統,為機器所分析出來的結果給與回饋與改善建議。除了需要語言學家針對不同語系的慣用法進行審核,若遇到專業領域的文本、字詞,也需要請相關領域專家協助評量,這些都是現階段語意分析在人事上無法完全去除的因子。

「水能載舟,亦能覆舟。」語意分析同時也可能會被用於造假、偽造。楊立偉坦言,利用語意分析的演算法,許多人能夠設計出論文製造機等應用,雖然透過機器產生的論文或許可信度較低,但有心人仍能將其投稿到審查制度較寬鬆的學術期刊上,藉此奪得在學術期刊上發表的機會。

在隱私問題方面,楊立偉解釋,語意分析只會搜尋公開的貼文和訊息。以臉書為例,只有公開帳號的文章會被納入分析,包含熱門粉絲頁、意見領袖、公開的個人頁。目前台灣以中文為主的公開帳號約有六百萬個,都是語意分析的守備範圍。

災害通報、事件預防、預測,也是語意分析技術的努力目標,透過網友貼文,能夠在短時間內搜集大量的破碎訊息,組合成一完整資訊匯流,對於提供災害事件資訊、甚至是建立災害預測模型,都將大有助益。「現在大數據的一大挑戰在於資料都存在不同的地方,因此『匯集』的角色更為重要。」楊立偉強調,許多大數據都是在講單一企業的資料庫分析、應用,但真正重要的是跨企業、領域的資料整合,數據分析才能更兼顧深度與廣度。

-----廣告,請繼續往下閱讀-----

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威

大數據專題報導系列:

  1. 資料科學如何解決真實世界的問題?認識資料極限,打開分析視野-專訪DSP智庫驅動知識長謝宗震
  2. 運用海量資料讓機器「自學」,電腦將成為更好的決策代理人-專訪台大資工教授林守德
  3. 從演算法設計到金融交易應用,數學在資料科學中無所不在-專訪東吳數學系教授吳牧恩
  4. 提昇大數據可信度,統計學用機率和抽樣優化分析模型-專訪典通公司總經理楊雅惠
-----廣告,請繼續往下閱讀-----
文章難易度
陳妤寧
38 篇文章 ・ 1 位粉絲
熱愛將知識拆解為簡單易懂的文字,喜歡把一件事的正反觀點都挖出來思考,希望用社會科學的視角創造更宏觀的視野。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
3

文字

分享

0
6
3
植物口渴就喊:「啵、啵、啵~」
胡中行_96
・2023/04/06 ・2954字 ・閱讀時間約 6 分鐘

久旱不雨,植物悲鳴,[1, 2]類似教育部《臺灣閩南語常用詞辭典》所謂「因飢餓而吵鬧」的「哭枵」(khàu-iau)。[3]別問為何沒聽過,也不怪天地寡情,人類無義,從來漠不關心。植物叫那種超音波,傳至咱們耳裡就只剩寧靜。幸好靠著以色列科學家幫忙,轉換到常人的聽覺範圍,並分享於 2023 年 3 月底的《細胞》(Cell)期刊,才廣為周知。[1]

轉換到人類聽力範圍的番茄「叫聲」。音/參考資料 1,Audio S1(CC BY 4.0)

傾聽植物的聲音

面臨乾旱或草食動物的威脅,植物會做出多種反應,例如:改變外貌,或是以揮發性有機化合物影響鄰居等。[1]過去的文獻指出,缺水引發空蝕現象(cavitation),使植物負責輸送水份的木質部,因氣泡形成、擴張和破裂而震動。[1, 4]現在科學家想知道,這是否也會產生在特定距離內,能被其他物種聽見的聲音。[1]

受試的對象是番茄菸草,分別拆成乾旱、修剪和對照 3 組。對照組又有常態生長的一般對照、有土卻無植物的盆器,以及每株植物實驗前的自體對照 3 種。實驗大致有幾個階段:首先,在隔音箱裡,距離每個受試對象 10 公分處,各立 2 支麥克風收音。將聲音的紀錄分類後,拿去進行機器學習。接著移駕溫室,讓訓練好的模型,分辨雜音和不同情況下植物的聲音。再來,觀察乾旱程度與植物發聲的關係。最後,也測試其他的植物和狀態。[1]

麥克風對著乾旱、修剪和對照組的植物收音。圖/參考資料 1,Graphical Abstract局部(CC BY 4.0)

植物錄音與機器學習

隔音箱裡常態生長的植物,每小時平均發聲少於一次;而沒植物的盆器當然完全無聲。相對地,遭受乾旱或修剪壓力的實驗組植物,反應則十分劇烈:[1]

-----廣告,請繼續往下閱讀-----
 平均值(單位)番茄菸草
乾旱發聲頻率(次/小時)35.4 ± 6.111.0 ± 1.4
 音量(聲壓分貝;dBSPL)61.6 ± 0.165.6 ± 0.4
 聲波頻率(千赫茲;kHz)49.6 ± 0.454.8 ± 1.1
修剪發聲頻率(次/小時)25.2 ± 3.215.2 ± 2.6
 音量(聲壓分貝;dBSPL)65.6 ± 0.263.3 ± 0.2
 聲波頻率(千赫茲;kHz)57.3 ± 0.757.8 ± 0.7

隔音箱中實驗組的錄音,被依照植物品種以及所受的待遇,歸納為 4 個組別,各組別再彼此配對比較,例如:乾旱的番茄對修剪的番茄等。以此資料訓練出來的機器學習模型,判別配對中各組別的準確率為 70%。第二階段在溫室中進行,自然較隔音箱嘈雜。科學家拿空蕩溫室的環境錄音,來教模型分辨並過濾雜訊。訓練後,令其區別乾旱與對照組番茄的聲音,結果 84% 正確。[1]既然能聽得出基本的差別,下一步就是了解水量對番茄發聲的影響。

體積含水量

為了操縱體積含水量(volumetric water content,縮寫VWC),即水份與泥土體積的比值或百分比,[1, 5]科學家狠下心,連續幾天都不給溫室裡的番茄植栽喝水。一邊觀察 VWC 的變化;一邊錄下它們的聲音。起先水份充足,番茄不太吵鬧;4、5 天下來,發聲的次數逐漸增加至高峰;然後應該是快渴死了,有氣無力,所以次數又開始減少。此外,番茄通常都在早上 8 點(圖表較像 7 點)到中午 12 點,以及下午 4 點至晚上 7 點,這兩個時段出聲。[1]科學家覺得這般作息,可能與規律的氣孔導度(stomatal conductance),也就是跟光合作用的換氣以及蒸散作用的水份蒸發,兩個透過氣孔進行的動作有關。[1, 6]

大部份的聲音都是在 VWC < 0.05 時出現;當 VWC > 0.1,水份還足夠,就幾乎無聲。科學家將比較的條件進一步分成 VWC < 0.01 與 VWC > 0.05、VWC < 0.05 跟 VWC > 0.05,以及 VWC < 0.01、VWC > 0.05 和淨空溫室的聲音。機器學習模型分辨起來,都有七、八成的準確率。[1]

縱軸為每日發聲次數;橫軸為缺乏灌溉的天數。圖/參考資料 1,Figure 3A(CC BY 4.0)
乾旱狀態下,番茄發聲的時段。縱軸為每小時發聲次數;橫軸為 24 小時制的時間。圖/參考資料 1,Figure 3B(CC BY 4.0)

植物發聲的原理

實驗觀察所得,都將植物發聲的機制,指向木質部導管中氣體的運動,也就是科學家先前預期的空蝕現象[1]下面為支持這項推論的理由:

-----廣告,請繼續往下閱讀-----
  1. 木質部導管的口徑,與植物被錄到的聲波頻率相關:寬的低;而窄的高。[1]
  2. 乾旱與修剪所造成的聲音不同:在木質部導管中,前者氣泡形成緩慢,發聲時數較長;而後者則相當迅速,時數較短。[1]
  3. 聲音是由植物的莖,向四面八方傳播。[1]
  4. 空蝕現象造成的震動,跟記錄到的超音波,部份頻率重疊;而沒有重疊的,其實已經超出其他物種的聽力以及麥克風收音的範圍。[1]
葡萄、菸草和番茄木質部導管的水平橫截面。圖/參考資料 1,Figure S4B(CC BY 4.0)
葡萄(綠色)、菸草(灰色)和番茄(橙色)的差異:縱軸為聲波頻率;橫軸是木質部導管的平均口徑。圖/參考資料 1,Figure S4A(CC BY 4.0)

問誰未發聲

觀察完番茄和菸草之後,科學家不禁好奇,別的植物是否也會為自己的處境發聲?還是它們都默默受苦,無聲地承擔?研究團隊拿小麥玉米卡本內蘇維濃葡萄(Cabernet Sauvignon grapevine)、奇隆丸仙人掌(Mammillaria spinosissima)與寶蓋草(henbit)來測試,發現它們果然有聲音。不過,像杏仁樹之類的木本植物,還有木質化的葡萄藤就沒有了。另外,科學家又監聽感染菸草嵌紋病毒(tobacco mosaic virus)的番茄,並錄到它們的病中呻吟。[1]

你敢有聽著咱的歌

之前有研究指出,海邊月見草(Oenothera drummondii)暴露於蜜蜂的聲音時,會產出較甜的花蜜。[2]若將角色對調過來:植物在乾旱、修剪或感染等壓力下釋出的超音波,頻率約在 20 至 100 kHz 之間,理論上 3 到 5 公尺內的某些哺乳動物或昆蟲,例如:蝙蝠、老鼠和飛蛾,應該聽得到。[1, 2]以色列科學家認為幼蟲會寄住在番茄或菸草上的飛蛾,或許能辨識植物的聲波,並做出某些反應。同理,人類可以用機器學習模型,分辨農作物的聲音,再給予相應的照顧。如此不僅節省水源,精準培育,還能預防氣候變遷所導致的糧食危機。[1]

  

備註

本文最後兩個子標題,借用音樂劇《Les Misérables》歌曲〈Do You Hear the People Sing?〉的粵語和臺語版曲名。[7]

-----廣告,請繼續往下閱讀-----

參考資料

  1. Khait I, Lewin-Epstein O, Sharon R. (2023) ‘Sounds emitted by plants under stress are airborne and informative’. Cell, 106(7): 1328-1336.
  2. Marris E. (30 MAR 2023) ‘Stressed plants ‘cry’ — and some animals can probably hear them’. Nature.
  3. 教育部「哭枵」臺灣閩南語常用詞辭典(Accessed on 01 APR 2023)
  4. McElrone A J, Choat B, Gambetta GA, et al. (2013) ‘Water Uptake and Transport in Vascular Plants’. Nature Education Knowledge, 4(5):6.
  5. Datta S, Taghvaeian S, Stivers J. (AUG 2018) ‘Understanding Soil Water Content and Thresholds for Irrigation Management’. OSU Extension of Oklahoma State University.
  6. Murray M, Soh WK, Yiotis C, et al. (2020) ‘Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes’. International Journal of Plant Sciences, 181, 1.
  7. FireRock Music.(16 JUN 2019)「【問誰未發聲】歌詞 Mix全民超長版 粵+國+台+英 口琴+小童+學生+市民 Do you hear the people sing?」YouTube.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

3
0

文字

分享

1
3
0
數據塑造生活與社會,讓人既放心但又不安?——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/28 ・2760字 ・閱讀時間約 5 分鐘

數位世界已經改變了我們日常生活的體驗,一個人從早到晚都會接受到大量數據,受益於大量數據,也貢獻大量數據。這些數據龐大的程度,和消化資訊的方式已經太過繁多,人類心智根本無法處理。

與數位科技建立夥伴關係

所以人會本能地或潛意識地倚賴軟體來處理、組織、篩選出必要或有用的資訊,也就是根據用戶過去的偏好或目前的流行,來挑選要瀏覽的新項目、要看的電影、要播放的音樂。自動策劃的體驗很輕鬆容易,又能讓人滿足,人們只會在沒有自動化服務,例如閱讀別人臉書塗鴉牆上的貼文,或是用別人的網飛帳號看電影時,才會注意到這服務的存在。

有人工智慧協助的網路平臺加速整合,並加深了個人與數位科技間的連結。人工智慧經過設計和訓練,能直覺地解決人類的問題、掌握人類的目標,原本只有人類心智才能管理的各種選擇,現在能由網路平臺來引導、詮釋和記錄(儘管效率比較差)。

日常生活中很少察覺到對自動策劃的依賴。圖/Pexels

網路平臺收集資訊和體驗來完成這些任務,任何一個人的大腦在壽命期限內都不可能容納如此大量的資訊和體驗,所以網路平臺能產出看起來非常恰當的答案和建議。例如,採購員不管再怎麼投入工作,在挑選冬季長靴的時候,也不可能從全國成千上萬的類似商品、近期天氣預測、季節因素、回顧過去的搜尋記錄、調查物流模式之後,才決定最佳的採購項目,但人工智慧可以完整評估上述所有因素。

-----廣告,請繼續往下閱讀-----

因此,由人工智慧驅動的網路平臺經常和我們每個人互動,但我們在歷史上從未和其他產品、服務或機器這樣互動過。當我們個人在和人工智慧互動的時候,人工智慧會適應個人用戶的偏好(網際網路瀏覽記錄、搜尋記錄、旅遊史、收入水準、社交連結),開始形成一種隱形的夥伴關係。

個人用戶逐漸依賴這樣的平臺來完成一串功能,但這些功能過去可能由郵政、百貨公司,或是接待禮賓、懺悔自白的人和朋友,或是企業、政府或其他人類一起來完成。

網路平臺和用戶之間是既親密又遠距的聯繫。圖/Envato Elements

個人、網路平臺和平臺用戶之間的關係,是一種親密關係與遠距聯繫的新穎組合。人工智慧網路平臺審查大量的用戶數據,其中大部分是個人數據(如位置、聯絡資訊、朋友圈、同事圈、金融與健康資訊);網路會把人工智慧當成嚮導,或讓人工智慧來安排個人化體驗。

人工智慧如此精準、正確,是因為人工智慧有能力可以根據數億段類似的關係,以及上兆次空間(用戶群的地理範圍)與時間(集合了過去的使用)的互動來回顧和反應。網路平臺用戶與人工智慧形成了緊密的互動,並互相學習。

-----廣告,請繼續往下閱讀-----

網路平臺的人工智慧使用邏輯,在很多方面對人類來說都難以理解。例如,運用人工智慧的網路平臺在評估圖片、貼文或搜尋時,人類可能無法明確地理解人工智慧會在特定情境下如何運作。谷歌的工程師知道他們的搜尋功能若有人工智慧,就會有清楚的搜尋結果;若沒有人工智慧,搜尋結果就不會那麼清楚,但工程師沒辦法解釋為什麼某些結果的排序比較高。

要評鑑人工智慧的優劣,看的是結果實用不實用,不是看過程。這代表我們的輕重緩急已經和早期不一樣了,以前每個機械的步驟或思考的過程都會由人類來體驗(想法、對話、管理流程),或讓人類可以暫停、檢查、重複。

人工智慧陪伴現代人的生活

例如,在許多工業化地區,旅行的過程已經不需要「找方向」了。以前這過程需要人力,要先打電話給我們要拜訪的對象,查看紙本地圖,然後常常在加油站或便利商店停下來,確認我們的方向對不對。現在,透過手機應用程式,旅行的過程可以更有效率。

透過導航,為旅途帶來不少便利。圖/Pexels

這些應用程式不但可以根據他們「所知」的交通記錄來評估可能的路線與每條路線所花費的時間,還可以考量到當天的交通事故、可能造成延誤的特殊狀況(駕駛過程中的延誤)和其他跡象(其他用戶的搜尋),來避免和別人走同一條路。

-----廣告,請繼續往下閱讀-----

從看地圖到線上導航,這轉變如此方便,很少人會停下來想想這種變化有多大的革命性意義,又會帶來什麼後果。個人用戶、社會與網路平臺和營運商建立了新關係,並信任網路平臺與演算法可以產生準確的結果,獲得了便利,成為數據集的一部分,而這數據集又在持續進化(至少會在大家使用應用程式的時候追蹤個人的位置)。

在某種意義上,使用這種服務的人並不是獨自駕駛,而是系統的一部分。在系統內,人類和機器智慧一起協作,引導一群人透過各自的路線聚集在一起。

持續陪伴型的人工智慧會愈來愈普及,醫療保健、物流、零售、金融、通訊、媒體、運輸和娛樂等產業持續發展,我們的日常生活體驗透過網路平臺一直在變化。

網路平台協助我們完成各種事項。圖/Pexels

當用戶找人工智慧網路平臺來協助他們完成任務的時候,因為網路平臺可以收集、提煉資訊,所以用戶得到了益處,上個世代完全沒有這種經驗。這種平臺追求新穎模式的規模、力量、功能,讓個人用戶獲得前所未有的便利和能力;同時,這些用戶進入一種前所未有的人機對話中。

-----廣告,請繼續往下閱讀-----

運用人工智慧的網路平臺有能力可以用我們無法清楚理解,甚至無法明確定義或表示的方式來形塑人類的活動,這裡有一個很重要的問題:這種人工智慧的目標功能是什麼?由誰設計?在哪些監管參數範圍裡?

類似問題的答案會繼續塑造未來的生活與未來的社會:誰在操作?誰在定義這些流程的限制?這些人對於社會規範和制度會有什麼影響?有人可以存取人工智慧的感知嗎?有的話,這人是誰?

如果沒有人類可以完全理解或查看數據,或檢視每個步驟,也就是說假設人類的角色只負責設計、監控和設定人工智慧的參數,那麼對人工智慧的限制應該要讓我們放心?還是讓我們不安?還是既放心又不安?

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。