0

1
0

文字

分享

0
1
0

在台灣,自來水為何不能直接生飲?

活躍星系核_96
・2017/09/21 ・2780字 ・閱讀時間約 5 分鐘 ・SR值 576 ・九年級

  • 文/水知識生活家 陳安莃|在這資訊碎片時代,我們只提供最真實的水知識,大家最需要的水知識,讓人人都能當水知識生活家

在國外的電影、影集當中,常常會有打開水龍頭、盛滿一杯水就直接生飲的橋段;但你有想過為何生在台灣的我們,都是把水煮開,或是用淨水器過濾之後才喝呢?其實並不是台灣的水比較髒,因為台灣的自來水也都有符合「飲用水水質標準」,也就是自來水其實皆可生飲。但為何連台灣自來水公司也不建議直接生飲自來水呢?

台灣的水為什麼不能生飲?圖/BY 作者提供

為何在台灣,不建議生飲自來水呢?

很多民眾都會直覺認為是台灣的自來水比較髒、自來水公司不認真,然而台灣自來水公司早已表示:

「供水皆經取得環保署認證之各區處檢驗室定期及不定期檢驗,及環保單位不定期抽驗,均符合『飲用水水質標準』,也就是說所有的自來水皆可生飲,但因國內時有開挖馬路挖斷管線,修理管線之情形,且用戶多裝有蓄水池或水塔,如沒有定期清洗,恐有被污染之虞,故本公司並不鼓勵生飲。」[1]

歷年臺灣地區自來水水質抽驗檢驗結果(按檢驗件數統計)。台灣自來水公司也不是隨便說說,數據會講話,近幾年來不合格率都非常低,甚至在 105 年不合格率僅僅只有 0.08%,也就是在 106,45 件中只有 8 件不合格。圖/BY 環保署飲用水水質監測資訊網。

既然如此,又為什麼我們的自來水不適合生飲呢?主要是因為以下原因:

一、自來水的必經之路路迢迢:管線老舊、破管率高

管線老舊需要分成兩部分來解釋:一個是公家自來水管線老舊,另一個是居家自來水管線老舊。

-----廣告,請繼續往下閱讀-----

1.公家機關的管線問題:

台灣環境特殊、地震頻繁,地形起伏的變化也相當大,這些因素都提高了管線毀壞的機率。例如台中、南投等地的輸水管線,就因十幾年前的921 地震而嚴重受損,漏水率至今仍居高不下。而山坡地占 80% 的基隆,則因地勢崎嶇,必須倚靠數十座的加壓站將水往上送,才能確保高地住戶用水無虞,以致管線常因水壓負荷過大而破管。

灣各地自來水管網設備逐漸老化,道路長期受重車行駛輾壓與各項工程不斷挖修,致管線漏水嚴重,依據台水公司 97-101 年修漏案件統計分析發現,老化腐蝕、荷重振動及材質不良,佔漏水件數之 83.97%,塑膠管類佔漏水管種比例高達 92.87%。

由此可知,管線老舊及塑膠管材比例高,是管線漏水主要原因。台灣自來水公司總經理胡南澤指出,台灣漏水率偏高,背後主因是施工因素、地震侵害、交通車輛超載負荷、管線陳舊等所致。據估計,現在每年實質漏水量約6億立方公尺,相當漏掉 3座石門水庫。[2]

-----廣告,請繼續往下閱讀-----

其實政府也聽到了這部分的聲音,近年來也制定相關政策;然而台灣自來水公司對此回應:長年因經費不足、技術人才不足,再加上部分縣市禁挖時間長 ,而導致汰換水管的進度不甚理想。不過台北自來水事業處表示:預計 3 年內全面汰換成不銹鋼優良管材;且已在 105 年年底更換進度更達 73%,進度大幅超前。 106 年預計累計完成 90%,107 年完成全部汰換作業。

灣各地自來水管網設備逐漸老化,道路長期受重車行駛輾壓與各項工程不斷挖修,致管線漏水嚴重。圖/BY terimakasih0 @ Pixabay

2.居家自來水管老舊:

相信還是有部分民眾不太清楚,自來水公司所必須保障的好水,僅在水錶前;水錶過後,並不是水公司的業務範圍,民眾需自行處理;然而大多數的水污染事件,也常是水錶過後。

台灣目前大多數的住宅屬於公寓大廈,老舊的公寓大廈眾多,若發現自來水管有問題,想更換也很麻煩,耗費的資金也常令人望之卻步。目前也有專門在清洗水管的業者可供選擇,不然就是使用淨水器、濾水壺、等等來避免喝到不好的水質。[3]

-----廣告,請繼續往下閱讀-----

二、你家的大樓,水塔有洗嗎?

台灣地區的居住型態,愈來愈趨向於集合式住宅,為因應集中人口的用水,許多公寓大樓都使用蓄水池與水塔作為穩定供水的設備。當符合飲水標準的水進入蓄水池與水塔後,經過蓄水池與水塔的儲存,水質可能產生變化,因此蓄水池與水塔的定期清洗與維護,是維護自來水水質的重要工作。

相關文獻也指出在整個自來水系統中,供水管線和貯水設施所扮演的角色至為關鍵,其重要性並不亞於自來水廠,甚至有研究發現自來水的異味問題通常皆與輸送系統有關。[4] [5]

根據環保署調查報告:

  1. 僅 46.4% 的民眾知道「7成以上的自來水用戶水質汙染事件是因為疏於清洗水塔所致」,略低於不知道的民眾。
  2. 僅 52.7% 家中有蓄水池、水塔的民眾會定期清洗,顯示民眾依舊沒有了解到蓄水池、水塔定期清洗的重要性。[6]

由以上數據我們了解到清洗家中的貯水設施是最容易忽略的地方,但往往這也是影響我們飲用水品質的關鍵。不過,有關於蓄水池與水塔清洗的頻率如何訂定,才能發揮最大的清洗效益,其實會隨著各個地區的水質好壞、氣候因素等因素而有所變動,若是有定期檢測家中水質的習慣,才能精準的說明何時該清洗才正確,若是無此習慣,可以先按照目前環保署與自來水公司的建議,至少半年清洗一次。

-----廣告,請繼續往下閱讀-----
提升飲水品質建議。圖/BY 作者提供。

沒事多喝水,更要注意水從哪裡來

管線老舊及破管率高會影響供水的品質與穩定度,而貯水設施容易因通氣孔及溢水管處沒有加裝細網以及人孔蓋沒有緊閉與上鎖導致塵埃、昆蟲、雜物、雨水進入,進而汙染水質。 根據環保機關執行自來水水質抽驗結果顯示,自來水水質合格率高達99%以上,因此我們應注意的是用水設備如水塔、水池、管線的清潔維護管理及配置,以維持自來水品質,來保障自己喝下肚的水是乾淨無虞的。

資料來源

  • [1]台灣自來水公司 常見問答
  • [2]蘇意淳。103 年度自來水漏水防治之探討。台灣自來水公司
  • [3]黃仕強。自來水管網汰管啟發式篩選程序與優選模式(2009)。國立交通大學。
  • [4]陳識文。97 年度如何建立用戶對自來水水質之滿意度。台灣自來水公司。
  • [5]陳志堅。微生物於用水設備中再生長與水塔清洗效益之評估(2005)。國立高雄師範大學。
  • [6]行政院環境保護署。103 年度家庭飲用水概況調查報告。
文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

3

4
5

文字

分享

3
4
5
酸雨可能會讓森林更「口渴」?
阿咏_96
・2021/01/18 ・2724字 ・閱讀時間約 5 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

近年來,酸雨已經變成大家所熟悉的空氣污染問題,酸雨不僅對建築物、古蹟和金屬物質產生嚴重腐蝕,導致人類經濟與文化資產的損失,同時也會對整個環境及生態系造成影響。

被酸雨腐蝕的石像。圖/Wikimedia common

近期美國來德大學 (Rider University) 發表一項酸雨影響森林的研究結果,這是一項在阿帕拉契山脈進行十年的實驗,從 1989 年開始,美國林業局每年固定三次,在一片面積 34 公頃的森林澆灌酸化硫酸銨肥料。

結果發現,以酸化硫酸銨肥料(作為模擬酸雨)澆灌的森林,與未經酸化處理的森林相比,每年吸收的水分大約多了 5%,並在兩年中增加了 10%,經過處理的流域每年平均要增加大約 1,360 萬升水。而在研究期間,他們還發現,滲透到被酸化森林土壤水裡的鈣濃度也下降了,這可能是森林耗水增加的原因之一。

圖一:酸化影響森林每年蒸發水分的量。酸化處理過的蒸發量與對照組(未酸化)的差異,正值表示酸化組的蒸發量高於對照組。灰色框為預處理階段,2004 年未納入統計,因那年對照組的植物生長異常高。圖/原始文獻2

這究竟是怎麼回事?酸雨對森林的影響真的這麼大嗎?帶走土壤裡的鈣和森林「口渴」的關係是什麼呢?

-----廣告,請繼續往下閱讀-----

要奪~酸才可以叫做「酸雨」?

根據環保署的資料,過去各國多將 pH 值小於 5.6 的雨水界定為酸雨,那 pH 值 5.6 這個數字又是怎麼來的?事實上,pH值 5.6 是大氣中二氧化碳含量為 330ppm 時,純水之酸鹼度的平衡值。

BUT!好像有哪裡怪怪的⋯⋯

因為自然界中也有其他酸性物質會影響雨水的 pH 值,例如甲酸等其他有機酸,所以大氣中即使是未受人為污染的雨水,pH 值也會介於 4.7 至 5.3 之間(也就是說,「基本款」的雨水就已經比原本的酸雨標準 pH 值 5.6 還要酸了!)。

因此從 1990 年開始,許多國家及科學機構逐漸改變酸雨的定義為,pH 值小於 5.0 的雨水,目前我國也以此作為判斷標準。

-----廣告,請繼續往下閱讀-----
後來,各國與科學機構逐漸調整酸雨的定義。圖/Bibhukalyan Acharya

而我們常說的「酸雨」其實是「酸性沉降 (acidic deposition)」的俗稱,因為除了下雨之外,還有其他形式的沉降,可以區分為「濕沉降」和「乾沉降」,前者指的是空氣中氣狀或粒狀污染物隨雪、雹、雨等降水型態落至地面,而後者則是空中掉下的落塵帶來的酸性物質。

那些讓雨變酸的東東

酸雨的化學組成中,包括 Cl、NO3、SO42-、NH4+、K+、Na+、Ca2+ 及 Mg2+ 等,來源包括自然現象及人類活動。其中硝酸鹽 NO3 及硫酸鹽 SO42- 是讓雨水變酸的「罪魁禍首」,那它們是怎麼來的呢?

首先,工業活動或交通工具排放含有氮氧化物的廢氣,這些氮氧化物接著和空氣中的氧 O2 及水反應形成硝酸 HNO3 ,在水中可以解離成硝酸根離子和氫離子。

HNO3(aq) → H+ + NO3

-----廣告,請繼續往下閱讀-----
交通工具會排放含有氮氧化物的廢氣。圖/Kaique Rocha

而硫酸鹽SO42-的形成過程長得跟硝酸鹽的很像,石化燃料及火力發電廠燃燒含硫有機物,釋放出二氧化硫 SO2,接著和空氣中的氧 O2 及水反應形成硫酸 H2SO4,硫酸在水中可以解離成硫酸根離子和氫離子,導致氫離子濃度升高。

H2SO4(aq) → HSO4 + H+        HSO4 → SO42-+H+

硝酸及硫酸在降雨初期就被雨水吸收,或直接隨雨滴落到地面,都會增加雨水的酸度,造成酸雨。雖然自然界中的一些現象本來就會產生酸性物質,例如火山爆發噴出的硫化氫、高空閃電導致的氮氧化物5等等,但事實上,有超過 90% 的氮氧化物及硫氧化物是因人類活動排放的!

自然界中的一些現象本來就會產生酸性物質。圖/Andre Furtado

真相,永遠只有一個!(指)

-----廣告,請繼續往下閱讀-----

ㄟ~那關「鈣」什麼事?

從生理的角度來看,植物需要陽離子作為訊號傳遞、調節等功能,因此,土壤中陽離子減少會導致生產力降低。而鈣便是大多數植物必需元素之一,在植物生理扮演著重要角色。

其中一個作用便是水分調節,鈣像是一個負責通風報信的使者。植物的氣孔孔徑是由周圍的保衛細胞控制的,經由一連串複雜的反應調節,而這些反應共同的終點都是「鈣」進入保衛細胞。水分不足時,通常細胞之間的鈣濃度上升時,會讓通往細胞內的鉀離子通道關閉(也就是不讓水進入),接著活化細胞通往外界的鉀離子通道,降低保衛細胞的含水量,使氣孔關閉。

土壤中陽離子減少會導致生產力降低。圖/Crusenho Agus Hennihuno

而這個研究的假說之一,便是鈣會從酸化處理後的森林土壤浸出,可能引起植被用水量增加,因為鈣能夠調節氣孔關閉,缺鈣可能會造成蒸散作用增加。

結果顯示,酸化處理的確改變了處理流域的鹼性陰離子交換、土壤中的陽離子浸出,以及溪流 pH 值等,渗透到酸化森林土壤中的水中鈣含量也有所下降,證明酸雨改變土壤中鈣的供應,會顯著增加植被用水量。

-----廣告,請繼續往下閱讀-----

進行此研究的學者表示,自己也沒想到植物對酸化的反應會這麼劇烈。如果想了解酸雨對森林以及植物用水量的後續影響,還需要更多的研究證實。

雖然我們仍不確定,酸雨對於其他類型的森林是否會有相同的影響,不過,這項研究可以提醒我們的是,生態系統是這樣的環環相扣,我們所做的任何一個決定,都可能以我們不知道的方式在影響整個環境。

參考資料

  1. Decades of dumping acid suggest acid rain may make trees thirstier
  2. Lanning, M., Wang, L., Scanlon, T. M., Vadeboncoeur, M. A., Adams, M. B., Epstein, H. E., & Druckenbrod, D. (2019). Intensified vegetation water use under acid deposition. Science Advances, 5(7), eaav5168.
  3. McAinsh, M. R., Brownlee, C., & Hetherington, A. M. (1997). Calcium ions as second messengers in guard cell signal transduction. Physiologia Plantarum, 100(1), 16-29.
  4. Debnath, B., & Ahammed, G. J. (2020). Effect of Acid Rain on Plant Growth and Development: Physiological and Molecular Interventions. In Contaminants in Agriculture (pp. 103-114). Springer, Cham.
  5. 酸雨 (acid rain) :組成和途徑
  6. 行政院環境保護署環境資源資料庫
  7. The Encyclopedia of Earth (EoE)
  8. Casiday, R., & Frey, R. (1998). Acid rain. Inorganic Reactions Experiment, Washington University, Word Wide Web Address: http://www. chemistry. wustl. edu/∼ edudev/LabTutorials/Water/FreshWater/acidrain. html.
  9. McLaughlin, S. B., & Wimmer, R. (1999). Calcium physiology and terrestrial ecosystem processes. Tansley Review No. 104. New Phytol, 142, 373-417.
所有討論 3

0

4
0

文字

分享

0
4
0
阿基米德的小發明,是螺絲界的一大步!——《轉動世界的小發明:螺絲釘與螺絲起子演化的故事》
貓頭鷹出版社_96
・2020/11/13 ・2296字 ・閱讀時間約 4 分鐘 ・SR值 583 ・九年級

散佈地中海各地的發明——水螺絲

水螺絲由一根直徑約三十公分、長三至四.五公尺、裝入防水木管中的巨大螺釘組成。兩端開放的木管以低角度傾斜安裝,下端則沒入水中;當一人在木管外周的防滑釘上行走,進而帶動整個裝備旋轉之際,由木管下端進入的水,便由螺絲的螺旋形分隔(也就是螺紋)向上移動,而自頂端浮現。

水螺絲的轉動緩慢,能力卻相當大(角度愈低,流動量便愈大),有人估計它的機械效率可高達百分之六十,與後來提升水位的裝置如水車及水桶運送帶相較,還略勝一籌。

後人繪製的阿基米德式螺旋抽水裝置。圖/Wikimedia common

水螺絲最早的記載,出現於西元前第二世紀,眾學者均將這項發明歸功於阿基米德。據戴奧多羅斯記載,阿基米德發明水螺絲時,還是個在亞歷山大城求學的年輕人。

這點很合理。這項裝備對於埃及的農業灌溉而言非常理想,水螺絲和大水車不同,它能夠輕易地隨處移動;它所提升的水位並不高,但應付平坦的三角洲卻綽綽有餘;而其沒有活動零件的簡單設計,則能抵抗淤泥充塞的尼羅河河水引起的堵塞。

-----廣告,請繼續往下閱讀-----

水螺絲的科技,由埃及散布至地中海各地。水螺絲用於灌溉,但也有其他的應用,據說阿基米德曾經利用水螺絲,倒光了國王亥厄洛一艘大船底部的汙水。古羅馬人也利用水螺絲,提升市政給水系統的水位,以及為礦坑抽水。二十世紀早期,在古羅馬位於西班牙的銅礦中發現了一些保存完善的木製水螺絲。

這些長達三.五公尺、直徑約三十公分的管子,以塗有瀝青的布料包裹,並以繩索鞏固;在其內部,螺旋形的分隔則以壓成薄片的木板製成,膠著後以銅釘固定。四根像這樣的水螺絲聯合起來,能將水位垂直提升約六公尺的高度。

古羅馬水系統也利用水螺絲供給市政用水。圖/BBC

戴奧多羅斯描述:「藉著不斷地輪流打水,它們將水自礦坑口吐出,從而排乾礦坑中的水;由於這工具的設計是如此別出心裁,大量的水得以奇妙而不費吹灰之力地射出。」自從戴奧多羅斯將水螺絲與其他提升水位的古老設備,如複雜的水桶運送帶和水車等相比較之後,便對水螺絲的簡明和有效留下深刻的印象。

鼓形水車是一種相當普通的水車,為一只直徑三至四.五公尺的大型中空輪,裡頭分隔成八個餅形的隔間。隨著水車轉動之際,水流進位置最低、沒入水中的隔間,而當該隔間抵達最高位置時,便自其流出。有人提議說,鼓形水車很可能是阿基米德靈感的來源。

-----廣告,請繼續往下閱讀-----
鼓式水車。圖/wikipedia

實際上,如果把鼓形水車的形狀拉長一點,並使其沿著中軸旋轉,它便會產生一條圓柱螺旋線。這種三維外推法雖然一點兒都不顯然可見,但對一位熟練的數學家而言,卻非難事。將水螺絲的發明歸於阿基米德的假設,還有另一則有趣事實可供佐證。

想像力真的是一種超能力

在所有的希臘及拉丁文學中,唯一一件關於水螺絲的詳細敘述(作者是維特魯維亞),明確地描述一根具有「八個」螺旋形隔間的水螺絲;而如果水螺絲是自鼓形水車得到靈感,就正該是這個數字。 維特魯維亞描述的應該是最早的水螺絲;後來的古羅馬工程師,一旦發現八個隔間並沒有任何的機械利益,還增添不少成本時,便將隔間數目降低至二或三個。

不論阿基米德的靈感是否來自鼓形水車,水螺絲是由於人類想像力才得以實現的又一則機械發明實例,和科技演進無關。想像力是個善變的東西,以古代的中國人為例,他們並不知道水螺絲的存在;事實上他們連螺絲都沒聽過,螺絲是他們不曾自行發明的唯一一項機械裝置。

1620 年費第 (Domenico Fetti) 畫作《沉思的阿基米德》。圖/Wikimedia common

另一方面,當古羅馬人發明木螺鑽時,他們已經知道螺絲的存在,卻從未了解相同的原理可以解決一則重大的鑽孔問題:深孔極易被木屑堵塞。一直到十九世紀早期,所謂的螺旋鑽才得以發明;隨著鑽錐的轉動,螺旋狀的鑽柄會自行清除木屑。

-----廣告,請繼續往下閱讀-----

水螺絲不僅是一台簡單而別出心裁的機器,就我們所知,它也是人類歷史上首度登場的螺旋線。螺絲的發現代表一種奇蹟;原本就只有像阿基米德這樣的數學天才才能描述螺旋線的幾何結構,也只有像他這樣的機械天才,才能為這不尋常的形狀想出一個實際的應用。

如果他還是個在亞歷山大求學的年輕人時就發明了水螺絲,後來並(如我私心所想一般)將螺旋線的概念改良應用於無限螺桿之上,那我們一定要在他許多傑出的成就上面,再添加一則小小的、卻不盡然微不足道的榮銜:螺絲之父。

——本文摘自泛科學2020年11月選書《轉動世界的小發明:螺絲釘與螺絲起子演化的故事》,2020年 9月,貓頭鷹
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。