0

0
0

文字

分享

0
0
0

溪畔石頭上的神秘刮痕是怎麼回事?苦花魚在石頭上的數學考卷

eeft_96
・2017/10/17 ・2840字 ・閱讀時間約 5 分鐘 ・SR值 388 ・三年級

 文/李政霖(本文撰寫由人禾環境倫理發展基金會及肯夢 AVEDA 支持合作)
石頭上的數學考卷,蔬食的魚請作答。圖/作者提供

溪畔少年的煩惱

戲院播著《回到未來》的那個夏至,東北角的一條小溪旁,微弱的南風中,漫著溫溫的泥土味。

「八婷還沒來喔,女人就愛遲到。」綽號「運將」的黝黑少年說,順手拾起一顆石頭用力擲進溪中,霎時水花飛濺、水下幾十個黑影放射竄開。

「嗯啊。」相貌斯文,綽號「智怪」的少年,因為畢業考數學科一個計算題多寫了一個零,耿耿於懷,蹲在水邊鎖著眉望著潺潺流逝的溪水應答道。

「說你跟八婷啊,你們這些好學生太奇怪了,數學是可以當飯吃嗎?每天為了一個紅筆寫的分數在那邊拼拼拼…,其實考再爛天也不會塌下來吧。」運將拾起一塊很大的石頭端詳著。

「ㄟ你該不會要丟那塊石頭吧?整條溪的魚都被你嚇死光光。」

「嘿嘿,我是要讓你看看,我的數學考卷就是長這樣。」

運將手上的石頭,上面覆滿乾土般的物質,還有一道一道斜的、交叉的刮痕,就像老師用紅筆劃著代表「答錯」的痕跡,還愈劃愈激動的樣子。

「(嗶),一看就懂。」智怪接過那塊石頭,放鬆笑了。

「華生,其實這塊石頭是有秘密的。」運將神秘兮兮地說。

石頭上面覆滿乾土般的物質,還有一道一道斜的、交叉的刮痕。圖/作者提供

不只是弱肉強食

「這是石斑『ㄎㄠ』出來的痕跡?」智怪睜圓了眼。

「嗯。就是牠們。」運將指著大石邊水略深的區域,幾尾身上長著些許橫斑的魚。

身上長著橫斑的魚。圖/作者提供
在學校,智怪或許是所謂的贏家,不過在溪邊,運將簡直什麼都能叫出名字、說出個道理,這位「溪流博士」的所知,幾乎都來自於他那位釣魚成痴的老爸。

「還真的,這邊也有。」

兩人光著腳在溪床上東尋西找,發現不少有著神祕刮痕的石頭。

-----廣告,請繼續往下閱讀-----
圓石上面有著彎彎曲曲、如數學方程式上的代數「符號」。圖/作者提供

「ㄟ你看,這邊有數學考卷上的題目。」運將指著近岸邊一塊不大的圓石,圓石上面有著彎彎曲曲、如數學方程式上的代數「符號」。

「那壺不開提那壺,這又是什麼痕?」

「應該是螺爬過的痕跡吧。」

「運將,這是日本禿頭鯊吧?」

一個水流紊亂的湍瀨處,十來隻 20 公分大的魚,在溪底用嘴喙快速地一張一縮「吸」著石頭,像在吸吮大地分泌的乳汁一般。

「沒錯,禿頭鯊。」

「原來他們吃藻。那他們的痕跡長什麼樣?」智怪的好奇心已不可收拾。

「考倒我了,我爸沒教過我耶。不過我猜應該也是像某人的數學考卷一角。」

「可以不要再扯數學考卷了嗎?」智怪看著一塊滿布點痕的石頭,「這些小小密密麻麻的是什麼?」

圖/作者提供

「可能是石貼仔吃的痕跡。」運將歪著頭答道。

「什麼石貼仔?」

「一種躲在石頭下面的魚,長得有點像水族館賣的垃圾魚。我找一條給你看好了。」

說罷便放輕了腳步,如魚狗的銳利眼神開始搜尋著急流處的石塊。不一會,粗壯的手指便指向一隻相貌扁平、身披花斑的魚,而牠正好以獨特的動作啃著石頭上紫紅的藻,像打字機打著新詩,啃了一小段便要「換行」繼續啃。

  • 纓口台鰍(石貼仔)用嘴喙快速地一張一縮「吸」著石頭,像在吸吮大地分泌的乳汁一般。
魚吃石頭上的藻類,所留下的痕跡。圖/作者提供

「原來很多魚都吃石頭上的藻啊,我還以為魚的世界就是大魚吃小魚。」智怪嘆道。

「吃藻、吃蟲、吃屍體的都有啊,不會全部都搶一樣的食物。就像人的世界一樣,不一定每個人只能一直讀書考試搶第一名,還有很多事可以做。簡單道理,就你們好學生不懂。」

「扯屁。」

持續往溪的上游緩步,兩岸的草木逐漸變得高大,遮蔽了午后熾熱的陽光,啃蝕著藻類的生物一一現身,同時,兩位少年正如小說裡福爾摩斯與華生在某案發現場,細細觀察著各種跡證…,被發現的痕跡五花八門,有些是不同種類的魚類啃食留下、有些疑似是沼蝦、毛蟹刮的,即使運將也無法一一道出肯定的解答。

「這裡好多不一樣的,圓型的。」智怪停在一塊大石頭旁,「像豹的斑。」
「苦花。」運將想都沒想即答道。
「喔喔!! 你爸常釣的那個苦花嗎?」智怪興奮道。
「不信喔?來看。」

被刮過的石頭上,留下了小小的圓痕。圖/作者提供

苦花魚的石頭餐廳

兩人循著水下往來游動的魚影,來到一個魚群聚集的角落。

-----廣告,請繼續往下閱讀-----

一小群肥碩的苦花自不遠處靠近過來,一隻接著一隻像排隊般,用一模一樣的動作掠過大石頭,嘴巴接觸石頭的瞬間,身體猛然翻扭一下,露出銀亮的側腹,被刮過的石頭上,果然留下了小小的圓痕。

兩人循著水下往來游動的魚影,來到一個魚群聚集的角落。圖/作者提供

「奇怪了,為什麼石斑的食痕是條狀,苦花卻是圓形?」 智怪不解地說。
「苦花是吸收到某人畢業考數學考卷多寫了一個零的怨氣,所以不斷在石頭上刮出「0」的圈圈啊。」
「說正經的。」
「我爸說,石斑的嘴向下,並不是只吃藻,啃藻的時候,是直直掠過去;苦花的下嘴完全為了啃藻而生,像鏟子一樣,掠過的瞬間在石頭上用力剷出一個大圓洞。像這些食痕,只有在非常非常乾淨的溪段才會有,如果溪邊有田、住戶排水的,石頭上長的就都是綠色毛毛的那種藻,只有石斑偶而會用拔的方式去吃,苦花就不來了。」運將滔滔不絕地說了一大段。

苦花的下嘴完全為了啃藻而生,像鏟子一樣,掠過的瞬間在石頭上用力剷出一個大圓洞。圖/作者提供

「好像有很深的學問。」智怪說。

兩人仔細端詳著苦花群剷石頭的樣子,就像某種武術動作,精準又充滿力道。

突然間,苦花群一窩蜂地往下游衝去,刮藻的石頭附近只剩寥寥幾尾在晃蕩。

兩人往苦花移動的方向望去,看到一個小灣凸岸處,一個短髮少女朝著溪裡投擲麵包屑,麵包屑一接觸到水面,苦花群就像餓鬼般搶食著…。

-----廣告,請繼續往下閱讀-----

「八婷,你在衝啥啦。」兩人氣極敗壞地齊聲喊道。
「這樣魚才會靠近啊。」少女笑著答。「你們要玩嗎?這片給你們。」順手捏了半片吐司,遞給運將。

運將接過吐司,撕成兩半,把其中一半交給智怪,同時向智怪使了個眼色。

智怪也點了點頭…。

兩人同一時間,把吐司塞進了自己嘴裡。

「白癡喔你們!」八婷大喊。
「這樣魚才會靠近啊~」運將嗲聲模仿著。「因為我以為自己是白雪公主……」

智怪笑得直不起腰,八婷脹紫了臉。

-----廣告,請繼續往下閱讀-----

溪水裡麵包屑的味道流盡,苦花群繼續回到長滿矽藻的大石邊,用那完美的扭轉翻身,剷下一個又一個的「0」,清澈的溪水,持續持續地流逝……。

清澈的溪水,持續持續地流逝。圖/作者提供
文章難易度
eeft_96
10 篇文章 ・ 0 位粉絲
人禾環境倫理發展基金會成立於2007年,以「推動體制內環境教育的落實」、「推動環境學習中心的建構」和「擴大社會對永續環境議題的關注和參與」為願景,持續致力於各式環境學習中心場域之教育推廣與經營管理工作,運用各種媒介平台,向大眾推廣大自然服務及水資源等主題的重要性,並持續累積發展不同主題之環境教育教材供教育單位使用。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
地球的氣息從哪裡吹來?在《超凡地球》上,生命與非生命的絕妙互動
PanSci_96
・2018/04/24 ・2045字 ・閱讀時間約 4 分鐘 ・SR值 502 ・六年級

本文由 國家地理 合作企劃,泛科學共同執行

  • 文/陳柏成,持續在自然科學領域探索的研究生。

仰望宇宙在千萬數不盡的星星之中,地球的存在非常獨特。其中最重要的,在於它孕育了千千萬萬的生命。

在茫茫宇宙之中,地球十分獨特。圖/國家地理提供

如果有幸能從太空看見這顆美麗的藍色星球,你會發現到,支持生命的大氣,在整顆星球比例上,還不及蘋果皮厚度的薄薄一層。大氣中有近五分之一的成分為氧氣,眾生仰賴呼吸,而這在其他星球上還不曾被發現過。地球上存在了怎樣的魔力,讓這顆星球上的氣息如此與眾不同?大氣層又如何受到其間孕育的生命所影響、改變?

亞馬遜雨林的樹木供應了很多氧氣?事情沒有那麼簡單

有「地球之肺」美名的亞馬遜雨林,便是塑造大氣成分功不可沒的一個重要角色。

有趣的是,亞馬遜雨林之所以重要,並非在於眾多的樹木行光合作用,為整個世界提供了足夠的氧氣;因為當雨林提供氧氣之時,整個雨林系統同時也消耗了氧氣,因此並不會有足夠多餘的氧供給到整個地球1 2

廣大生命世界賴以生存的氧氣,是怎麼來的?圖/國家地理提供

那麼亞馬遜雨林還有什麼方式,可以幫助地球帶來氧氣?關鍵便在於其大量蒸散釋放的水氣。

雨林的植物們透過蒸散作用,將大量的水氣逸散至空中,會使雨林上空形成一片廣大的流動「雲河」;當這些流動的雲河撞擊安地斯山脈後,受地形作用抬升凝結成雨滴,迅速留下山坡後回到亞馬遜盆地。而在這移動的過程中,藉由侵蝕岩石,將其化為沉積物後沖入海洋,成為海中矽藻(Diatom)的最佳養分(包含氮、鋅、磷、二氧化矽等來源)。

亞馬遜雨林一景。豐富的生態,孕育了形形色色的物種。 圖/wikipedia

所以矽藻,才是主要供給地球氧氣的角色之一3 !矽藻為地球貢獻了約 20-40% 氧氣。

從這樣的例子,我們便可以發現在地球上,看似不相干的生態系統之間,其實往往存在比我們想像更深的關聯。

在地球上,看似毫不相關的系統也充滿了關聯。圖/國家地理提供

對地球生態敲~重要的矽藻,還有哪些任務呢?

值得一提的是,矽藻對於地球整體生態的穩定來說,佔有十分重要的地位;一來在於地球上有超過 20% 的二氧化碳固定是由矽藻提供4 5,同時它也供給了超過 40% 的海洋初級生產力6 。沒有了矽藻,那麼我們的地球就會如同褪色的衣裳,不再亮麗。

矽藻存有多種不同的樣貌。 圖/wikipedia

要知道,矽藻普遍存在於各海域之中。那麼那些存活在遠離熱帶雨林地區水域的矽藻,還可以從哪裡獲得養分?其中一個例子便是來自於冰河的崩解。每當冰河崩解一次,就會有數千噸的冰掉進水裡,其中冰河沿途攜帶的那些岩石碎屑,就是矽藻最棒的食物來源。

當矽藻獲得的養分耗盡之後,假若沒有持續穩定的供給,矽藻便會漸漸凋零死亡,並堆積在海底。經過數百萬年後,海床上升、海平面下降,原本的海底就會變成一片富含鹽的沙漠。而當風將這些富含矽藻殼的塵土吹到雨林,便又成為了促進雨林生長的養分。事實上,現生亞馬遜雨林重要的養分來源之一,就是來自非洲沙漠的塵土。

冰河崩解掉落水裡,裡頭所攜帶的岩石碎屑,成為了矽藻最棒的一餐。 圖/wikipedia

由雨林到海洋矽藻,再由矽藻到大氣中的氧氣。讓我們看到了地球上的生命與環境間的互動是如此的息息相關。

獨一無二的地球,生命與非生命的互動

當我們仔細探索地球,就會發覺地球上的每一個生命的存在都必須藉由彼此,才能共存於這片土地之上。在這宇宙之中,也唯有地球,是目前科學家發現存有如此多樣生命的地方;因為這裡富含氧氣、水分,具備了各式生物所需的必要元素。再加上生命之間、與環境間細緻而多樣的互動,才得以孕育出這個,充滿變換、令人震撼的世界。

快來和我們一起探索這個美麗的地球吧!圖/國家地理提供

編按:希望繼續了解地球生命與非生命的超凡互動嗎?國家地理雜誌 2018 年最新節目《超凡地球》邀你一同繼續探索共屬我們的這顆,美麗的星球。

參考資料:

  1. National Geographic.(2018). World’s ‘largest river’ is actually in the sky – as biggest myth about Amazon Rainforest dispelled in new documentary. Mirror
  2. Geraldo Lino.(1993). Myths surrounding the Amazon region. Executive Intelligence Review
  3. Andrew Alverson.(2014). The Air You’re Breathing? A Diatom Made That. Live Science
  4. Falkowski, P. G., Barber, R. T., and Smetacek, V. V. (1998) Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science 281, 200-207
  5. Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237-240
  6. Sarthou, G., Timmermans, K., Blain, S., and Treguer, P. (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53, 25-42
PanSci_96
1237 篇文章 ・ 2373 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。