0

0
0

文字

分享

0
0
0

小鰻苗在茫茫大海千里尋根,如何不迷失方向?--《科學月刊》

科學月刊_96
・2017/07/02 ・2669字 ・閱讀時間約 5 分鐘 ・SR值 543 ・八年級

文/林翰佐|銘傳大學生物科技學系副教授,《科學月刊》總編輯。

現在多數人對鰻魚的主要印象大多來自於香噴噴的鰻魚飯,但在美味可口的背後,鰻魚的一生仍有許多有趣的未解之謎。

一說到鰻魚,第一個是直覺是不是就想到鰻魚飯呢?圖/挪威 企鵝 @ Flickr

鰻魚的迴游

鰻魚與鮭魚是動物界著名的洄游性魚類,兩者的一生都注定了一趟壯遊,不過牠們漂泊的方向則是恰恰相反的。鮭魚的一生開始於淡水河流,體型稍長之後便游入大海,然後在成年之後歷經千辛萬苦回到了出生地,完成傳宗接代的任務之後力竭而亡;鰻魚的生命歷程則是始於大洋的深處,然後所產生的幼苗以浮游狀態回到陸棚的沿岸地區,後溯溪進入溪流,在溪流中渡過數年的成長期,然後再返回海中的產卵場完成傳宗接代的任務。

目前科學家相信,臺灣常見的日本鰻鱺(Anguilla japonica)產卵場在馬里亞納海溝的西緣,位於關島附近的水域,而美洲鰻鱺(Anguilla rostrata)與歐洲鰻鱺(Anguilla anguilla)則以馬尾藻海(Sargasso Sea)為主要的產卵地,著名的百慕達三角洲便位於馬尾藻海的西緣。

追蹤成年鰻魚的研究,沒那麼容易

如果說自然界的鮭魚返鄉是一部壯闊的史詩巨片,那鰻魚的洄游無疑是一部懸疑劇。多年以來,為了獲得鰻魚洄游回到產卵地的確實證據,科學家們運用了許多生態學研究的方式,例如綁上不易損壞的號碼牌與聯絡資料,讓日後捕獲該魚的漁夫得以通報位置的繫放法,到最近因為電子科技的進步得以實現的 GPS 定位與訊號發送的技術。

不過即便如此,這樣的實驗仍然具有相當的難度,例如,即便足以洄游的鰻魚均已成年,它們的體型仍僅約在 3~5 公斤之間,想要在不影響鰻魚洄游狀態下獲得鰻魚位置的資料,需要縮小發報機的體積直到鰻魚可以攜行的標準,並且需要克服鰻魚在深潛狀況下無法進行定位以及訊號發送的問題。

先前的研究也發現,鰻魚洄游過程其實佈滿殺機,以美洲鰻為例,洄游旅程當中會通過鯊魚出沒的區域,讓研究增添更多的挑戰。直到 2016 年,一組加拿大的研究團隊在花費相當的經費與時間後,才成功實現鰻魚洄游的衛星標定技術,成功追蹤一隻美洲鰻鱺回到產卵場──馬尾藻海附近水域,這隻重量約 3 公斤的年輕鰻魚,一共花了45 天的時間,游了近 2400 公里左右的距離。這項實驗驗證了先前科學家們的假設,成年鰻魚的確有能力可以回到產卵地,來達成傳宗接代的任務。

美洲鰻鱺(Anguilla rostrata)。圖/Alan Cressler @ Flickr

小鰻苗的尋根之旅

鰻魚在產卵地產卵的真實狀況目前所知甚少,然而從一些觀察當中仍可以透露出一些端睨,例如從鰻魚苗的捕撈經驗來說,魚苗的出現是成批的,暗示著鰻魚在產卵地的交配行為有同步化的趨勢,成年的鰻魚可能隨著月週期舉行難以想像的巨型派對,然後同時產下數以兆計的鰻魚卵。

鰻魚卵在孵化後會呈現葉子狀的特殊形態,這種我們稱為「柳葉鰻」的幼苗會隨著洋流以蜉蝣狀態進行海上漂流,大約經過數個月的時間從產卵地抵達大陸棚沿岸,此時的鰻魚苗會進化成為透明線型外觀的「玻璃鰻」,這就是漁民於每年東北季風來臨之際在海邊辛勤捕撈的鰻苗。

美洲鰻的幼苗。圖/Kils ,創用CC 姓名標示-相同方式分享 3.0,wikimedia commons.

地磁是鰻魚尋根之旅的關鍵

前述的故事雖然合於邏輯,但有些重要的細節顯然仍缺乏合理的交代。譬如即便洋流是鰻魚幼苗長途旅行的主要疏運工具,不過洋流本身無法進行「戶對戶(door to door)」的服務,在關鍵時刻,還是需要靠自身的力量把自己推向目的地。重點是,鰻魚苗要如何知道「關鍵時刻」的到來。

科學家們提供了許多種版本的假設,其中一種假設認為,鰻魚苗具有地磁的感受能力,並且具有「磁場地圖(magnetic map)」這種源自演化上的記憶,當鰻魚苗感知磁場接近的狀況,就會喚起鰻魚本能地進行某些行為因應。對於脆弱的鰻魚苗而言,擁有磁場地圖的能力顯然是重要的,唯有在對的時間上使盡全力,才能增進族群繁衍的機率。

在近日發表於《當代生物學》(Current biology)的一篇文章當中,一組由美國北卡羅來納大學教堂山分校(Chapel Hill),邁阿密大學與瑞士相關研究機構所組成的跨國研究團隊,嘗試探討鰻魚幼苗是否具有感受地磁的能力,並探討地磁上的細微變化是否影響牠們的游泳行為模式?

這個研究團隊設計了一個相當特別的實驗設施,這個被稱為「競技場(arena)」的裝置是由一個 25 公分直徑的中心圓柱形壓克力盒以及外圍環繞於中間的 12 個小隔間所組成,每一個隔間大約可代表羅盤上的 30 度方位角,中間區與周邊的隔間具有活門供實驗操控。這樣的研究裝置可以在海洋下不同的深度狀態下進行實驗,這些科學家們便坐著海洋研究船,循著歐洲鰻鱺遷徙的路徑,分別選在百慕達三角洲附近海域,大西洋西北部與北部海域,利用這樣的裝置在海面下進行相關的研究。

2017/04/13 發表在《當代生物學》〈A Magnetic Map Leads Juvenile European Eels to the Gulf Stream〉的附圖。A.B.C 和 D 分別是放在不同海域中的「競技場」,從其四周三角形方位大小的比例可以看出,鰻魚在洄游時對於特定方位反應較敏銳。圖/〈A Magnetic Map Leads Juvenile European Eels to the Gulf Stream〉

研究團隊原本的預想是,鰻魚苗是具有地磁感應力的,這個地磁感應能力具有導航上的指標,而讓鰻魚苗能夠朝向目標區前進。然而實驗的結果有些出人意表,科學家們的確發現鰻魚苗似乎具有感地磁變化的特殊能力,在不同地理位置下呈現具有特定方位的游泳行為,不過這些鰻苗的游泳方向跟原本的預期相去甚遠,在方向上近乎轉了180 度,這點讓參與的科學家們不解。

透過海洋數學模式專家的協助,這項謎團終究獲得了解答。透過電腦模擬,科學家們了解,也許這些看似莽撞的行為對魚苗而言反而是個明智的選擇,讓它們具有更高的機會進入到環繞於墨西哥灣後北上的大西洋環流(Atlantic current),讓這些歐洲鰻鱺的幼苗搭上便車,能更快速的到達歐洲。

生命科學的研究其實是需要建立在研究數據的累積,有時候實驗的假設跟後續的結果會有相當的出入,但就是因為如此,從事科學工作才會是有趣而充滿挑戰的工作,也因如此,我們更需敬天畏地,常保謙虛之心。


 

 

 

本文選自《科學月刊》2017 年 6 月號

什麼?!你還不知道《科學月刊》,我們 47 歲囉!

入不惑之年還是可以當個科青


數感宇宙探索課程,現正募資中!

文章難易度
科學月刊_96
224 篇文章 ・ 1774 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。


0

0
0

文字

分享

0
0
0

霍亂也有自己的免疫系統?想要入侵人體,卻不想被感染!

寒波_96
・2022/05/19 ・3396字 ・閱讀時間約 7 分鐘

由霍亂弧菌(Vibrio cholerae)引發的霍亂,是常見的人類傳染病。有意思的是,霍亂弧菌這般能入侵生物體的細菌,本身也會被病毒等異形入侵,有免疫的需求。

引起霍亂的霍亂弧菌。圖 / Wikimedia

在最近發表的論文中,霍亂向我們展現了以前未知的免疫手法,不但能抵抗病毒,還能對付「質體」。霍亂究竟如何避免成為宿主的命運?質體又是什麼呢?[參考資料 1, 2]

細菌 vs 質體 vs 病毒大亂鬥:細菌也不想被寄生

細菌和人類一樣,都是用染色體上的 DNA 承載遺傳訊息。不過除了染色體以外,細菌也常常配備額外的「質體(plasmid)」,它們是 DNA 圍成的圈圈,獨立於細菌的染色體之外,具有自己的遺傳訊息,會自己複製。

細菌的遺傳物質,除了自己的染色體外,時常還額外攜帶數量不一的質體。圖/Bacterial DNA – the role of plasmids 

質體如果單方面依賴細菌供養、當個快樂的寄生蟲,那麼對細菌來說,質體就是個占空間的東西,只會耗費宿主的資源,對細菌是最差的狀況。但是,質體上也有基因,如果那些基因具備抗藥性等作用,那質體便對細菌有利。換句話說,質體和細菌的關係並不一定,有可能是有利、有害,或是沒有利也沒有害,視狀況而定。

細菌有時候具備攻擊質體的能力,例如近來作為基因改造工具而聲名大噪的 CRISPR,原本便是細菌用來抵禦病毒、質體的免疫系統。神奇的是,許多攻擊目標為質體的 CRISPR 套組,本身就位於質體上頭,令人懷疑其動機不單純。

比方說,A 質體攜帶一套攻擊 B 質體的 CRISPR,那麼 A 質體的目的,到底是保護自己寄宿的細菌不被 B 質體入侵,或是維護自己的地位不要被 B 質體搶走呢?不好說,不好說。

細菌對付質體的手段除了 CRISPR,還有一招是利用「Argonaute」蛋白質,啟動針對質體的排外機制;有時候兩者兼備,就是不給質體活路。[參考資料 3]

了解上述資訊,便能體會霍亂新研究的奧妙:質體無法生存的霍亂弧菌,既沒有 CRISPR,亦沒有 Argonaute,卻有以前不知道的另外兩招。

沒有質體的霍亂弧菌

儘管大家的印象中,霍亂就是一款危害人類的傳染病,不過野生的霍亂弧菌有很多品系,除了 O1 和 O139 兩個亞型之外,大部分其實不怎麼會感染人類。歷史上霍亂有過七次大流行,目前第七次大流行的型號為 O1 旗下的 E1 Tor,也稱作 7PET。

過往導致大流行的型號以及野生霍亂品系,細菌中一般都帶著質體,可是如今廣傳的 E1 Tor 卻常常沒有。假如人為將質體送進細菌體內,一開始倒是沒什麼阻礙,可是複製繁殖十代以後的細菌,卻幾乎不再擁有質體。

因此我們可以假設,霍亂第七次大流行的主角,可能比同類們多出些什麼,讓它新增了排除質體的能力。既然不是其餘細菌使用的 CRISPR 與 Argonaute,應該是某種目前未知的手段。

研究者一番搜尋後,從霍亂基因組上找到 2 處有關係的區域,稱它們為 DdmABC 和 DdmDE(Ddm 為 DNA-defence module 縮寫),兩者各自都有排擠新質體的能力,一起合作效果更好。

霍亂弧菌有 2 個染色體(左、右),DdmABC 位於第一號染色體(左)的 VSP-II 區域(圖中寫成 VSP-2),DdmDE 位於 VPI-2 區域。圖/Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae

兩套手法獨立運作,就是不要讓質體留下!

DdmABC 與 DdmDE 都能替霍亂細胞排除質體,但是運作方式不同。

DdmDE 會直接攻擊,令質體無法繼續在細菌體內生存,尤其容易攻擊比較小的質體;這個攻擊過程中,應該有其他蛋白質參與,不過詳細機制仍有待探索。

負責打擊質體的 DdmDE,其基因周圍還有兩套免疫系統的基因:R/M 與 Zorya,它們的任務都是消滅入侵的噬菌體(感染細菌的病毒)。因此霍亂的染色體上,這些基因共同構成一組對抗外來異形的陣地,稱為防禦島(defence island)。

DdmABC 則似乎更傾向「促進選汰」的手法,霍亂如果攜帶質體,不論質體自身大小,DdmABC 都會產生毒性;這使得質體數目較少的細菌,繁殖時產生競爭優勢,多代以後脫穎而出的霍亂,將剩下不再攜帶質體的個體。

有意思的是,霍亂細胞的 DdmABC 能排擠質體,也能屠殺入侵的噬菌體。所以它是一套雙重功能的免疫系統,同時防禦噬菌體和質體這兩種異形。

霍亂弧菌中 DdmABC 與 DdmDE 為兩套獨立運作的免疫系統,DdmABC 能排除入侵的病毒和質體,DdmDE 會直接攻擊質體。圖/參考資料 2

演化上 DdmABC 與 DdmDE 從何而來呢?在資料庫中比對 DNA 序列,ABCDE 這 5 個基因都找不到非常相似的近親基因,所以本題暫時不得而知。

其餘霍亂同類都沒有這兩串基因,所以它們是 E1 Tor 品系新獲得的玩意;幾個新基因組合形成新功能,或許有助於 E1 Tor 當年在霍亂內戰中勝出,成為第七次大流行的主角。總之,它們都通過長期天擇競爭的考驗,贏得一席之地。

質體對細菌可能有害也可能有利,若是通通不要,等於是徹底斷絕獲利的機會。如今廣傳的這款霍亂,為什麼演化成這般樣貌,值得持續探索。

一隻細菌配備對付不同入侵者的多款免疫系統,一如一艘巡洋艦配備的多款防禦系統,不論敵人從陸地、海面、空中發射飛彈,或是從海底用魚雷攻擊,都有防守的應變手段。然而,再怎麼周詳的防禦設計,都有被突破的機會。圖/wiki

戒備森嚴,多重防禦的細菌免疫

由這些研究我們可以觀察到,細菌儘管是只有一顆細胞的簡單生物,也配備多重免疫系統,抵抗各種入侵者。以極為成功的霍亂 E1 Tor 品系來說,它配備 R/M、Zorya、DdmDE 三款防禦病毒的機制,以及 DdmABC、DdmDE 兩套排擠質體的手法,能夠全方位對抗試圖入侵的病毒和質體。

霍亂弧菌之外的許多細菌,又配備記錄入侵者遺傳訊息的 CRISPR 系統,精準識別目標並且攻擊,類似人類的後天免疫。CRISPR 此一特質,使它變成智人的基因改造工具。

而類似先天免疫,無差別切割入侵者的 R/M 系統,其各種限制酶(restriction enzyme),早已從 1970 年代起成為常見的基因改造工具,可謂分子生物學實驗的元老。

新發現霍亂的 DdmABC、DdmDE 免疫系統,除了增加學術知識,也有應用潛力。探索細菌、質體、病毒間的大亂鬥,不只能認識更多免疫與演化,也可能找到對付細菌的新招,還有機會啟發分子生物學的新工具。

延伸閱讀

參考資料

  1. Jaskólska, M., Adams, D. W., & Blokesch, M. (2022). Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature, 1-7.
  2. Cholera-causing bacteria have defences that degrade plasmid invaders
  3. Kuzmenko, A., Oguienko, A., Esyunina, D., Yudin, D., Petrova, M., Kudinova, A., … & Kulbachinskiy, A. (2020). DNA targeting and interference by a bacterial Argonaute nuclease. Nature, 587(7835), 632-637.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁


數感宇宙探索課程,現正募資中!

寒波_96
9 篇文章 ・ 7 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。