本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行
撰文/陳亭瑋│自由寫手
「你可以告訴我該往哪走嗎?」愛麗絲問道。
「那要看妳想去哪裡,這個方向……」柴郡貓舉起右邊的貓掌,「住著瘋帽匠;而那個方向……」牠舉起另一邊的貓掌,「住著三月兔。不管遇到誰都一樣,他們兩個都瘋了。」
──愛麗絲夢遊仙境[1]
十九世紀的英國帽匠為什麼瘋瘋癲癲的?
十九世紀時,一種職業病時常出現於英國的製帽匠身上,症狀包括流口水、掉頭髮、肌肉抽搐、走路搖晃,說話思考困難、甚至產生幻覺、異常興奮或情緒不穩等,英文諺語的「跟帽匠一樣瘋」(mad as a hatter)很可能便是因此而來。現在則認為當時的這類職業病,應該就是水銀中毒。在十八、十九世紀,水銀常常用於處理帽子的毛皮原料;帽匠們會長時間暴露於水銀蒸氣中,在還不明白水銀毒性的年代裡,他們被認為總是瘋瘋癲癲的,可這些其實都是經水銀引發的中樞神經中毒的症狀。
在眾多的金屬元素中,水銀 ── 也稱為汞 ── 是個相當特別的存在。汞是唯一在常溫下為液態的金屬元素,具有密度大、導電性佳等特性。過去西方煉金術認為水銀為金屬的第一物質,煉丹師也以硃砂(琉化汞)作為煉丹的重要原料;現今的水銀則多應用於水銀電池、電源開關、繼電器、螢光燈管、溫度計、血壓計等。然而,雖然被普遍使用在許多日用品中,水銀對於人體與環境都有一定的毒性,那麼,人們究竟如何管理這類的有毒物質呢?
如何了解產品對環境的影響?「生命週期評估」
現今人們對於有毒物質的了解更多,自然不會像十八、十九世紀的製帽工業,任由工人曝露在水銀蒸氣中。但現代產品的製造流程也相對更為複雜,如幾乎人手一支的「手機」便結合了許多電路製程,每種過程中都可能產生毒性物質,因此根據不同的化學物質種類,我們需要有詳細的評估與管理方法。 針對會廣泛使用於製造過程或民生用品的毒性化學物質,通常會進行「生命週期評估(Life Cycle Assessment, LCA)」,從原料取得、生產、使用到最後處置(回收或廢棄),評估出整個產品生命週期裡可能造成的環境影響。
「生命週期評估」的概念早在 1969 年便被提起,直到 2002 年才由聯合國環境規劃總署(United Nations Environment Programme, UNEP),與環境毒理化學協會(Society of Environmental Toxicology and Chemistry, SETAC)共同合作推行,將其實際應用至產業生產及政府決策之中。例如水銀對生物體具有相當強的毒性,且能長時間停留在環境中、進行生態累積(由於生物累積放大效應,因此許多大型魚類如鯊魚、旗魚等較高階的消費者,體內的水銀濃度會較高),所以使用水銀的產品,應該要進行「生命週期評估」管理。 生命週期評估可以初步區分為幾個階段,包括原物料開採與加工、半成品及產品製造、消費使用以及廢棄物處理與回收;目標是對於有毒物質「從搖籃到墳墓」完整監管,沒有遺漏。
「從搖籃到墳墓」看水銀如何進入臺灣環境
我們以「汞」在臺灣如何進入環境中為例,來看看生命週期評估會關注到的項目。在原物料開採階段,臺灣本島並無汞礦的開採,絕大多數含汞相關的原料都是進口,其中以「原油」(因為總量最大)占了含汞量的最大宗,其次則為煤礦、天然氣、水銀及液化石油氣。然而,除了總量,不同原料的「應用方式」也會大幅影響汞對環境的後續影響,我們暫且分為空氣污染源與水污染源來分析。
在原料階段,汞的空氣污染源主要和燃煤有關,如主要用來發電的燃煤發電鍋爐,與燃煤汽電共生鍋爐.;水的污染源則主要來自金屬基本加工。
到了半成品及產品製造階段,汞的空氣污染源主要有工業中處理水泥原料的水泥旋窯、生產鋼的電弧爐以及煉鋼用的燒結爐;水污染則來自於電鍍業、印刷電路板製造業、晶圓製造及半導體製造業。而在最後的廢棄物處理與回收階段,水污染源主要集中於工業區的汙水系統;空氣的汞污染則主要來自垃圾焚化爐以及火葬場;另外還有因一般垃圾焚化的飛灰跟底渣造成的土壤污染。
說到這,大家應該可以看得出來,「生命週期評估」需要追蹤毒化物從開採、原料進出口、產品製造到廢棄、回收各階段的分布狀況,才能夠針對每個階段進行管理。舉例來說,如果希望降低汞在空氣中的排放量,第一步當然是去改善最大宗的空氣污染源,也就是水泥窯以及燃煤發電的汞排放狀況啦。
這樣的「生命週期評估」概念主要會應用在判斷產品對環境的影響,希望在每個階段減少資源消耗、改善產品性能,而毒化物自然是其中非常重要的一環。今日人們如果要開一家製帽工廠,在評估初期就可以判斷水銀的毒性太高,而採取其他更安全的製程取代它,工廠帽匠也不會再瘋瘋癲癲的了!
無法承受更多的汞 ── 用「水俣公約」對汞污染說不
前面講了這麼多臺灣環境中的汞污染源,主要都與工業有關,根據統計,目前人為造成的汞空氣污染排放約為 1200 至 2000 噸;但其實自然的力量也不容小覷。自然界裡本來就存在汞,地殼中的濃度約有 0.08ppm,而每年的火山噴發與森林火災等天然因素,排放至大氣的汞就可達每年 2000 噸。
由於汞能夠在大氣中長途傳播,會長久存在在各生態系中形成生物累積作用,甚至可能影響北極地區,世界上已有許多國家開始努力,希望盡可能減少汞的污染。
2013 年 1 月,147 個國家終於在四年的協商後達成共識,同意控制汞污染的「水俣公約」[2],將於 2020 年禁止含汞產物的進出口、疫苗跟補牙材料應更換為無汞材質、降低小型淘金產業對汞的使用,並使用最佳控制技術降低工業污染源(燃煤電廠、工業鍋爐、鋼鐵業)的汞排放。水俣公約將於 2017 年 8 月 16 日正式生效,從此開始,讓汞逐步從我們的生活中消失吧!
我們也把文章重點整理成一份懶人包囉,一起來看看十九世紀帽匠的故事吧!
備註:
- [1] 亦有人考據認為愛麗絲夢遊仙境中的瘋帽匠有實際的指涉人物,不見得只代表水銀中毒,但可以確定作者相當熟悉英文諺語的「跟帽匠一樣瘋」(mad as a hatter)的實際狀況。
[2] 「水俣(讀音:ㄩˇ / yǔ)」為日本熊本縣地名,於 1956 年發生大規模汞中毒公害疾病「水俣病」,因此防止汞害的公約以此命名。
參考資料:
- 毒性化學物質環境流布調查成果手冊, 行政院環保署毒物及化學物質局
- 台灣地區含汞元件之流布與管理, 行政院環境保護署土壤及地下水污染整治網
- 汞水俣公約資訊網站, 行政院環境保護署
- Mercury Levels in Commercial Fish and Shellfish (1990-2012)
- David G. Streets, et al, Total Mercury Released to the Environment by Human Activities,Environ. Sci. Technol., 2017, 51 (11), 5969–5977
- Gleason, J. D., Blum, J. D., Moore, T. C., Polyak, L., Jakobsson, M., Meyers, P. A., & Biswas, A. (2017). Sources and cycling of mercury in the paleo Arctic Ocean from Hg stable isotope variations in Eocene and Quaternary sediments. Geochimica et Cosmochimica Acta, 197, 245-262.
- Huang, J., Liu, C. K., Huang, C. S., & Fang, G. C. (2012). Atmospheric mercury pollution at an urban site in central Taiwan: Mercury emission sources at ground level. Chemosphere, 87(5), 579-585.
- Y. C. CHEN, M. H. CHEN.(2006) Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Journal of Food and Drug Analysis, 14(4), 373-378
- Sheu, G. R., Lin, N. H., Wang, J. L., Lee, C. T., Yang, C. F. O., & Wang, S. H. (2010). Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment, 44(20), 2393-2400.
- Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—a literature review. Environmental pollution, 131(2), 323-336.
- Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber, J., … & Helmig, D. (2017). Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature, 547, 201-204.