2

6
0

文字

分享

2
6
0

《進擊的巨人》物理學(上):變身巨人的那一刻就註定了人類的勝利?

余海峯 David
・2017/07/30 ・2427字 ・閱讀時間約 5 分鐘 ・SR值 560 ・八年級

在一瞬間就變成幾倍、幾十倍身高的巨人,科學嗎?圖/IMDb

在很多動漫之中,都會有著能把整個或部分身體瞬間變大的角色。從前比較著名的是《超人力霸王》系列(嚴格來說按官方解釋有些並非變身而是召喚超人後融合),或者是《多啦 A 夢》的放大縮小電筒。而近年比較多人認識的,相信非《進擊的巨人》莫屬了。

《進擊的巨人》裡面的人類能夠被迫或自發變成體型各有差異的巨人。由比較小的 3 米級巨人,到超過 60 米高的超大型巨人,應有盡有。可是,平均身高約 1.7 米的人類,在一瞬間就變成幾倍、幾十倍身高的巨人,科學嗎?

 

 

 

__________微劇透__________

變身成巨人會引發能源危機?

3米巨人來囉。圖/IMDb

我們以平均體重約 60 公斤、平均身高約 1.7 米計算,如果巨人化後身體密度維持不變的話,一個 3 米級巨人就重 60x(3/1.7)3=330 公斤。哇,這已經比成年的美洲黑熊更重了。

-----廣告,請繼續往下閱讀-----
圖/假設身體密度不變,人型生物身高(橫軸,米)與體重(縱軸,公斤)關係。

看看上圖,由於重量與長度立方成正比,更高的巨人必須更加重才能保持密度不變,以維持身體強度。15 米級的巨人,體重為 41 公噸,這是記錄上最重 10 公噸殺人鯨的 4 倍有多;60 米級的超大型巨人,體重更達到 2,600 公噸,是 4.5 架  A380 空中巴士的極限起飛總重量!

由 60 公斤的人類瞬間變成以公噸計的巨人,這麼龐大的額外質量到底從哪裏來?答案似乎就只能來自能量。因生陳代謝而產生的質量,在變身成為巨人的短時間內是可忽略的。即使把由人出生到長大成人的質量差(約為一百至幾百磅)考慮進去,要再額外生成以噸計的質量所需的能量,依然為同樣數量級。根據愛因斯坦鼎鼎大名的質能轉換公式,創造出 那麼多的質量就需要 E=mc2 那麼多的能量,其中 是光速,約等於秒速 30 萬公里。

只是變身成 3 米級的巨人,就需要 (330-60)x300,000,0002=2430 億億焦耳的能量,是我在《一拳超人物理學》中計算出來的波羅斯極限物理攻擊能量 13 倍!成年人類平均每天需要攝取約 6.5 百萬焦耳的能量,因此單單只是變成一個 3 米級巨人已經需要花去全球 75 億人口 16 個月的能量!如果要變出一個超大型巨人,更需要使用比歷史記載以來生存過的所有人類攝取的能量總和更多的能量⋯⋯。

我來引發能源危機囉。圖/IMDb

我看根本就不用打了,直接用這些能量把整個城瞬間蒸發,(城牆內的)人類滅亡。

-----廣告,請繼續往下閱讀-----

超大型巨人的悲劇

陸上生存的動物不可以太高太重,否則就算沒被自身體重壓碎內臟,肌肉也不夠力量移動身體。這是因為站立行走受的壓力是以長度平方遞增,但體重則是以長度立方遞增,所以越巨型的動物就越需要粗壯的腳部支撐身體,體型亦越笨重。

現存陸地上最巨大的動物是非洲象[1],成年象高 3 至 4 米,重達 4 至 5 公噸,最高紀錄是 10 公噸。人類迄今發現最重的陸上恐龍——易碎雙腔龍[2]A. fragillimus)——也只不過約重 120 公噸,超大型巨人的重量是牠的 21 倍!

易碎雙腔龍復原圖與人類比例。圖/ ДиБгд – Own work, CC BY-SA 4.0, wikimedia commons.

非洲象和雙腔龍都以四肢步行,而且腳部非常粗壯,否則沒有可能支撐其身軀。在漫畫和動畫中都清楚顯示,超大型巨人是以兩隻腳走路的。他們兩足行走時,全身 2,600 公噸體重都只由兩隻腳掌支撐,而且能夠把瑪利亞之牆踢爆!這就好比我們要背著 35 個成年人走路,還要做出踢腳動作!還有些巨人還會爬樹或是奔跑,他們膝蓋所要承受的力量更是無法設想。

哎呀,膝蓋痛。圖/IMDb

這應該是超大型巨人的悲哀吧,才剛變身就被自己的體重壓死了,還浪費了人類 5,000 年來的能量。你慚不慚愧啊?

柯尼家鄉站不起來的巨人才比較符合現實啊。圖/IMDb

人類其實超有勝算!

只要是存在於這個宇宙中的生物,無論是以什麼形式生存,都必須使用能量。由於故事說巨人不用進食也能活動,所以一旦變身成為巨人,他們就根本不可能補充能量(應該也沒有光合作用)。假設這種人型生物的能量消耗量與身體體重成正比,那麼只要非常粗略地估計,就知道人類必定不戰而勝。

-----廣告,請繼續往下閱讀-----
圖/IMDb

我們在前面已經計算過,只是一個小小的 3 米級巨人體重已經是人類的 5.5 倍,即是正常人足夠使用一天 24 小時的能量,3 米級巨人只夠用 4.3 小時;15 米級的,只夠用⋯⋯兩分鐘。60 米級,呃⋯⋯兩秒鐘。

對不起,我錯了,超大型巨人還未開始做動作,就已經死了。嗯,看來超人能源只夠用 3 分鐘的設定也挺科學的。

人類勝利,漫畫結束,謝謝大家。

人類勝利,漫畫結束,謝謝大家。圖/IMDb

續集:《進擊的巨人》物理學(下):巨人的密度和科幻的意義

-----廣告,請繼續往下閱讀-----

參考資料

  1. Macdonald, D. (2001). The New Encyclopedia of Mammals. Oxford: Oxford University Press.
  2. Carpenter, Kenneth. Foster, John R.; and Lucas, Spencer G. (eds.), 編. Paleontology and Geology of the Upper Jurassic Morrison Formation (pdf). New Mexico Museum of Natural History and Science Bulletin 36. Albuquerque: New Mexico Museum of Natural History and Science: 131–138. 2006
文章難易度
所有討論 2
余海峯 David
18 篇文章 ・ 22 位粉絲
天體物理學家。工作包括科研、教學和科學普及。德國馬克斯・普朗克地外物理研究所博士畢業。現任香港大學理學院助理講師。現為《立場科哲》科學顧問、《物理雙月刊》副總編輯及專欄作者、《泛科學》專欄作者。合著有《星海璇璣》。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

3

7
2

文字

分享

3
7
2
做一顆原子彈有多困難?《奧本海默》背後的細節!原子彈究竟是文明之火,還是毀滅之火?
PanSci_96
・2023/08/27 ・6337字 ・閱讀時間約 13 分鐘

人類史上第一顆核武器 The Gadget 試爆。圖/wikimedia

1945 年 7 月 16 日美國時間早上五點三十分,在新墨西哥州的托立尼提沙漠內,人類史上第一顆核武器 The Gadget 引爆,爆炸溫度 7 千萬 K,三位一體核試驗宣告成功。這次爆炸不僅留下 80 公尺寬的核彈坑,徹底打開了潘朵拉之盒。

知名導演克里斯多福.諾蘭的電影「奧本海默」,用鏡頭為我們帶來奧本海默這位偉大科學家波瀾壯闊的一生,從他為人類取來核武器火種以威懾納粹,但意識到自己帶來的不是文明之光,而是毀滅之火。最後拒絕繼續參與氫彈的開發,卻捲入共產思想疑雲的政治風暴之中。

奧本海默的精彩故事,歡迎大家進電影院好好體會,但在進戲院之前,我們先來了解,這位原子彈之父,是怎麼做出原子彈的。為何曼哈頓計畫需要召集如此多的科學家,甚至招募多達 13 萬名員工來完成這項壯舉?預告片中出現的這個球體,是如何改變人類的歷史?

電影《奧本海默》預告片中出現的這個球體,是如何改變人類的歷史?圖/奧本海默電影預告

原子彈如何被製造?

1945 年 8 月 6 日與 8 月 9 日,兩枚原子彈小男孩與胖子分別在廣島與長崎的 550 公尺上空引爆,雖然終結了第二次世界大戰,但造成的直接與間接死傷,更震撼了全世界。

-----廣告,請繼續往下閱讀-----

雖然兩顆笨重的原子彈重量超過 4 公噸,但真正的核燃料核心在原子彈小男孩中只占了 50 公斤,而且經過計算,實際參與反應的可能只有其中 1 公斤。另一個原子彈胖子的核心更小,只有 6.2 公斤,是個直徑約 10 公分的球體,實際參與反應的部分大約是 1.2 公斤。

根據愛因斯坦著名的質能等價公式 E=mc^2,我們可以計算出在反應中損失 1g 質量,會產生大約 90 兆焦耳的能量,相當於 2 萬噸 TNT 的能量。1g 質量換 2 萬噸 TNT,難怪不論哪個陣營都想盡快開發出這恐怖的炸彈。預告片裡面也提到,許多科學家都擔心「如果我們不現在加緊研發,被納粹先做出來了怎麼辦」,而推動了這足以毀滅人類的軍武競賽。

但是,就算有了質能等價公式,卻還是無法憑空造出原子彈。我們過去在討論核能的影片中提過,核反應要持續,需要靠連鎖反應。一個反應堆中,每吸收一個中子就會釋放一個中子,讓反應穩定進行下去,稱為臨界狀態,也是一般核能發電廠希望達到的狀態。如果吸收一個中子,卻釋放不到一個中子呢?,那就稱為次臨界。所有沒在反應的燃料棒都應該處於這個狀態。原子彈呢,當然是希望吸收一個中子,釋放出超過一個中子,讓反應快速連鎖下去,在極短時間釋放巨大能量。這個狀態稱為超臨界或是過臨界狀態。

這邊提個物理學家間的有趣討論,預告片中,由麥特戴蒙飾演的格羅夫斯少將問奧本海默,在 The Gadget 試爆的瞬間,世界有沒有可能就此毀滅,奧本海默回答「機率幾乎是零」。這件事其實是出自奧本海默與另一位物理學家康普頓的討論,他們想到,大氣中有許多氫氣、氦氣、氮氣等輕元素,核爆瞬間可能會因為高溫在大氣中引發核融合,甚至產生連鎖反應,連海水中的氫都發生爆炸,讓地球化為太陽,世界終結。奧本海默和其他科學家還實際嚴密計算,確認機率幾乎是零。

-----廣告,請繼續往下閱讀-----
預告片中,格羅夫斯少將問奧本海默,在 The Gadget 試爆的瞬間,世界有沒有可能就此毀滅。圖/奧本海默電影預告

雖然核融合與核分裂的條件不相同,這個假設放在現在可能覺得太過誇張,但這也說明要讓核反應連續下去並不簡單。

在核分裂中,要達成超臨界狀態並不容易。在理想條件下,鈾 235 每吸收一顆熱中子,會產出 2.06 個中子,吸收快中子則會產出 2.5 個中子。另一個原子彈核燃料鈽 239,則在吸收熱中子和快中子兩種不同能量的中子後,分別產出 2.1 和 3 個中子。然而實際上,中子往四面八方移動,並不是所有的中子都會被原子核捕獲。加上未濃縮的燃料中含有大量其他元素,例如鈾 238,導致燃料堆很難進入超臨界狀態,大幅降低炸彈的效果。等等,既然如此,曼哈頓計畫是怎麼克服這件事的呢?

如何讓原子彈進入超臨界狀態?

電影預告中的芝加哥 1 號堆 CP-1。圖/奧本海默電影預告

1942 年 12 月 2 日,人類史上第一個核反應堆-芝加哥 1 號堆 CP-1,在物理學家費米的主持下,初次達到臨界狀態,曼哈頓計畫成功踏出第一步,人類正式進入原子能時代。預告中一閃而過的這個結構,就是 CP-1,由 4 萬多個作為中子減速劑的石墨塊組成,裡面塞著一顆顆的鈾塊。

很難想像的是,在當時,控制臨界狀態的控制棒竟然是讓人用手抓著的,反應堆的位置還在芝加哥大學的足球場底下 (Stagg Field)。

-----廣告,請繼續往下閱讀-----
人類史上第一個核反應堆-芝加哥 1 號堆 CP-1,可以看見控制臨界狀態的控制棒是讓人用手抓著的。圖/wikimedia

在這之後,曼哈頓計畫進入下一個階段,洛斯阿拉莫斯國家實驗室 LANL(也就是電影預告中的小鎮)成立,奧本海默擔任首任主任,並聚集了當時幾乎所有能找到的物理、化學、工程學專家。

洛斯阿拉莫斯國家實驗室 LANL。圖/奧本海默電影預告

為了讓原子彈能順利進入超臨界狀態,科學家的第一步,就是要濃縮鈾。將天然鈾礦中佔 0.7% 的鈾 235,濃縮到將近 100%。這不簡單,首先,鈾的沸點是攝氏 4000 度,因此要先與氟反應成沸點只有攝氏 57 度的六氟化鈾,接著利用兩者質量的些微差異,使用氣體擴散法或是離心法分離。

以氣體擴散法為例,氣體通過過濾材料的能力,正比於分子量的平方根,然而六氟化鈾 235 和六氟化鈾 238 的分子量分別是 349 和 352,只差了 0.85%。實際上兩者穿越過濾膜的能力大約是 1 比上 1.003,也就是經過一次濃縮,濃度會從 0.7%,變成 0.7021%,經過 100 次濃縮,濃度才會從 0.7% 變成 0.945%,要濃縮到接近 100%,非常耗時又耗力!雖然後來還有發展熱擴散法、透過雷射游離後分離的方法,或是結合質譜儀與迴旋加速器磁鐵的電磁分離法,但不論哪個,不是技術要求極高,就是需要重複多次,有些方法還會有臨界事故的風險,選項其實也不多。

但積沙成塔,聚少成多,只要肯花時間與人力,遲早都能得到濃縮鈾。有了寶貴的濃縮鈾,和來自中子照射鈾 238 產生的鈽 239,終於,原子彈可以登場了。

-----廣告,請繼續往下閱讀-----

原子彈如何運作的?

原子彈是如何運作的呢?我們先從「小男孩」開始說起。

原子彈小男孩採用的是槍式結構,裡面有四個重要構造:核心、起爆劑、反射體、和起動物。在炸彈尚未引爆時,含有高濃度鈾的核心會先被分為左右兩塊。爆炸時再透過起爆劑讓兩塊核心撞在一起,進入超臨界狀態。

原子彈小男孩的槍式結構。圖/wikimedia

為什麼兩塊併為一塊就會進入超臨界?這是因為在連鎖反應時,中子會不斷從核心的表面逃脫,變成無效的中子,減緩連鎖反應。對於核心這種球體來說,表面積與體積的比值,會與直徑成反比。也就是當球體越大,表面逃逸的中子對於整體的影響就越小,內部就能有更強的連鎖反應,直到臨界狀態。此時核心的質量,就稱為臨界質量。

也就是當球體越大,表面逃逸的中子對於整體的影響就越小,內部就能有更強的連鎖反應,直到臨界狀態。圖/wikimedia

在小男孩中,被拆成兩半的核心各自都未達到臨界質量,直到兩塊撞在一起,才進入臨界甚至超臨界狀態。這時,旁邊以鈾為材料的反射體,則負責將溢出的中子反射回核心,進一步觸發更強烈的連鎖反應。

-----廣告,請繼續往下閱讀-----

最後,為了讓反應在核心撞在一起的瞬間,就以最激烈的方式進行,核心通常會設有「起動物」,由鈹-9 和釙-210 組成。釙 210 會因為自然衰變,不斷產生 α 射線,鈹則會在吸收 α 射線後產生中子,作為整個連鎖反應的開頭。在原子彈爆炸前,鈹和釙會跟著分成兩半的核心分別放在兩側,隨著核心碰撞的瞬間產生反應,釋出大量中子。

但槍式構造的反應方式效率十分低下,原子彈小男孩中實際參與反應的燃料,根據事後計算,大約只有五十分之一。而且,槍式結構也無法使用連鎖反應更強的鈽作為燃料。

因此,電影中球型的內爆式原子彈就登場了。

球形的內爆式原子彈。圖/奧本海默電影預告

什麼是內爆式原子彈?

胖子原子彈的燃料使用率大約是 1/5,是小男孩的十倍,這是因為它採用了內爆式結構。

-----廣告,請繼續往下閱讀-----

回頭說一下,小男孩的槍式結構雖然效率不高,但結構簡單不易出錯,因此甚至沒有測試過就被投入實戰。

而內爆式的胖子因為容錯率低,因此前面才有三位一體試驗中原子彈 The Gadget 的試爆。

內爆式結構複雜在哪呢?在內爆式結構中,最內層一樣是用金屬層隔開的起動物鈹-9 和釙-210,外面是由鈾和鈽組成的混合氧化物核燃料 MOX,更外圈是用來反射中子的反射體。在反射體外面,占整顆炸彈體積最大的,是一般的炸藥。作用是在起爆時,將核心用力往內擠壓,將核心推向超臨界狀態,讓起動物的金屬隔層破裂,誘發中子釋放。在原子彈誘爆初期,因為外頭炸藥的擠壓,中子會在反射層內快速反彈,大大增加燃料的使用率。

內爆式結構示意圖。圖/wikimedia

在預告畫面中的球體,就是標準的內爆式原子彈。在結構正中央的圓形物體,其實是反射層,核心和起爆物都被包裹起來,在看不見的更裡頭。而外面一塊塊的多邊形結構,其實都是炸藥,負責擠壓核心,但如何在內爆時讓核心維持完美球形,不會因為壓力不均而從某側破裂,卻是一項巨大挑戰。

-----廣告,請繼續往下閱讀-----
內爆式原子彈。圖/奧本海默電影預告

為了確保達到預期效果,原子彈中含有爆炸速度快與慢的兩種炸藥,透過時間差,讓反射層在壓縮核心時能維持對稱的圓形。為了解決這個艱鉅的挑戰,數學家約翰.馮紐曼發展了 ZND 模型,用來計算火藥與震波的模型,成功計算出快、慢火藥的比例與配置。沒錯,就是那位提出電腦馮紐曼架構的那位馮紐曼。

橘色是「慢速火藥」,黃色是「快速火藥」,另外 Detonator 為「雷管」。圖/PanSci YouTube
放置炸藥引信。圖/奧本海默電影預告

更進一步,為了達到計算的效果,32 塊炸藥需要在千萬分之一秒內同時引爆,然而當時的雷管引爆誤差可能有 1/10 秒以上。這時,另一位物理學家阿爾瓦雷茨出馬了,他開發出 EBW 式雷管,解決了問題。這種雷管允許大電流通過,但同時也需要總重量一公噸的電池和電容器才能運作。預告片這句「起爆器已充電」指的應該就是這些電池與電容。

雷管允許大電流通過,但同時也需要總重量一公噸的電池和電容器才能運作。圖/奧本海默電影預告
雷管。圖/wikimedia

至此,濃縮燃料、內爆式結構和啟爆裝置都就緒了,接下來的故事大家都知道了。1945 年 7 月 16 日早上五點三十分,刺眼的火球照亮整個沙漠(聽說只有費曼裸眼看了這場人類核彈首爆秀),人類在核武器的發展上已經無法停下腳步。

人類在核武器的發展上已經無法停下腳步。圖/奧本海默電影預告

導演克里斯多福.諾蘭的最新大作《奧本海默》,改編自這本獲得普林斯頓獎的傳記「American prometheus The Triumph and Tragedy of J. Robert Oppenheimer 」,《奧本海默的真相與悲劇》,並冠上副標 American prometheus 美國普羅米修斯,象徵為人類取來原子之火。

三位一體核試驗成功的 20 年後,奧本海默回憶到:「我們知道世界自此就不再一樣了。有的人笑,有的人哭,但大部分人沉默無言。我想起了印度教古典《薄伽梵譚》中,毗濕奴對阿周那王子所說:『我現在成了死神,世界的毀滅者。』我想,我們大家都多多少少是這樣想的。」

奧本海默的回憶。圖/atomicarchive.com

兩顆原子彈在日本被投下的隔年,奧本海默拒絕參與第四次核試驗,也拒絕杜魯門總統邀請的氫彈計畫。從此,這位原子彈之父人生出現重大轉變。小勞勃道尼飾演的原子能委員會主席,路易斯.史特勞斯,也將為奧本海默的人生帶來許多風雨。

電影原作書籍的兩位作者 Kai Bird 和 Martin J. Sherwin,雖然不是奧本海默的好友,但兩位都是歷史學家,也是政治、核武和冷戰的研究專家。書中從奧本海默小時候的成長與求學開始、講到他參與曼哈頓計畫與擔任洛斯阿拉莫斯國家實驗室主任、成為原子彈之父、受到政治迫害,最後獲得平反,鉅細靡遺地介紹了他的一生與心境變化。整本書花了 25 年完成,蒐集了成千上萬份收藏於美國國會圖書館,來自奧本海默的文件、以及 FBI 超過 25 年累積了數千頁的監控紀錄、還採訪了將近一百位熟悉奧本海默的密友、親戚與同事。光是聽以上的說明,就已經能想像其豐富又崎嶇的生活歷程了。

歷時 25 年,蒐集了成千上萬份資料完成的電影原作書籍。出自原文書第xii頁,中文版第6頁。

關於這些科學家之間的互動與理念的碰撞,我們就等著進電影院,看諾蘭大師如何透過鏡頭,介紹這段人類的重要歷史吧!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 3

0

2
1

文字

分享

0
2
1
科學家眼中的科幻──2019泛知識節
泛知識節
・2019/06/16 ・2518字 ・閱讀時間約 5 分鐘 ・SR值 574 ・九年級

-----廣告,請繼續往下閱讀-----

  • 活動記錄/簡克志

科幻電影裡的現象,常和我們日常生活所見有巨大差異,這也是科幻電影吸引人的很大一個主因。如果我們擁有高超的科技,這些情景是有可能真實發生的嗎?或它們已經違反物理定律,是無法實現的呢?

科幻電影提供大家想像的空間。圖/pxhere

2019泛知識節邀請到香港天文物理學家余海峯,余海峯是《物理雙月刊》副總編輯及《泛科學》專欄作者,他也和朋友合著了天文學科普書籍《星海璇璣》,是難得的香港科研與科普專家。在泛知識節的演講中,他透過物理的角度,探討電影劇情真實發生的可能性,與大家分享他對科幻的看法。

主題一:「瞬間轉移」——蟲洞、量子穿隧效應與量子糾纏效應

在演講中,第一個討論的科幻主題是「瞬間轉移」。余海峯認為可以將之分為三類。

-----廣告,請繼續往下閱讀-----

第一類是哆啦A夢的任意門類型,就是對應科學概念中的蟲洞。雖然愛因斯坦的相對論不允許超光速移動,如果能把時空中的兩點直接接通,就可以瞬時穿越非常遠的距離。

蟲洞是廣義相對論方程組的解,所以理論上宇宙中是可以存在蟲洞的。不過,物理學家還不知道在什麼情況下,蟲洞才會形成。而且,在瞬間轉移的時候,要如何保持打開的蟲洞,也是未知之數。

余海峯在說明多拉a夢任意門存在的可能性。圖/活動紀錄照片

第二類是《星艦迷航記》(Star Trek) 裡面的傳送裝置。科幻影集裡面,傳送裝置會把人分解成基本粒子,然後傳送到目的地再設法重組。余海峯認為傳送過程中對應科學概念中的「量子穿隧效應」,把分解出的基本粒子發射出去,可以穿越非常遙遠的距離。

-----廣告,請繼續往下閱讀-----

但是近期一份投稿《Nature》期刊的科學研究顯示,量子穿隧效應的速率依然是光速,故無法達到瞬間轉移的效果。另外,余海峯提到,就算全宇宙的原子都變成電腦,也不足以記憶人體身上所有資訊,所以再重組為人是不太可能的。

第三類是運用量子糾纏效應的傳送裝置。這種科幻裝置不需要傳送基本粒子本身,只需要傳送粒子的資訊即可,把人分解之後存取資訊,告訴目的地如何重組,直接在目的地製造新的人。因為要瞬間轉移,就必須要超越光速,所以傳送資訊的方式對應「量子糾纏效應」,兩個量子態互相糾纏的粒子,他們會互相記得對方的狀態。無論距離多遠,只要確定某一方的狀態,即可瞬間對應地確立另一方的狀態。

將這種對應關係予以精細編碼,就可以拿來傳送科幻裝置的人體資訊,然而不僅要告訴目的地如何重組,還需要告訴目的地人體有哪些基本粒子,目前在科技上仍難以實現。

期待能利用量子糾纏效應,將量子態互相糾纏的粒子關係精細編碼,用以傳送人體資訊,達成瞬間轉移。圖/pxhere

-----廣告,請繼續往下閱讀-----

第二類和第三類這兩種瞬間移動的傳送裝置,還會引發一個哲學問題:因為原本的人已經被分解了,傳送過去的人還是原來的那個人嗎?可以在科幻作品發掘科學與哲學的反思,是科幻有趣的地方。

「巨大化」與「縮小化」的可能性

接下來談論的第二個科幻主題是「巨大化」。余海峯認為可以分成兩類,其一是把身體按比例放大,原子總數量不變,原子總體積增加,身體重量增加,無視物理定律。另一類是在變大的時候,原子大小不變,透過瞬間傳送很多原子,把空缺填滿,余海峯認為此類在未來較為可能實現。

然而,巨大化之後呢?余海峯重述之前發表在的文章〈《進擊的巨人》物理學(上):變身巨人的那一刻就註定了人類的勝利?〉的概念  :陸上生存的動物不可以太高太重,否則就算沒被自身體重壓碎內臟,肌肉也不夠力量移動身體。這是因為站立行走受的壓力是以長度平方遞增,但體重則是以長度立方遞增,所以越巨型的動物就越需要粗壯的腳部支撐身體,體型亦越笨重。

如果像《進擊的巨人》那樣把人按比例放大,理論上是站不起來的,身體肌肉無法支撐身體的重量。所以目前全世界體型最大的動物-藍鯨,因為生活在有浮力的環境,才能稍稍解放重力帶來的限制。

-----廣告,請繼續往下閱讀-----

藍鯨。浮力可以減緩重力對體重的限制。圖/flickr

第三個科幻主題的「縮小化」,例如科幻電影「蟻人」。余海峯認為一樣可以分為兩類,其一是等比例縮小構成物體的原子總體積,但是這改變了基本力的作用方式,違反物理定律。其二是保持原子原本的物理特性,透過拿走原子來達到縮小化的效果,但是生物身體一旦缺少資訊,例如大腦少了很多神經元,生物也難以維持縮小前的認知能力。

有可能有超光速飛行嗎?

第四個科幻主題是「光速或超光速飛行」,例如Star Trek裡面的Warp Drive(曲速引擎)。光速飛行本身就已經不可能,質量非零的物體不可能到達光速,因為要加速到光速需要的能量為無限大。如果要達到超光速,通常是以空間翹曲或空間折疊來達成,類似任意門的概念。

那麼,如果真的到達超光速,會發生什麼事?時間會倒流。但是,余海峯說他學生問了一個問題:到達超音速時,聲音會延遲,好像時間倒流,事實上並沒有。那麼,到達超光速時,時間會倒流會不會只是一種錯覺?目前並沒有答案。

-----廣告,請繼續往下閱讀-----

太空中的失重並不等於無重力

第五個科幻主題是「無重力狀態」,例如《2001太空漫遊》裡面的太空殖民地,很常看到太空沒有重力的描述。余海峯認為是極大的錯誤,因為重力場是沒有邊界的,太空依然有重力,地球才能環繞太陽旋轉。

「無重力狀態」這個詞不夠精準,太空人離開地球在太空飄浮,其實是自由落體的「失重」,只是因為太空船有推進速度,才不至於掉落地表,形成圍繞地球的圓周運動。

在地球上模擬失重狀態的中性浮力實驗室。圖/pxhere

科幻電影裡的戰爭武器

第六個科幻主題是「雷射劍和雷射槍」。但是根據波粒二象性,光具有波動特性,光劍是不可能格檔其他光劍的,劍與劍會互相穿越。雷射槍按理說是敵人見光即死,但是《星際大戰》角色卻可以用光劍格檔雷射槍攻擊,頗不合理。

-----廣告,請繼續往下閱讀-----

第七個科幻主題是「太空戰爭」。太空戰爭其實不會像電影那樣呈現史詩級場面,因為太空是真空狀態,碎片會到處亂飛,只要有一方攻擊,大家都會被碎片砸死。最後,余海峯認為科幻帶來的科學與哲學上的思考,仍然相當有趣。

泛知識節
24 篇文章 ・ 4 位粉絲
從「科學太重要了,所以不能只交給科學家」,到「科學家太重要了,所以不能只懂科學」,再到「知識太重要了,所以不能讓它關在牆裡」,「泛知識節」為泛科知識召集之年度大型活動,承繼 PanSci 泛科學年會的精神與架構,邀請「科學」「科技」「娛樂」「旅行」四個領域的專家與耕耘者,一同談說、分享、攻錯。 這是一個大型的舞台,我們在此治茶拂席,虛位以待,請你上座。