0

1
0

文字

分享

0
1
0

極致極致極致極致的破壞力:那些還好只出現在二次元的怪物們

Rock Sun
・2018/01/25 ・2989字 ・閱讀時間約 6 分鐘 ・SR值 513 ・六年級

上一篇用 TNT 度量這個爆炸的世界:「黃色炸藥」到底是什麼?我們介紹了黃色炸藥 TNT 的故事和炸藥當量意義,簡單的說就是一個正常世界不常會用到的變向能量單位。

那麼現在進入主線,就是我們要把這個東西用在一些逆天的動漫角色身上囉 !平時看這些人物發功像吃飯喝水一樣簡單,但其實他們都威力超強的啦~

本文圖表由一奈米的宇宙Chemystery製作,歡迎到他們的粉絲頁欣賞更多精美的圖表喔:)

永遠囂張的《網球王子》:越前龍馬

依據:在劇場版英國式庭球城決戰爭,越前龍馬一球(網球)擊破大樓的混凝土牆。

為了方便計算,我們假設「網球擊爆混凝土大樓」的情況與「車子撞毀混凝土牆」類似,就尺度來講這很不一樣,但卻是很好的計算依據。根據以下這支影片,假設汽車的重量為 3000kg、撞擊速度為 100km/hr ,而每一塊磚頭長寬高分別為 23、6、11 公分,要撞毀 1820 塊磚頭,即體積約為 2.76 立方公尺的牆,需要汽車提供能量

0.5 x 3000 x (100 x 1000 / 3600)2=1157407.4 焦耳(J) 。

回到網球場上,我們目視估計牆上破洞寬高和厚度分別為 11、20、2 公尺,所以表示了大概有 440 立方公尺的磚頭被轟飛了,類比汽車撞毀磚牆,這一球的威力至少有

-----廣告,請繼續往下閱讀-----

(440/2.76) x 1157407.4= 184329893.294 J (也就是 1 億 8432 萬焦耳)

換算成 TNT 炸藥當量的話,大概是 44.05 公斤 TNT
在一個國中生都會影分身之術、渾身氣功、會讓人感官暫停的世界,這好像也還好啦~

因為電影版的圖片不好找,所以大家可以用這張想像一下。或是拿火影忍者出來對比也可以~ 圖/GreatDaily

肚餓的巨人《進擊的巨人》: 60 公尺級巨人

依據:60 公尺級巨人一腳踢爆了瑪利亞之牆。

根據設定,瑪利亞之牆高 50 公尺,厚 10 公尺,跟網球王子相比,這是一個更類似「車子撞毀混凝土牆」的情況,所以一樣我們將巨人踢爆瑪利亞之牆的情況與上述比(但這其實不是很準確,因為漫畫後來揭露了這些牆壁其實內有玄機)。

目視估計被 60 公尺巨人踢出來的破洞高為瑪利亞之牆的三分之一,大約 17 公尺,破洞寬約為洞高的二分之一,約為 8 公尺,牆厚度為 10 公尺,故可算出巨人踢爆了17 x 8 x 10,也就是 1360 立方公尺的混凝土,要處理這麼多混泥土,這一腳的威力大約為

(1360 / 2.76) x 1157407.4 = 569746942.9 J (5 億 6974 萬焦耳)= 136.17 公斤 TNT

很強沒錯,但仔細想想越前龍馬身高只有超大型巨人的 3%,威力卻有 1/3,真搞不懂哪邊比較合理……

-----廣告,請繼續往下閱讀-----
我說球不是這樣踢的~ 圖/Rocket News

你不會想跟他比腕力的《神奇寶貝》:怪力

依據:根據圖鑑介紹,怪力能「把對手打飛(扔出)到地平線彼端」。

假設怪力身處於一望無際的大草原上,怪力身高 1.6 公尺,根據商高定理和地球半徑,他所看見的地平線應該距離自己 4.5 公里遠,另外假設對手體重為一般成年人的平均大約 70 公斤。

如果他的對手有 70 公斤,並且拳頭接觸的身體的時間有 1 秒鐘,那麼要將他的對手從靜止不動送到地平線,拳頭接觸時需要有每秒 9 公里的加速度,這個倒楣的人類會受到 63 萬牛頓的撞擊,承受 28.35 億焦耳的能量,大約等於  677 公斤的 TNT這種力量足以將 2 公噸的鋼鐵融化,相當於一枚戰斧巡弋飛彈在你身上爆炸一樣。我相信這人類不用到地平線,大概到半空中就變一團血霧了。

由此可見,神奇寶貝系列中最強的組合就是火箭隊一行人,不論飛過幾次地平線仍然面不改色。

《死神》:一番隊隊長 山本元柳齋

依據:卍解──殘火太刀·西·殘日獄衣「將自身的靈壓,化成高達一千五百萬度的烈焰,猶如披裹著烈陽般,覆於身軀和刀刃之上。」

因無法於現實世界定義「靈壓」為何物,故假設總隊長加熱之靈壓為某種理想氣體(ideal gas),戰鬥過程共燃燒 10000 莫耳靈壓(理想氣體)。我們使用公式 PV=nRT,其中 n=10000 莫耳,P=1atm,T=15000000°C (以下計算直接將此設為 15000000K 方便計算,畢竟 273 已經是零頭了)。

-----廣告,請繼續往下閱讀-----

定壓下加熱,總能量=直線運動所需的能量變化量 + PV 的能量(體積膨脹的能量):

dU=Cv dT,r=1.4(採用空氣值,單原子與雙原子氣體混和)→ Cv=(5/2)R∆T,能量=n x (5/2)R∆T+rR∆T=n(7/2)RT=10000(莫耳) x (7/2) x 8.3145 x 15000000(K)=4.4 x 1012J =151 萬公斤 TNT。

太陽表面才 6000°C,中心也不過幾百萬 °C,總隊長大大也太拚了吧…….

頭為什麼沒有燒起來呢?? 圖/bleachview

你不會想跟他喝啤酒的《獵人》:窩金

依據:幻影旅團的信長曾說過一句話:「窩金的最終目的是把超破壞拳的威力練到像原子彈爆炸一樣的可怕。」

雖然「最終目的」和「現實情況」有所差別,但我們還是假設此事真的存在,可憐的窩金再被殺之前真的成功將超破壞拳練到和廣島原子彈同樣威力。

這資料很直觀,因為不只是原子彈,其實許多歷史上曾經出現過的炸彈、飛彈都有數據存在,一顆廣島原子彈的能量= 62760000000000 焦耳,也就是 1500 萬公斤 TNT

-----廣告,請繼續往下閱讀-----

這太簡單了~所以額外來使用一下網路工具 NukeMap 來 預測一下,如果窩金在台北車站使出這一拳的話會發生什麼事?

北到民權西路捷運站、西到淡水河對岸、南到古亭、東到東區內的人全部都會瞬間 3 度灼傷(先不考慮之後落塵、輻射),至少 33 萬人直接死亡…….幸好窩金和庫拉皮卡決鬥的地方看起來荒涼到不行。

好想知道他的訓練計劃長怎樣啊~ 圖/ blogger:沉默的黑色腐海

深不可測的《一拳超人》:琦玉

依據:魔王波羅斯在使出他的大絕「崩星咆哮炮」時,說了一句:「這一炮足以毀滅地球」,但被琦玉一拳打回,所以很簡單的說:琦玉一拳的威力>毀滅地球需要的威力。

地球質量約為 5.97 億億億公斤,半徑為 6,371 公里。根據牛頓重力理論,相互作用的物體憑藉其相對位置而具有的能量叫做重力勢能(gravitational potential energy),是物體在重力的作用下而具有由空間位置決定的能量。一個完美球體的重力位能等於 3GM/ 5R,(G 是重力常數、M 是質量、R 是半徑),因此地球的重力勢能就等於 2.25 x 1032 焦耳,由此得到崩星咆哮炮的能量至少有 2.25 億億億億焦耳,大約等於 3.5 x 1017 個原子彈釋放的總能量,也就是 538 x 1022公斤 TNT 爆炸。而埼玉能夠用一拳「認真拳」把崩星咆哮炮打回去,因此他的攻擊力至少相當於這個數字。

認真寫稿!!!!(圖/plurk)

話說琦玉的這一下在網路上已經引起很多人討論了,不管大家用的方法是什麼、算出來的數字是多少,希望大家能夠珍惜我們的地球,地球只有一顆~~謝謝~

-----廣告,請繼續往下閱讀-----

本文與一奈米的宇宙Chemystery合作,歡迎到粉絲頁觀看他們精美的圖表喔:)

 

 

一奈米的宇宙出書囉!《那些曠世天才的呢喃》——總計40篇科學與人生的結合、搭配科學家生平趣味介紹,我們希望用更豐富、好玩的方式,讓大家了解科學與人生。

 

 

 

 

文章難易度
Rock Sun
64 篇文章 ・ 860 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

0

4
0

文字

分享

0
4
0
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
193 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
【2023 諾貝爾物理獎】什麼是「阿秒脈衝雷射」?能捕捉到電子運動的脈衝雷射?
PanSci_96
・2023/11/28 ・5940字 ・閱讀時間約 12 分鐘

林俊傑《江南》:「相信愛一天,抵過永遠,在這一剎那凍結了時間」

這一剎那持續了多久?這出自佛經的時間單位有多個解讀,其中最短,可以對應的國際單位制是阿秒。 1 阿秒又有多快呢? 1 阿秒等於一百萬兆分之一秒,是已經短到不行的飛秒的千分之一。在這段時間,別說是談戀愛了,連世界上行動最快的光,也只能移動一顆原子直徑的距離。

在阿秒的時間尺度裡,連光都得停下腳步,過去我們認為捉摸不定的電子,也終於將在我們眼前現身。 2023 年的諾貝爾物理學獎,正是頒給了三位帶領人類進入阿秒領域,探索全新世界的科學家。而這項技術,還可能讓電腦的運算速度加快一萬倍!

就讓我們一起來進入阿秒的領域吧,領域展開!

什麼是阿秒脈衝雷射?

今年諾貝爾物理學獎的三位得主分別是 Pierre Agostini 、 Ferenc Krausz 、和 Anne L’Huillier ,表彰他們對阿秒脈衝雷射實驗技術的貢獻。

-----廣告,請繼續往下閱讀-----
圖/X

所謂的阿秒脈衝雷射,指的是持續時間僅有數十到數百阿秒的雷射。當我們能使用脈衝雷射來觀察目標,就好比使用快門時間極短的相機對目標拍照,能捕捉到瞬間的畫面。

2018 年的諾貝爾物理學獎,就頒給了極短脈衝雷射的研究。短短 5 年後,雷射領域再次得獎,但這次是更快的阿秒雷射,能捕捉到電子運動的超快脈衝雷射。

世界上沒有東西能真正的觸碰彼此?看見電子能帶來什麼突破?

為什麼看見電子的運動那麼重要呢?我們複習一下原子的基本構造,在原子核之外,帶有微小負電荷的電子,被帶正電的原子核束縛住。量子力學告訴我們電子沒有確切的位置,而是以特定的機率分布在原子核周圍的不同地方,也就是所謂的電子雲。

圖/YouTube

雖然電子的體積比原子核小很多,但電子雲的範圍,卻占了原子體積的絕大部分。在物理或化學反應中,真正和其他原子產生交互作用的,幾乎都是這些外面的電子。在電影《奧本海默》中,當男女主角手心貼著手心,奧本海默這時卻說:「世界上沒有東西能真正的觸碰彼此,因為我們觸摸到的物體,都只是其中原子的電子雲和我們手上的電子雲產生的斥力。」

-----廣告,請繼續往下閱讀-----
圖/screenrant

對了,這種話也只有奧本海默跟五條悟可以講,一般人請不要隨便亂牽別人的手。

除了和心儀的他牽手,不同的電子排列狀態也會直接影響物質的化學活性、材料的導電導熱等基本性質,各種化學和物理過程都和電子息息相關。從非常實際的層面來說,電子可以說是物質世界最重要的基本單位。所以不難想像,如果我們能看見電子,甚至獲得可以操縱個別電子排列與能量的技術,我們能真正成為材料的創世神,許多不可能都將化為可能,是相當重大的突破。

捕捉電子運動有多困難?

但要操縱電子可不是什麼簡單的事,不只是因為電子非常小,更重要的是他們動得非常快。具體來說,電子在原子周圍跳動的週期時間尺度大約是十的負十八次方秒,也就是一阿秒。一顆原子的大小約是十的負十次方公尺,速度等於距離除以週期,換算下來,電子雲差不多是以光速等級的速度在原子核周圍跳動。

圖/wikipedia

如果要捕捉到阿秒尺度的電子運動,就必須將實驗的時間解析度也提升到阿秒等級,否則就會像是用長曝光鏡頭拍攝亞運競速滑冰比賽一樣,只能拍到一團糊糊的影像,而沒辦法分出勝負。

-----廣告,請繼續往下閱讀-----

可是,在 1980 年代,脈衝雷射最快只能達到十的負十五次方左右,還只有飛秒等級。而且光靠當時的技術和材料優化,已經沒辦法再縮短脈衝時間了,因此這時候,就要從原理上重新打造一套方法了。

如何製造更快的脈衝?

首先,要製造更快的脈衝並不是用頻率更高的電磁波就好。你想,我們在拍照時,想要讓曝光時間更短,要改善的不是把室內光源從可見光改成頻率更高的紫外光,而是調快快門的開闔速度,讓光一段一段進入感光元件中,變成影片一幀一幀的畫面。而這一段一段進入像機的光訊號,就像是我們的脈衝。

不論是皮秒雷射、飛秒雷射還是阿秒雷射,一直以來在做的都是同一件事,在整體輸出功率不變的情況下,讓每一次脈衝的持續時間更短,同時單一次的功率也會更高。簡單來說,就是要從無數次的普通攻擊,變成每一次都是集氣後再攻擊。

但要怎麼為光集氣呢?光和其他波動一樣,可以和其他波動疊加。把不同頻率的光疊加在一起,波峰和波谷會抵消,波峰遇上波峰則會增強。只要用特定的比例組合許多不同頻率的光,就可以在整體總能量不變的情況下,產生一個超級窄的波峰,其他地方全部抵銷。

-----廣告,請繼續往下閱讀-----

1987 年,本次諾貝爾獎得主之一的 Anne L’Huillier 教授發現,當紅外線雷射穿過惰性氣體時,氣體會被激發放出整數倍頻的光。也就是氣體放出許多不同頻率的光,而這些頻率都是原本光源頻率的整數倍,從兩倍三倍到三十幾倍以上的高倍頻光都有。而橫跨這麼大頻率範圍的光,就能組合出時間長度很短的脈衝光。

不過這聽起來未免也太好康了,真的有那麼簡單嗎?

這個看似魔法的實驗背後其實有著相當簡潔的物理圖像。電子原本是被電磁力束縛在原子中,當一道強度夠強的雷射通過氣體原子,原本抓住電子的電位能被雷射削弱。

雖然這道牆只是矮了一些可是還是存在,但此時,在電子的大小尺度下,量子力學發揮了作用。調皮的電子有機會透過量子穿隧現象,穿過這道束縛,暫時逃離原子核的掌控。關於量子穿隧效應的介紹,我們近期也會再做一集節目來專門介紹。

-----廣告,請繼續往下閱讀-----

但電子還來不及逃遠,雷射光已經從波谷翻到波峰。電磁波的波谷與波峰,不是指能量的高和低,而是指方向相反。因此在相反的電磁場方向下,不幸的電子被推回原子核附近,再度被原子核捕獲。但在這欲擒故縱、七擒七縱的過程後,電子並非一無所獲,他所得到的動能會以光的形式重新放出。

而因為這些能量最早都來自雷射,因此電子放出的光波長,也剛好會是雷射的整數倍。再說的細一些,你可以理解為這些電子在吸收一顆顆光子後,一口氣釋放這些能量,所以能量都是一開始光子的整數倍。

在 1990 年代,科學家已經掌握了這個現象背後的原理。但一直到千禧年過後。這次諾貝爾獎得主之一 Pierre Agostini 教授和他的研究團隊才終於在適當的實驗條件之下,利用高倍頻光打造出了一連串寬度只有 250 阿秒的脈衝。同時第三位得主 Ferenc Krausz 也使用不同方法,分離出 650 阿秒的脈衝。

最後,獲得阿秒脈衝這個祕密武器之後,我們的世界將迎來哪些變化呢?

-----廣告,請繼續往下閱讀-----

阿秒脈衝在各領域的應用

其實啊,有在關注諾貝爾獎都知道,諾貝爾獎通常不會頒給時下正夯的新興研究,前面講的研究,實際上都已經是二十多年前的往事了,而這些辛苦的科學家會在這麼多年後拿下諾貝爾獎的榮耀,正是因為阿秒雷射的發明經過了時間的考驗,成為非常普及的實驗技術,而且被大家公認為重要的科學貢獻。

當然,今年生醫獎的 mRNA 是個超快例外,有興趣的話,別忘了點擊下方影片,看看編劇都編不出來的 mRNA 研究歷程。

說了那麼多,阿秒雷射究竟對人類生活有什麼幫助呢?當然,它能讓我們更深刻了解物質還有光的本質,但是除了幫電子拍下美美的照片放在期刊的封面上,阿秒雷射可以用來做什麼?

在過去這二十年,許多研究已經找到了相當有潛力的應用。

-----廣告,請繼續往下閱讀-----

舉例來說,在醫療方面,阿秒雷射可以用來分析血液或尿液樣本。控制良好的超短脈衝可以精準的刺激生物樣本中的各種有機分子,讓這些分子震動並放出紅外線訊號。如果使用的脈衝長度太長,分子釋放的訊號就很容易和原本施加刺激的雷射混在一起,造成量測的困難。唯有阿秒等級的超短脈衝能夠實現這樣的量測。

這些紅外線光譜就像是質譜儀一樣,能幫助我們快速分析血液中的蛋白質、脂質、核酸等重點物質的關鍵官能基狀態。並透過機器學習的方式整合,成為個人化的健康狀態報表,或是做為診斷的依據,將精準醫療提升到全新的層次。

圖/attoworld

不只如此,發送超短脈衝的技術也可能革新當今的電腦運算。電腦運作的方式就是利用電晶體這種微小的開關,不斷的開開關關去發送一跟零的訊號,所以開關電流的速度便決定了你的運算速度。以半導體為基礎的電晶體,工作頻率通常不超過上百 GHz ,在時間上也就是十的負十一次方秒。

自從阿秒雷射技術普及之後,就有科學家想到:既然雷射脈衝的速度更快,那不如就別用半導體了,改用光學脈衝來控制電流作為運算的媒介。這個概念叫做光學電晶體(Optical Transistor)。

今年初,亞利桑那大學的團隊便發展示了如何利用小於十的負十五次方秒的超短雷射脈衝,來開關電流並傳送一與零的位元,這個頻率比現有半導體電晶體快了一萬倍以上。這顯示了光學方法的操作頻率可以有多快,或許能讓我們突破訊號處理和運算上的速度瓶頸。

看完這些便可以理解,阿秒等級的超快雷射脈衝的確是相當近代的一個科學里程碑。就像是科學革命時望遠鏡和顯微鏡的發明,讓人們看見那些最遠和最小的事物,超快脈衝用最快的時間解析度,讓我們看到許多人類從未看過的景象。

阿秒脈衝雷射的出現,是科學上的一個里程碑,讓我們能用更高的時間解析度,讓我們看到許多過去從未看到的景象。最後也想問問大家,在雷射這一塊,你最期待有哪些應用,或者最希望我們接著來講哪個主題呢?

  1. 為什麼醫美、眼科手術那麼喜歡用飛秒、阿秒雷射,真的有比較好嗎?
  2. 使用雷射脈衝的光學電晶體真的有可能取代傳統電晶體嗎?
  3. 除了光學電晶體,最近很夯的矽光子技術,聽說裡面也有用到雷射,可以一起來介紹嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

PanSci_96
1214 篇文章 ・ 2063 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
0

文字

分享

0
2
0
肥料、炸藥和香蕉裡都有它!對人體超級重要的「鉀」——《原子有話要說》
azothbooks_96
・2023/05/25 ・1052字 ・閱讀時間約 2 分鐘

植物灰燼中含有鉀,自古以來一直為人們所利用,因此草木灰燼就成了鉀的命名來源。鉀也是製造肥皂、玻璃、火藥等的原料。

可是,鉀遇到水會產生激烈的反應,具有容易產生化學反應的另一面。

維持神經及肌肉活性 人體中重要的微量營養素

再者,鉀也是人體每日所需的營養素之一,是維持神經及肌肉活性不可或缺的重要物質。當腎臟功能降低的時候,會造成體內的鉀囤積過量,恐導致身體產生機能障礙。但是一旦鉀不足,有時也會造成肌耐力低下或疲勞,出現高血壓等症狀,嚴重時可能連身體都法動彈。由於偏食或飲酒過量也是導致鉀離子不足的原因之一,單身的年輕男性要特別小心。

缺乏鉀離子的人要補充鉀,最簡單的方法就是吃幾根香蕉。香蕉除了含維他命和食物纖維之外,還有豐富的鉀離子,好處是攝取方式十分方便,即使香蕉加熱,營養也不會流失。

-----廣告,請繼續往下閱讀-----
圖/原子有話要說!元素週期表
圖/原子有話要說!元素週期表

化學性質活潑 容易發生化學反應

鉀對人體來說是不可或缺的礦物質,對植物也十分重要,因為鉀和氮、磷為肥料的三大要素。可是,鉀與鈉一樣,必須保存在石油之中(編按:鉀碰到水會爆炸)。

也可當做火藥使用(編按:因為鉀的化學性質非常活潑,容易和其他化學物質產生激烈的反應,有爆炸性且易燃),可做為火柴、煙火或是炸彈的材料。此外,氰化鉀雖然含有劇毒而小有名氣,但是也能用於金屬電鍍,在工業領域是很重要的物質。

【常溫狀態】固體 

【原子量】39.0983

【熔點】63.38˚C

【沸點】759˚C

【密度】0.89 g/cm3

【發現】1807 年,英國化學家戴維

【語源】阿拉伯文 al-quali,意思是草木灰燼,也是鹼的語源。英文名稱的語源也是草鹼(potash)。

——本文摘自《原子有話要說!元素週期表》,2023 年 4 月,漫遊者文化出版,未經同意請勿轉載。

azothbooks_96
53 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。