Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

古典物理學的烏雲:一維材料的異常熱傳導現象——《物理雙月刊》

物理雙月刊_96
・2017/08/09 ・1644字 ・閱讀時間約 3 分鐘 ・SR值 540 ・八年級

文/張之威|台大凝態中心副研究員

1900 年英國物理學家克耳文勳爵(Lord Kelvin)曾宣稱當時的古典物理學已經是晴空萬里,「只剩下兩朵烏雲」需要被解決。眾所皆知,這兩朵烏雲後來發展成相對論量子力學革命,變成了二十世紀物理學的兩大支柱。今天這兩朵烏雲被排除之後,古典物理學是否已經恢復成晴空萬里呢?

克耳文勳爵曾宣稱當時的古典物理學已經是晴空萬里,「只剩下兩朵烏雲」需要被解決,但古典物理學真的都沒問題了嗎?圖/Public Domain, wikimedia commons

雖然這個問題問今天的物理學家可能會見仁見智。不過如果問對理論物理學有很多貢獻的 Rudolf Peierls(1907-1995),他可能會說:

一維系統的異常熱傳導問題是古典物理學還留下來的烏雲。

早在 1940 年,物理學家就發現到若用統計力學的傳輸理論計算一個非金屬物體的熱傳導會預測出一個熱傳導係數隨物體長度發散的怪結果。這個怪結果顯然跟實驗結果不一樣,因為人們老早就觀察到熱傳導係數是一個隨樣品長度無關的定值,並遵守老祖先的傅立葉定律

-----廣告,請繼續往下閱讀-----

這個問題後來被 Rudolf Peierls 引入了聲子與聲子的背向散射(亦即是固態物理學中提到的 Umklapp process)而解決了大半。但是 Rudolf Peierls 留了一個尾巴沒解決;他發現如果這個物體是一維系統的話即使引入 Umklapp process,怪現象依舊存在。這件事情導致許多想把熱傳導的傅立葉定律建立在更基本的統計物理的基礎上的物理學家甚為困擾。

對物理學家而言,這個繽紛世界是建立在幾個簡單的物理法則之上。如同高能物理學家追求一個基本粒子的大統一場論,凝態物理學家也認為所有材料的現象都可以化約為量子力學與統計力學法則。於是乎,歐姆定律可以用電子的波茲曼傳輸理論解釋,而其中解釋電阻的電子散射現象,人們就歸咎於電子與聲子的散射吧──就如同把東西掃到地毯下視而不見,我們把一切不懂的東西都推給聲子。

這種把東西掃到地毯下的作法在熱傳導上就出現很大的問題,因為在研究聲子的傳輸時,散射的來源是聲子本身,我們並沒有其他東西可歸咎。而這個問題在一維系統會變得更嚴重,人們發現有些一維模型的熱傳導係數會隨著長度而發散,但是某些卻不會。這個怪現象導致 2000 年左右許多物理學家開始在傷腦筋傅立葉定律的統計力學基礎到底在哪裡,並運用各式各樣的模型與數值計算探討之。值得注意的是,人們把量子效應放入之後並不會把問題去除。因此這個現象被視為古典物理學的烏雲

就如許多學科的進展一樣,這個領域的知識常常是進一步而退兩步,並伴隨著許多學術上的爭吵。等到一維系統的熱傳導係數發散的現象稍微有共識之後,人們又再爭執這些所謂的「一維系統」能夠在真實的材料上被觀察到嗎?真實材料具有的缺陷與污染會不會把怪現象移除?過去有些實驗團隊也做了些研究,但都深受樣品長度不夠長而導致被其他效應掩蓋的困擾。

-----廣告,請繼續往下閱讀-----

台大凝態中心由張之威老師主持的團隊在熱傳導研究上已經累積許多心得。碩士生李宣衡與吳奇勳克服種種困難,並得到碩士生樓宗興與中研院物理所李偉立老師的在製程上的大力幫忙。我們生長出長達數釐米的奈米碳管,並把它們放置在自製的微米尺度量測裝置上,測量熱傳導係數與長度的關係。

奈米碳管的熱傳導係數隨著長度發散可到一釐米長!圖/《物理雙月刊》提供

在排除種種其他因素的影響後,實驗結果證實奈米碳管的熱傳導係數真的隨長度發散,而且在室溫下的發散長度至少一釐米!這表明了異常熱傳導現象真的可以在準一維的真實材料(具有缺陷、同位素雜質、與表面污染等等)上觀察到。也因此排除了某些理論的錯誤預測。同時這個實驗結果也暗示:低頻聲子對熱傳導的貢獻過去被嚴重低估,未來還有很多研究可以玩哩!至於一維的熱傳導問題,我們用實驗證明了這是一個真實世界的真實問題。就讓我們繼續傷腦筋下去~~

此研究論文發表於 Phys. Rev. Lett. 118, 135901 (2017),並獲得 Nature Physics,13, 416 (2017)專文報導。


本文摘自《物理雙月刊》39 卷 6 月號 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
物理雙月刊_96
54 篇文章 ・ 15 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

3
0

文字

分享

0
3
0
從太陽發光到生命突變,一切都歸功於量子穿隧效應?
PanSci_96
・2024/10/19 ・1962字 ・閱讀時間約 4 分鐘

在這個充滿光與生命的宇宙中,我們的存在其實與一種看不見的力量密切相關,那就是量子力學。沒有量子力學,太陽將不會發光,地球上的生命將無法誕生,甚至整個宇宙的運行規則都會截然不同。這些微觀層次的奧秘深深影響了我們日常生活的方方面面。

其中,量子穿隧效應是一個看似違背直覺但至關重要的現象,從太陽的核融合反應到基因的突變,這種效應無處不在,甚至還牽動著當今的高科技產業。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子穿隧效應?

我們可以將量子穿隧效應比作一個奇妙的穿牆術。想像一下,你身處一個被高牆包圍的城市,牆外是未知的世界。通常,如果你要越過這道牆,需要極大的力量來翻越它,或者用工具打破它。然而,在量子的世界裡,情況並不如此。

在微觀的量子力學世界中,粒子同時具有波的特性,這意味著它們並不完全受限於傳統物理的規則。當一個微觀粒子遇到能量障礙時,即使它沒有足夠的能量直接穿過障礙,卻仍有一定機率能出現在障礙的另一邊,這就是「量子穿隧效應」。粒子彷彿直接在牆上挖了一條隧道,然後穿越過去。

-----廣告,請繼續往下閱讀-----

這聽起來像魔法,但它背後有深刻的物理學道理。這個現象的發生取決於量子粒子的波動性質以及能量障礙的高度和寬度。如果障礙較矮且較窄,粒子穿隧的機率就較高;反之,障礙越高或越寬,穿隧的機率則會降低。

太陽發光:核融合與量子穿隧效應的結合

量子穿隧效應的存在,讓我們能夠理解恆星如何持續發光。以太陽為例,太陽內部的高溫環境為核融合反應提供了所需的能量。在這個過程中,氫原子核(質子)需要克服極大的電磁排斥力,才能彼此靠近,進而融合成為氦原子核。

然而,單靠溫度提供的能量並不足以讓所有質子進行核融合。根據科學家的計算,只有約10的 434 次方個質子中,才有一對具備足夠的能量進行核融合。這是一個極小的機率。如果沒有量子穿隧效應,這種反應幾乎不可能發生。

幸好,量子穿隧效應在這裡發揮了關鍵作用。由於量子粒子具有波動性,即便質子沒有足夠的能量直接跨越能量障礙,它們仍然能透過穿隧效應,以一定機率克服電磁排斥力,完成核融合反應。這就是為什麼太陽內部的核融合能夠源源不斷地發生,並且持續產生光與熱,讓地球成為適合生命生存的家園。

-----廣告,請繼續往下閱讀-----

量子穿隧效應與生命的演化

除了恆星的發光之外,量子穿隧效應還對生命的誕生和演化起到了關鍵作用。地球上物種的多樣性,很大一部分源於基因突變,而量子穿隧效應則幫助了這一過程。

DNA 分子是攜帶遺傳訊息的載體,但它的結構並不穩定,容易在外界因素影響下發生變異。然而,即使沒有外界因素的干擾,科學家發現 DNA 仍會自發性地發生「點突變」,這是一種單一核苷酸替換另一種核苷酸的突變形式。

量子穿隧效應讓氫原子隨時可能在 DNA 結構中進行位置轉換,從而導致鹼基對的錯位,這在 DNA 複製過程中,可能會引發突變。這些突變若保留下來,就會傳遞給下一代,最終豐富了基因與物種的多樣性。

量子穿隧幫助促進 DNA 突變,協助生命的演化與物種多樣性。圖/envato

半導體技術中的量子穿隧效應

除了在宇宙和生命中發揮作用,量子穿隧效應還影響著我們的日常生活,尤其在現代科技中。隨著半導體技術的發展,電子設備的體積不斷縮小,這也讓電子元件的性能面臨更大的挑戰。

-----廣告,請繼續往下閱讀-----

在微小的電子元件中,量子穿隧效應會導致電子穿過元件中的障礙,產生不必要的漏電流。這種現象對電晶體的性能帶來了負面影響,因此設計師們需要找到方法來減少穿隧效應的發生,以確保元件的穩定性。

雖然這是我們不希望見到的量子效應,但它再次證明了量子力學在我們生活中的深遠影響。設計更有效的半導體元件,必須考慮到量子穿隧效應,這讓科學家與工程師們需要不斷創新。

量子力學是我們宇宙的隱藏力量

量子穿隧效應看似深奧難懂,但它對宇宙的運作和生命的誕生至關重要。從太陽的核融合反應到基因突變,甚至現代科技中的半導體設計,量子力學影響著我們生活的方方面面。

在這個充滿未知的微觀世界裡,量子現象帶來的影響是我們難以想像的。正是這些看似不可思議的現象,塑造了我們的宇宙,讓生命得以誕生,科技得以發展。當我們仰望星空時,別忘了,那閃耀的光芒,背後藏著的是量子力學的奇妙力量。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
當量子駭客來襲,誰能守護我們的數據?揭開量子加密的終極防禦!
PanSci_96
・2024/10/15 ・1804字 ・閱讀時間約 3 分鐘

量子電腦,這項科技革新不僅在計算能力上遙遙領先,還可能徹底顛覆現有的網路加密技術。早在 2019 年,麻省理工學院(MIT)發表了一篇報告,預測量子電腦最早於 2035 年將對現有的加密技術構成重大威脅。隨著技術不斷突破,這一終局時刻已經被最新的 Y2Q 時鐘大幅提前至 2030 年 4 月 14 日。屆時,全球資訊安全將面臨嚴峻挑戰,從個人網路帳戶密碼到國家級軍事機密,皆可能成為駭客攻擊的目標。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

網路安全的脆弱性

當我們在網站上輸入帳號密碼,資料會通過加密技術保護,使外界無法直接竊取。然而,這些加密方式,如今在量子電腦面前變得不堪一擊。以 RSA 加密技術為例,這是目前最常見的加密演算法,依賴於質因數分解的數學難題。傳統電腦可能需要數千萬年才能破解一個 600 位數的加密訊息,但量子電腦的運算力卻足以在短短幾分鐘內完成這一過程。這使得當前的加密系統在未來的量子時代顯得脆弱不堪。

量子電腦的威脅

量子電腦的強大運算能力來自於其特殊的量子比特(qubit)運作方式。不同於傳統電腦的二進位系統,量子電腦利用了量子疊加與量子糾纏等特性,使其能同時處理大量的數據並進行複雜計算。這也使得量子電腦在破解現有的加密演算法上具有無與倫比的優勢。尤其是秀爾演算法,它專門針對質因數分解問題設計,能將傳統電腦需要數百萬年才能完成的運算,壓縮至短短幾分鐘,極大地威脅了現有的加密技術。

解決方案:量子加密技術

面對這樣的威脅,量子加密技術成為一線希望。量子加密通訊網絡是基於量子力學原理的一種全新加密方式,利用單光子通訊確保數據的安全傳遞。傳統通訊中,駭客可以通過攔截電磁波信號來竊取訊息,但在量子通訊中,若駭客(通常稱為 Eve)試圖攔截單光子,光子的量子態將立刻改變,且這一變化是不可逆的,接收方可以立即察覺到通訊已遭竊聽。

-----廣告,請繼續往下閱讀-----

2023 年 5 月,台灣國科會與清華大學聯合宣布,已成功研發出國內第一個量子加密通訊網絡,並在新竹進行實驗測試。這一突破性技術讓台灣在量子通訊的國際競爭中占有一席之地,也為未來的資訊安全提供了重要的防護。

台灣研發出國內第一個量子加密通訊網絡,提升未來資訊安全。圖/envato

量子加密的核心技術

量子加密的原理基於量子力學中的「不可複製原理」和「量子糾纏」現象。不可複製原理意味著任何嘗試複製量子比特的行為都會導致量子態崩潰,從而使得竊聽行為無法不被發現。而量子糾纏則允許兩個相隔甚遠的量子比特之間保持關聯,即便駭客攔截其中一個比特,通訊雙方也能通過比對比特的狀態來檢測出是否有外部干擾。

最為人熟知的量子加密協定之一是 BB84 協定,由兩位科學家在 1984 年提出。這一協定利用了光子的偏振特性來傳遞加密信息,並通過隨機的偏振測量,確保竊聽者無法成功攔截信息。當前的量子密鑰分發技術正是基於此協定發展而來,已被廣泛應用於量子加密通訊的實驗中。

全球量子通訊的發展趨勢

量子通訊的研究不僅限於台灣。中國早在 2016 年便發射了全球首顆量子通訊衛星「墨子號」,成功在太空與地面間進行了量子密鑰分發。這一突破標誌著量子通訊不再只是實驗室中的理論,而是開始進入實際應用階段。歐美多國也在積極投入量子加密技術的研究與發展,旨在建立更安全的全球通訊網絡。

-----廣告,請繼續往下閱讀-----

然而,儘管量子通訊技術展現了巨大的潛力,實現大規模應用仍面臨許多挑戰。量子比特的穩定性、通訊距離的限制、以及傳輸效率等問題都亟待解決。即便如此,隨著量子科技的不斷進步,量子通訊技術有望成為未來資訊安全的基石。

結論:量子時代的雙刃劍

量子電腦帶來的,不僅是計算能力的飛躍,還對現有的網路加密系統構成了巨大的威脅。隨著量子科技的發展,我們正站在一個關鍵的十字路口:一方面,量子電腦可能徹底顛覆現有的資訊安全技術;另一方面,量子加密技術也為未來的網路安全提供了新的希望。要在量子時代中生存,我們必須迅速採用這些新技術,打造出能抵禦未來威脅的最強防禦。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。