0

0
0

文字

分享

0
0
0

古典物理學的烏雲:一維材料的異常熱傳導現象——《物理雙月刊》

物理雙月刊_96
・2017/08/09 ・1644字 ・閱讀時間約 3 分鐘 ・SR值 540 ・八年級

文/張之威|台大凝態中心副研究員

1900 年英國物理學家克耳文勳爵(Lord Kelvin)曾宣稱當時的古典物理學已經是晴空萬里,「只剩下兩朵烏雲」需要被解決。眾所皆知,這兩朵烏雲後來發展成相對論量子力學革命,變成了二十世紀物理學的兩大支柱。今天這兩朵烏雲被排除之後,古典物理學是否已經恢復成晴空萬里呢?

克耳文勳爵曾宣稱當時的古典物理學已經是晴空萬里,「只剩下兩朵烏雲」需要被解決,但古典物理學真的都沒問題了嗎?圖/Public Domain, wikimedia commons

雖然這個問題問今天的物理學家可能會見仁見智。不過如果問對理論物理學有很多貢獻的 Rudolf Peierls(1907-1995),他可能會說:

一維系統的異常熱傳導問題是古典物理學還留下來的烏雲。

早在 1940 年,物理學家就發現到若用統計力學的傳輸理論計算一個非金屬物體的熱傳導會預測出一個熱傳導係數隨物體長度發散的怪結果。這個怪結果顯然跟實驗結果不一樣,因為人們老早就觀察到熱傳導係數是一個隨樣品長度無關的定值,並遵守老祖先的傅立葉定律

這個問題後來被 Rudolf Peierls 引入了聲子與聲子的背向散射(亦即是固態物理學中提到的 Umklapp process)而解決了大半。但是 Rudolf Peierls 留了一個尾巴沒解決;他發現如果這個物體是一維系統的話即使引入 Umklapp process,怪現象依舊存在。這件事情導致許多想把熱傳導的傅立葉定律建立在更基本的統計物理的基礎上的物理學家甚為困擾。

對物理學家而言,這個繽紛世界是建立在幾個簡單的物理法則之上。如同高能物理學家追求一個基本粒子的大統一場論,凝態物理學家也認為所有材料的現象都可以化約為量子力學與統計力學法則。於是乎,歐姆定律可以用電子的波茲曼傳輸理論解釋,而其中解釋電阻的電子散射現象,人們就歸咎於電子與聲子的散射吧──就如同把東西掃到地毯下視而不見,我們把一切不懂的東西都推給聲子。

這種把東西掃到地毯下的作法在熱傳導上就出現很大的問題,因為在研究聲子的傳輸時,散射的來源是聲子本身,我們並沒有其他東西可歸咎。而這個問題在一維系統會變得更嚴重,人們發現有些一維模型的熱傳導係數會隨著長度而發散,但是某些卻不會。這個怪現象導致 2000 年左右許多物理學家開始在傷腦筋傅立葉定律的統計力學基礎到底在哪裡,並運用各式各樣的模型與數值計算探討之。值得注意的是,人們把量子效應放入之後並不會把問題去除。因此這個現象被視為古典物理學的烏雲

就如許多學科的進展一樣,這個領域的知識常常是進一步而退兩步,並伴隨著許多學術上的爭吵。等到一維系統的熱傳導係數發散的現象稍微有共識之後,人們又再爭執這些所謂的「一維系統」能夠在真實的材料上被觀察到嗎?真實材料具有的缺陷與污染會不會把怪現象移除?過去有些實驗團隊也做了些研究,但都深受樣品長度不夠長而導致被其他效應掩蓋的困擾。

台大凝態中心由張之威老師主持的團隊在熱傳導研究上已經累積許多心得。碩士生李宣衡與吳奇勳克服種種困難,並得到碩士生樓宗興與中研院物理所李偉立老師的在製程上的大力幫忙。我們生長出長達數釐米的奈米碳管,並把它們放置在自製的微米尺度量測裝置上,測量熱傳導係數與長度的關係。

奈米碳管的熱傳導係數隨著長度發散可到一釐米長!圖/《物理雙月刊》提供

在排除種種其他因素的影響後,實驗結果證實奈米碳管的熱傳導係數真的隨長度發散,而且在室溫下的發散長度至少一釐米!這表明了異常熱傳導現象真的可以在準一維的真實材料(具有缺陷、同位素雜質、與表面污染等等)上觀察到。也因此排除了某些理論的錯誤預測。同時這個實驗結果也暗示:低頻聲子對熱傳導的貢獻過去被嚴重低估,未來還有很多研究可以玩哩!至於一維的熱傳導問題,我們用實驗證明了這是一個真實世界的真實問題。就讓我們繼續傷腦筋下去~~

此研究論文發表於 Phys. Rev. Lett. 118, 135901 (2017),並獲得 Nature Physics,13, 416 (2017)專文報導。


本文摘自《物理雙月刊》39 卷 6 月號 ,更多文章請見物理雙月刊網站


數感宇宙探索課程,現正募資中!

文章難易度
物理雙月刊_96
54 篇文章 ・ 6 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。


1

1
1

文字

分享

1
1
1

為什麼吃甜的會蛀牙?——《生活中的東西都可以寫成化學式》

快樂文化
・2022/05/09 ・1404字 ・閱讀時間約 2 分鐘

來談談我們的敵人——蛀牙。

蛀牙的化學物語

導致蛀牙的主要原因有兩個。前面提過的蛀牙菌是其中一個因素,而蛀牙菌具體的名稱為「轉糖鏈球菌」,據說這種細菌常在孩童約三歲以前經由大人傳染,原因包括使用父母用過的筷子和湯匙,或輪流喝飲料等;另一個因素就是食物中所含的糖分,主要成分為「蔗糖」。

這兩個因素結合在一起時,就會發生以下情況:首先,轉糖鏈球菌利用蔗糖製造一種稱為「葡聚糖」的分子。葡聚糖的化學式為(C6H10O5)n,後面會再詳細說明。葡聚糖附著在牙齒表面,會成為轉糖鏈球菌的棲息地。此外,口腔中的其他細菌(根據統計,口腔中的細菌有 600 多種)也會混入其中。

這些附著在牙齒上的組合物稱為「牙菌斑」,有時也被稱為「齒垢」或「生物膜」(biofilm,又稱菌膜)。你可能在牙膏等的廣告中有聽過這些名詞。

之後,獲得棲息地的轉糖鏈球菌會產生大量的「酸」,引發去礦質作用,最終導致蛀牙。這個過程如下列所示。

轉糖鏈球菌生活在溫暖的葡聚糖裡,並分解出乳酸;事實上它們也會分解出醋酸,及一種稱為甲酸(HCOOH)的酸,但乳酸所佔的比例較高。這些酸會引發強烈的去礦質作用,溶解牙齒並造成蛀牙。

在這種情況發生前,必須好好刷牙,以澈底清除黏附在牙齒上的牙菌斑(葡聚糖+細菌)!即使是漱口,具黏性的牙菌斑也不易脫落,最有效的方法還是好好刷牙。而牙膏中含有研磨劑(可幫助去除汙垢的顆粒),能有效去除黏黏的牙菌斑。

不易蛀牙的甜食

上個單元我們說明了糖是如何引起蛀牙的。事實上也有一些分子的味道就和糖一樣甜,但卻不太容易引起蛀牙,其中最有名的分子之一就是「木糖醇」,你可能有聽過加了木糖醇的口香糖吧!這個分子的化學式為 C5H12O5,詳細的結構如下圖。

為什麼木糖醇味道甜甜的,卻不容易引起蛀牙呢?在回答這個問題前,我們先回想一下為什麼蔗糖(糖)會導致蛀牙。蔗糖是轉糖鏈球菌用來製造葡聚糖的材料,而反應過程中產生的果糖,會被轉糖鏈球菌做為養分來源,並分解出乳酸分子。

那木糖醇呢?首先木糖醇不像蔗糖是製造葡聚糖的材料,另外轉糖鏈球菌不會把木糖醇當成養分來源,所以也不會分解出乳酸。因此它們的味道雖然很甜,但卻不容易引起蛀牙。

這裡出現了一個問題。木糖醇和蔗糖的結構看來截然不同,但為什麼味道也是甜甜的呢?若像下圖一樣,稍微改變一下木糖醇的畫法,就會發現它的結構與構成蔗糖的葡萄糖和果糖很像,具有許多羥基這點也非常相似。

——本文摘自《生活中的東西都可以寫成化學式》,2021 年 11 月,快樂文化


數感宇宙探索課程,現正募資中!

所有討論 1
快樂文化
8 篇文章 ・ 15 位粉絲