0

21
2

文字

分享

0
21
2

半夜起床尿尿,全身冷吱吱!為什麼有的清晨超冷,白天又會突然回暖?

Mia_96
・2021/02/23 ・2523字 ・閱讀時間約 5 分鐘 ・SR值 496 ・六年級

國小高年級科普文,素養閱讀就從今天就開始!!

2021 年初,一連下來了多次的強烈冷空氣,跨年時的寒流、一月二月不斷南下的冷氣團,造成各大超商、藥局暖暖包缺貨,出門時都希望把棉被直接裹住身體踏入刺骨的寒風中,也都在寒流中希望著迎接白天的暖陽。

可惜的是,當太陽還沒出現前,卻時常聽聞清晨會出現「最強輻射冷卻現象」,許多地方的地表溫度下降到 5 度甚至是更低溫,等到太陽升起後,才讓各地溫度逐漸回升。

新聞中提到的「輻射冷卻現象」究竟是什麼?溫度又為何會急遽下降呢?

1 月 13 日的臺灣就像是一顆冷番薯!圖/中央氣象局

輻射是什麼?細數傳遞熱能的 3 種方式!

所謂的「輻射」,其實是傳遞熱能的方式之一,而日常生活中常見的熱能傳遞方式主要有三種,除了輻射,還有傳導以及對流。

首先,「傳導」為熱經由物體,從較高溫的物體將熱傳遞至較低溫的物體,其為固體熱量傳輸的主要方式,而「對流」為熱藉由氣體或液體的流動,當氣體或液體受熱,體積膨脹、密度減小而上升,並由周圍溫度、密度較低的氣體或液體補充,形成不斷循環的現象,即稱對流。

熱傳遞有 3 種方式:熱傳導、熱對流、熱輻射。圖/Pixabay

傳導與對流皆需要介質的存在才能傳遞熱量,但輻射與上述的傳導與對流不一樣,但輻射傳遞的熱量不需經由任何介質,就可以直接由熱源傳遞到各處!

生活中最常見的輻射方式,即是太陽將其熱能利用輻射的方式傳遞到地表。

太陽是地球的主要熱量來源,太陽所發出的電磁波主要以可見光與較短波段為主,以短波輻射的紫外線給予地表熱量時,當太陽能量被地表吸收後,地表會將吸收的能量轉為長波輻射的紅外線放出,也因此,雖然地表在白天時一直受到太陽短波輻射的照射,卻也不會無止盡的造成地表溫度上升過熱。

那「輻射冷卻現象」又是怎麼一回事?

白天時,太陽以短波形式進入地表的能量大於地表以長波形式放出的能量,所以地表溫度逐漸上升,到了晚上,當太陽下山後,此時地球缺少太陽進入地表的能量,但地表卻仍不停地以長波輻射放出能量,因此使得地表溫度開始逐漸下降。

這個狀況會持續到太陽再度升起並提供地表能量時,不斷下降的溫度才會有所轉變。

當太陽下山後,一般而言,地球夜晚與清晨的溫度都會持續下降,直到太陽重新升起。圖/Pixabay

由此可知,太陽還沒升起前的清晨是地表逸散最多能量的時刻,而透過此機制讓地表形成低溫的現象,就是我們所稱的「輻射冷卻現象」。

看到這裡,也許你會疑惑:為什麼沒有每天清晨都出現強烈的輻射冷卻現象呢?事實上,大氣中有許多不同的因素,都會影響輻射冷卻效應的強弱!

沒有太陽會冷,但地球也擁有自己的暖被

其中一個影響因素是「雲層的厚薄」。

當天空雲層較厚時,雲層和水氣會吸收地表所發散的能量,將地表向上散失的能量再次傳回地表,使熱量不會完全的逸散,因此,若是當天的雲層比較厚,熱量就更容易被保留在地表與大氣中,此時的輻射冷卻效應便不會那麼強烈,也較不會使清晨各地產生低溫。

雲層的厚薄就如同我們平常在睡覺所蓋的被子,如果今天你睡到半夜突然想起電視的插頭沒有拔,翻開被子去拔完插頭後,原本溫暖的被子因為被你翻開,所以在被子中的熱散失,你的被子便變的冷冰冰的,需要再次依靠你自身所發出的熱溫暖被子。

雲層與水氣就像是地球的冬被一樣,可以為我們保留暖呼呼的熱氣。圖/Pixabay

反之,如若你離開被子時有將被子蓋回去,等你拔完插頭回來後,被子持續保護住你先前所發出的熱,再次進入被子後你仍會覺得被窩十分溫暖。

如若當天雲層較薄,或為萬里無雲的好天氣時,由於地球失去雲層和水氣幫忙吸收地表所發散的能量,能量會不斷由地表向上散失,進入太空中,此時的輻射冷卻效應便較為劇烈,並在各地清晨產生極低溫。

像是2021 年 1 月 13 日與 14 日的超強輻射冷卻現象,也就是因為當時大氣中水氣減少、雲層較薄、天氣較好,地球失去了宛若暖被的雲層,無法保留能量,因此才會出現明顯的輻射冷卻現象。

人越多,身體可以越暖和?

另外一個影響因素,跟我們所身處的區域有關。

人口較為密集處,例如都市或是大樓林立的住宅區,因為人口密集,且人們的活動產生較多的熱能,造成地表溫度在夜晚下降的較緩慢,使得輻射冷卻現象較不明顯。

雖然臺北位於臺灣北部,但因大樓林立、人口密集,並不會出現最強烈的輻射冷卻現象。圖/Pixabay

而在寬廣的平地,因建築物稀少,且人口密度較低,少了大樓或是較高的地形阻擋地表輻射散失,當天清晨的輻射冷卻效應便會較強烈。

因輻射冷卻現象可能會受到不同因素的影響,所以冬天最強烈的低溫並不一定只會出現在較冷的北部,以 2021 年 1 月 13 日清晨為例,當時輻射冷卻最低溫即在苗栗縣的造橋,清晨溫度僅有 1.5 度呢!

預判溫差,出門不再擔心穿錯季節!

冬天時常出現輻射冷卻的現象,但當清晨過後太陽出現,太陽所放出的熱又會以短波輻射的形式進入地表,使地表增溫。

因此,若你需要在太陽升起前就出門,請務必特別檢查天氣預報,並留意是否出現輻射冷卻現象、關注太陽升起前後的溫差,才可以備好衣物,讓你更妥善的應對捉摸不定的天氣與溫度!

參考資料

文章難易度
Mia_96
16 篇文章 ・ 22 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師

0

2
1

文字

分享

0
2
1
將陽光轉變成電能的太陽能電池:太陽能電池不是電池——《圖解半導體》
台灣東販
・2022/11/23 ・2778字 ・閱讀時間約 5 分鐘

備受關注的再生能源

近年來,以太陽能發電的再生能源備受關注。

近年來,以太陽能發電的再生能源備受關注。圖/pexels

太陽能電池是太陽能發電的關鍵裝置,這是用半導體將陽光的能量直接轉變成電能的裝置。雖然有「電池」這個名稱,但不像乾電池那樣可以儲存電能。所以「太陽能電池」這個稱呼其實並不洽當,應該稱其為「太陽光發電元件」才對。

太陽能電池會利用到第 1 章 1-2 節提到的半導體光電效應(將光轉變成電能的現象)。不過,僅僅只透過照光,並不能從半導體中抽取出電能。要將光能轉變成電能,必須使用 pn 接面二極體(參考第 1 章 1-8 節)才行。

pn 接面二極體。圖/東販

圖 5-1(a) 為 pn 接面二極體,p 型半導體有許多電洞做為載子,n 型半導體內則有許多電子做為載子。這個 p 型與 n 型半導體接合後,接合面附近的電洞會往 n 型移動擴散,電子則會往 p 型移動擴散,如圖 5-1(b) 所示。

移動擴散之後,接面附近的電子與電洞會彼此結合,使載子消滅,這個過程稱為複合。結果會得到圖 5-1(c) 般,沒有任何載子存在的區域,這個區域就稱為空乏層。

接面附近的空乏層中,n 型半導體的帶負電電子不足,故會帶正電;另一方面,p 型半導體的帶正電電洞不足,故會帶負電(圖 5-1(d))。

因此,n 型與 p 型半導體之間的空乏層會產生名為內建電位的電位差,在接面部分形成電場。這個電場可以阻擋從 n 型半導體流出的電子,與電子從 n 型流向 p 型的力達到平衡,故可保持穩定狀態。

這種狀態為熱平衡狀態,放著不管也不會發生任何事。也就是說,接面上有內建電位差之壁,不管是電子還是電洞,都無法穿過這道牆壁。

用光發電的機制。圖/東販

在這種狀態下,如果陽光照入空乏層,半導體就會在光能下產生新的電子與電洞,如圖 5-2 所示。此時,新的電子會因為內建電場所產生的力而往 n 型半導體移動,新的電洞則往 p 型半導體移動(圖 5-2(a))。於是,電子便會在外部電路產生推動電流的力,稱為電動勢。

在光照射半導體的同時,電動勢會一直持續發生,愈來愈多電子被擠入外部電路,於外部電路供應電力。被擠出至外部電路的電子會再回到 p 型半導體,與電洞結合(圖 5-2(b))。我們可以觀察到這個過程所產生的電流。

太陽能電池的結構。圖/東販

目前太陽能電池的大部分都是由 Si 半導體製成。以 Si 結晶製成的太陽能電池結構如圖 5-3 所示。

為方便理解,前面的示意圖中,都是以細長型的 pn 接面半導體為例。但實際上,太陽能電池所產生的電流大小,與 pn 接面二極體的接面面積成正比。所以 pn 接面的面積做得愈廣愈好,就像圖 5-3 那樣呈薄型平板狀。

前面的說明提到,陽光可產生新的載子,這裡讓我們再進一步說明其原理。

pn 接面二極體的電子狀態。圖/東販

圖 5-4 為 Si 原子之電子組態的示意圖(亦可參考第 38 頁圖 1-11)。Si 原子最外層的軌道與相鄰 Si 原子以共價鍵結合,故 Si 結晶的軌道填滿了電子,沒有空位(圖 5-4(a))。

若摻雜雜質磷(P)或砷(As)等 15 族(Ⅴ族)元素,形成 n 型半導體,便會多出 1 個電子。這個電子會填入最外層電子殼層的最外側軌道(圖 5-4(b)),與共價鍵無關,故能以自由電子的狀態在結晶內自由移動。

由於電子軌道離原子核愈遠,電子的能量愈高,所以位於最外側軌道的電子擁有最高的能量(參考第 57 頁,第 1 章的專欄)。最外側軌道與最外層電子殼層的能量差,稱為能隙。

另一方面,如果是摻雜鎵(Ga)或銦(In)等 13 族(Ⅲ族)元素的 p 型半導體,會少 1 個電子,形成電洞。這個電洞位於最外層電子殼層,能量比自由電子還要低(圖 5-4(c))。

空乏層不存在自由電子或電洞等載子,此處原子的電子組態皆如圖 5-4(a) 所示。

陽光照進這個狀態下的空乏層區域時,原子的電子會獲得光能飛出,轉移到能量較高的外側軌道(圖 5-4(d))。此時的重點在於,電子從光那裡獲得的能量必須大於能隙。如果光能比能隙小的話,電子就無法移動到外側軌道。

光的能量由波長決定,波長愈短,光的能量愈高(參考第 217 頁,第 5 章專欄)。光能 E(單位為電子伏特eV)與波長 λ(單位為 nm)有以下關係。

E[eV]=1240/λ[nm]

抵達地表的陽光光譜。圖/東販

另一方面,抵達地表的陽光由許多種波長的光組成,各個波長的光強度如圖 5-5 所示。

由圖可以看出,可見光範圍內的陽光強度很強。陽光中約有52%的能量由可見光貢獻,紅外線約佔 42%,剩下的 5~6% 則是紫外線。

若能吸收所有波長的光,將它們全部轉換成電能的話,轉換效率可達到最高。不過半導體可吸收的光波長是固定的,無法吸收所有波長的光。

Si結晶的能隙為 1.12eV,對應光波長約為 1100nm,位於紅外線區域。也就是說,用 Si 結晶製造的太陽能電池,只能吸收波長小於 1100nm 的光,並將其轉換成電能。

不過,就像我們在圖 5-5 中看到的,就算只吸收波長比 1100nm 還短的光,也能吸收到幾乎所有的陽光能量。

光是看以上說明,可能會讓人覺得,如果半導體的能隙較小,應該有利於吸收波長較長的光才對。不過,並不只有能隙會影響到發電效率,圖 5-6 提到的光的吸收係數也會大幅影響發電效率。光的吸收係數代表半導體能吸收多少光,可以產生多少載子。

有幾種材料的光吸收係數特別高,譬如 Ⅲ—Ⅴ 族的砷化鎵(GaAs)。GaAs 的能隙為 1.42eV,轉換成光波長後為 870nm,可吸收的光波長範圍比 Si 還要狹窄。但因為吸收係數較高,所以用砷化鎵製作的太陽能電池的效率也比較高。

總之,GaAs 是效率相當高的太陽能電池材料。然而成本較高是它的缺點,只能用於人造衛星等特殊用途上。即使如此,研究人員們仍在努力開發出成本更低、效率更好,以化合物半導體製成的太陽能電池。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 1 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

0

6
1

文字

分享

0
6
1
18世紀的金星變形秀:行星凌日與黑滴效應
全國大學天文社聯盟
・2022/06/28 ・3216字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

1761 年 6 月 6 日,歐洲的天文學家們乘船抵達世界各地的天文台,爭相用最先進的儀器紀錄一個罕見的天文現象──金星凌日, 因為此天文現象可以幫助人們精確測算地球與太陽的距離。在英法七年戰爭的氛圍下,兩國的天文學家尤其較勁,都想要第一個量出日地距離,為天文學史畫下濃墨重彩的一筆。然而當大家拭目以待地望向剛與太陽重疊的金星時,卻都露出了驚訝的表情──金星變形了!

說到金星凌日,大家最有印象的或許是 2012 年的一次金星凌日,從天文學家到各個職業的人們都拿著減光濾鏡共襄盛舉,畢竟下一次的金星凌日要到 2117 年才會再發生。然而在過去,金星凌日並不只是歡樂的娛樂事件,也是非常嚴肅的科學事件。

在十八世紀時,多數天文學家都接受哥白尼的日心說,而克卜勒提出的行星運動三大定律,則可以推導出各行星軌道半徑與地球軌道半徑之間的相對長度,然而最大的問題是當時的人們並不知道地球軌道半徑(地球到太陽的平均距離)的絕對長度。為了解決這個問題,英國天文學家愛德蒙.哈雷於 1716 年提出了使用金星凌日來測量日地距離的方法。如圖一所示,金星凌日的軌跡長短與在地球上的何處觀測有關,在軌跡較長處金星凌日的時間較長,反之則較短,這是因為在地球上不同處觀測金星的視角不同造成的。

假設我們在地球上的 A 與 B 兩處量測金星凌日的時間,我們可以量出兩地觀測金星時的視角差,在知道 A 與 B 間距的前提下,我們可以用視差法量出地球到金星在金星凌日發生時的距離(見圖二)。最後根據克卜勒第三行星運動定律─行星公轉太陽週期平方與行星到太陽的平均距離立方成反比─可以得出金星到太陽的距離約為地球到太陽距離的 0.7 倍,我們也可以得知地球與金星在金星凌日時的距離是地球到太陽距離的0.3倍,由此可以推導出太陽與地球的距離。



圖一(左):金星凌日軌跡。圖二(右):視差法算金星與地球距離。

此方法在當時極大鼓舞了天文學家的士氣,大家都摩拳擦掌的為 1761 年的金星凌日作出準備,共一百多名天文學家乘船至世界各地以測量不同地方金星凌日的時長,其中較為著名的有英國派出的庫克船長於大溪地觀測金星凌日,以及荷蘭則派出的 Johan Maurits Moh 到歷史課本中提過的荷蘭東印度公司巴達維雅總部進行觀測(圖三)。

然而正當金星與太陽重疊時,大家卻不知道何時該按下碼表記錄金星凌日開始的時間,因為金星變形了。圖四是最早關於金星變形的紀錄,在金星靠近太陽的邊緣時金星的旁邊會出現黑色的陰影與太陽邊緣相連接,而這樣的陰影狀似水滴,因此這個現象也被稱作「黑滴現象」

圖三(左):巴達維雅總部,Johan Maurits Mohr 的私人天文台。
圖四(右):於1761年被Torbern Bergman 記錄之黑滴現象。

當時的天文學家們為黑滴現象提出了各種不同的解釋,有些天文學家認為黑色的陰影是金星大氣對太陽光的散射與折射造成的錯覺,也有人認為這是地球大氣擾動造成的現象,還有人認為是太陽光通過金星時繞射所造成的陰影。

前面兩種解釋在 1999 年 NASA 的 TRACE 太空望遠鏡對水星凌日的觀測後被否定,因為太空中沒有地球大氣干擾,水星上則沒有大氣可以散射或折射太陽的光線,而觀測的照片中卻仍出現黑滴效應(圖五)。光的繞射所能造成的影響則不足以產生黑滴現象(繞射影響在約 10^{-9} 角秒,可忽略[1])。

圖五:1999年水星凌日,攝於 NASA’s Transition Region and Explorer (TRACE) 太空船(Schneider, Pasachoff, and Golub/LMSAL and SAO/NASA)

關於黑滴現象的成因一直到 2004 年才得到令人信服的解釋,天文學家 Glenn Schneider 認為黑滴現象是由望遠鏡的點擴散函數(Point Spread Function, PSF)以及太陽的周邊減光造成的 [2]

為了簡單瞭解他所提出的概念,大家可以將大拇指與食指放在一光源之前漸漸靠近(直視強光源會傷害眼睛,請注意光源強度不可以太強),在兩指快要靠在一起時,可以看見兩指中間突然浮現出一段陰暗的橋將兩指相連(如圖六)。

這是因為非點光源會在兩指的邊緣製造出模糊的陰影,而人眼對模糊的陰影並不敏感,因此直到兩指特別靠近時,兩指的陰影重疊導致陰影變明顯才看得出來。圖七與圖八中的兩塊陰影可以幫助大家更好地破除這個錯覺,圖七單純顯示兩塊模糊的陰影,而圖八將陰影的等暗度線畫出來。比較兩圖我們可以發現雖然圖七中兩塊陰影像是連接在一起,然而實際上圖八卻顯示兩陰影並沒有連接在一起 [3]

圖六(左):大拇指與食指之間的暗橋。圖七(中):兩個模糊陰影 [3]。圖八(右):同中間圖,但是增加了等暗度線 [3]

金星凌日所產生的黑滴效應也是透過類似的方式產生的,不過金星模糊陰影與太陽邊緣模糊的成因不同。金星陰影在望遠鏡的觀測中,會因為望遠鏡的點擴散函數而在成像時顯得模糊。望遠鏡的點擴散函數,指的是一望遠鏡在觀測點光源時成像的樣子,不同望遠鏡的點擴散函數有所不同,但通常口徑小做工差的望遠鏡會有較大之點擴散函數,點光源被模糊化的程度也越高,看的也就越不清晰。

回到金星的陰影,當古代人們用做工差且口徑較小的望遠鏡觀測金星時,其陰影非常模糊、黑滴現象較現在的望遠鏡明顯的多,這也是為什麼各地回報黑滴現象的次數隨著望遠鏡的進步逐漸地減少 [4]

太陽邊緣的模糊則主要是因為太陽是一團沒有銳利邊緣的發光電漿。如圖九所示,假設每單位體積電漿能發出的光相同,我們可以看到往太陽邊緣的線上通過的電漿比往太陽中心的線上通過的電漿要少,這也代表著往太陽中心看去的光線較亮,而越往太陽邊緣看去亮度會逐漸減少。圖十是一個比較誇張的示意圖,圖中一模糊的黑影為金星,一模糊的白色邊緣則代表太陽邊緣,即便兩者的邊緣沒有接觸,我們仍能看到金星的邊緣伸出了黑影,與太陽邊緣相連接,這便是黑滴現象的由來。

圖九(左):太陽周邊減光成因示意圖。圖十(右):黑滴現象示意圖。

回到日地距離的問題上,難道在這兩百多年的時間中沒有其他方式能量測金星與地球的距離嗎?實際上在雷達與遙測技術的加持下,人們早在 1964 年就能夠以高精度量測地球到金星間的距離了,因此如今的日地距離測量早已與金星凌日無關。

不過黑滴現象這一歷史悠久的問題,仍在一代一代天文學家的不懈努力下被解決了;時至今日,我們仍面臨著宇宙的諸多未知,而我由衷的期待這些現在看似無解的問題,能在未來的某一天被解決,無論花上幾十年、幾百年的時間。

參考資料:

  1. The Transit of Venus and the Notorious Black Drop, Schaefer, B. E. (2000) https://ui.adsabs.harvard.edu/abs/2000AAS…197.0103S/abstract
  2. TRACE observations of the 15 November 1999 transit of Mercury and the Black Drop effect: considerations for the 2004 transit of Venus, Glenn Schneider (2004) https://www.sciencedirect.com/science/article/pii/S0019103503003841?via%3Dihub
  3. Stackexchange, Why do shadows from the sun join each other when near enough? (2014) https://physics.stackexchange.com/questions/94235/why-do-shadows-from-the-sun-join-each-other-when-near-enough
  4. The black-drop effect explained, Jay M. Pasachof (2005) https://ui.adsabs.harvard.edu/abs/2005tvnv.conf..242P/abstract

0

9
6

文字

分享

0
9
6
誰在海邊蓋天文台啊(惱)──世界第一座電波干涉儀
全國大學天文社聯盟
・2022/04/15 ・4114字 ・閱讀時間約 8 分鐘

  • 文/玄冥
    曾經做過 Radio Astronomy,現在叛逃去 Structure Formation 了,但也許有天會再回去。喜歡的動物是樹懶。

1946 年 2 月的某個清晨,澳洲東海岸的一群無線電科學家嚴陣以待,將電波接收器對向海的彼岸。如果是幾年前,他們會膽顫心驚地觀察日軍戰機的動向,但是今天不一樣,他們滿懷期待地等著日出。因為科學家們知道,他們正將原本用於國家間內鬥的利器 —— 電波干涉術(Radio Interferometry),用於人類探索太空的共同嚮往。

電波干涉術原先是二戰時用來提高電波觀測準確度的技術,如果說大家對電波干涉術不熟悉的話,那麼對人類拍攝的第一張黑洞影像應該記憶猶新(圖一)。這張黑洞影像的成像原理便是電波干涉術,拍攝這張照片的電波干涉儀則是遍佈全球的「事件視界望遠鏡(EHT)」(圖二)。

圖一:事件視界望遠鏡拍攝之 M87 星系中心的超大質量黑洞。圖/EHT
圖二:事件視界望遠鏡。圖/NRAO

大家聽到「電波干涉儀」時,腦海中浮出的想像,可能都是如圖二中的碟狀接收器。然而實際上,電波干涉儀最初的樣貌是非常簡單的(圖三),以下這篇文章會分別介紹電波和干涉術,再介紹兩者結合的原理,一步步帶大家了解電波干涉儀的原型機是如何被設計出來的。

圖三:在澳洲 Dover Heights 岸邊的電波干涉儀。圖/CSIRO

什麼是無線電波?

無線電波(Radio wave,簡稱電波)是一種電磁波,它充斥於我們現代生活的各個角落。例如手機產生的信號、衛星轉播,以及藍牙、WIFI 等等。電波與可見光是唯二能在地球大氣中自由穿行的電磁波波段,因此大多數地面望遠鏡都以觀測可見光跟電波為主。重要的是,相對於可見光波,電波波長更長(約 1 mm 以上),較容易穿過障礙物,讓它更便於觀測藏在宇宙塵埃後的物體(如原恆星)。然而,能穿透障礙物的代價是,在相同的望遠鏡口徑下,電波望遠鏡的「角解析度(Angular resolution)」比較低。

角解析度(或稱角分辨率)是探知物體細微移動或分辨兩個鄰近物體的能力,白話的說就是它能看得多「清楚」。角解析度正比於望遠鏡的直徑,但反比於所觀測的電磁波波長。做一個誇張的比喻,如果我們的眼睛能看到的是波長較長的電波而不是可見光的話,我們需要有一顆直徑約一棟樓高的眼睛,才能看得跟現實中一樣清楚。有限的角解析度,是電波天文台在 1930 年代剛出現時所面臨的主要困境之一。這個問題一直到二戰時期才得到解方 —— 干涉技術。

如果我們的眼睛能看到的是波長較長的電波而不是可見光的話,我們需要有一顆直徑約一棟樓高的眼睛,才能看得跟現實中一樣清楚。圖/envato elements

光的干涉,相信大家在高中的物理實驗中都見過。在實驗中,我們將光源對準布幕,並將切有兩條平行狹縫的一塊紙板隔在光源與布幕之間。此時通過兩條狹縫的光,便會在布幕上產生黑白相間的干涉條紋。這些條紋,源自光通過不同狹縫抵達布幕所需的距離不同,因此不同狹縫發出的光波到達布幕時的震動方向會有所不同。如果兩道光波震動方向相反,會造成相消干涉而形成暗紋;若抵達布幕時震動方向相同,則造成相長干涉而形成亮紋。

利用動畫可能更好理解一些(見圖四、五)。從實驗設備的上方俯視,藍色的點代表光源,紅色的點則是紙板上的狹縫位置,圖片底端是布幕,白色與黑色的部分即為光波的亮紋和暗紋。從圖四我們發現,當狹縫間距越遠,布幕上亮紋就越細緻,而從圖五則可以看見,當光源橫向移動時,布幕上的亮紋及暗紋亦會大幅移動。結合這兩張圖可以看出,越細緻的亮紋對光源的移動就越敏感,電波作為一種波亦有相同的特性。

圖四(左)、圖五(右):雙狹縫干涉示意圖。

軍隊如何利用電波干涉偵測敵軍?

讓我們將焦點拉回二戰時期。當時的英國軍隊為了能預警敵機,通常會將電波接收器對準海平面,隨時觀察敵機的位置。圖六和圖七是電波接收器(紅點)跟敵機(藍點)以及海面(黑色區域)的相對位置圖,此時敵機發出的電波會從兩條不同路徑抵達電波接收器,其中較短的電波是從敵機直達接收器,而較長的則是經海面反射後抵達接收器,這兩條路徑的電波會互相干涉並形成明暗相間的條紋。

圖六(左)、圖七(右):海岸干涉儀示意圖。

這些干涉條紋如同雙狹縫干涉所產生的條紋一樣,對波源的移動非常敏感(圖六),因此可以非常準確的判斷出敵機的位置;而如圖七所示,當電波接收器與海平面之間的高度差愈大,干涉條紋愈細緻,這表示電波接收器的海拔高度正比於其角解析度。實際上,如果將電波接收器放在濱海的峭壁上,其影像的清晰度約為一台口徑為兩倍峭壁高度的電波接收器,這便是「電波干涉儀」最初的樣子——也就是圖三那一台在峭壁上的電波接收器。

隨著二戰結束,許多軍事科技被轉為民用或科研用途,電波干涉儀也不例外。對於研究太陽黑子的天文學家們來說,電波干涉儀在這一年轉為民用更是生逢其時,因為隔年恰好迎來了百年內規模最大的太陽極大期。

太陽活動通常以 9~14 年為週期。在太陽活動最旺盛的時候,往往會伴隨著許多太陽黑子的出現、以及被磁場束縛住的日冕物質所迸發的強電波。然而過去受限於電波觀測的低角解析度,人們只知道電波的強度與太陽黑子數量呈正相關,卻並不知道電波具體源自太陽的何處。隨著電波干涉儀的出現,天文學家得以精確地觀測出電波強度的分佈,其範圍比太陽小、且位置與太陽黑子高度重疊,這為此後的太陽黑子研究以及電波通訊應用提供了不少幫助。(1)(2)(3)

使用電波干涉儀探索宇宙吧!

銀河系和太陽,是天空中兩個最亮的電波源,因此是天文學家最先望向的目標。但天文學家們也注意到,較弱的電波源其實散佈於天空各個角落。這些電波源在沒有干涉儀的時代,因低角解析度以及來自銀河系的電波干擾而遲遲無法精確定位,而這一情況在電波干涉儀出現後得到改善。

二戰後,澳洲海軍負責雷達設備的軍官 John Bolton 以及他的助手,在澳洲沿海各處搭建了電波干涉儀,以觀測來自天鵝座的電波。他們將該電波源的位置精確度,由先前透過一般電波望遠鏡量測的五度推進至七角分(約 1/10 度),也得知這個天體的大小在八角分以下。

在美國新墨西哥州的無線電干涉儀:甚大天線陣Very Large Array。圖/Hajor, CC BY-SA 3.0

然而弔詭的是,如果量測到的電波源自於這八角分不到的天體,這個天體所蘊含的能量密度將遠超出任何已知的天體!更令人驚訝的是,該天體並沒有對應到任何可見光影像中的恆星,於是他們將這個只出現在電波影像的天體稱為天鵝座 A(4) 。隨後他們用電波干涉儀掃瞄了南方的天空,陸續發現了許多類似天鵝座 A 的天體。

在後續技術發展下,天文學家終於找出這些電波天體在可見光的真身 —— 電波星系(5)(圖八、九)。電波星系在可見光波段的影像如同一般星系,然而在電波望遠鏡下,時常能看見噴流從電波星系中心噴湧而出,噴流的痕跡可達星系本體的數倍。現在我們知道,噴流是在星系中心大質量黑洞進食(吸積)時所噴出的強烈電漿流,其中的帶電粒子在噴流磁場的加速下會發出強電波,從而被電波干涉儀接收。

圖八:由甚大天線陣列(VLA)拍攝之天鵝座A電波星系的電波影像。圖/Mhardcastle, VLA data
圖九:由歐洲南方天文台拍攝之人馬座 A 電波星系,結合可見光與電波的影像。圖/ESO

這些噴流能夠改變星系的氣體與能量分佈,因此對星系演化有著至關重要的影響,今日人們也在透過更先進的電波望遠鏡了解這些星系。

時過境遷,如今的電波干涉儀,已經能夠將遍布全球各地多個電波接收器收到的電波進行干涉,不再是依託於大海的孤立接收器;干涉儀技術的改良,立基於全世界探索宇宙深空的好奇與嚮往,而非國家間互相對抗的戰火。

回首過往,人們在戰爭中其實並未忘記對宇宙的嚮往,因此當硝煙散去,人們便互相合作,將戰時的科技化作探索太空的利器,揭開宇宙奧秘、滿足人類的好奇。如今,我們擁有更強大的科技,希望人們能夠繼承這份嚮往,一同探索更多宇宙的未知。

延伸閱讀

  1. 毀滅與新生:超大質量黑洞觸發的恆星形成- PanSci 泛科學
  2. 黑洞甜甜圈之後:宇宙噴火槍3C 279 黑洞噴流影像現蹤跡!——《科學月刊》 – PanSci 泛科學
  3. 黑洞攝影怎麼拍?七個問答來解謎——《黑洞捕手》 – PanSci 泛科學
  4. 仰望宇宙的好據點,大國爭相來插旗:「白山」毛納基亞——《黑洞捕手》
  5. 太陽升起前,把握最後的永夜!與時間賽跑的組裝任務——《黑洞捕手》 – PanSci 泛科學
  6. 人類史上首張黑洞近照:這張動員全球、沖洗兩年的照片是怎麼來的? – PanSci 泛科學

參考資料

  1. Some Highlights of Interferometry in early Radio Astronomy, Woodruff T. Sullivan III (2016)
  2. Pawsey, J. L., Payne-Soott, R., & McCready, L. L. (1946). Radio-frequency energy from the SunNature157(3980), 158-159.
  3. McCready, L. L., Pawsey, J. L., & Payne-Scott, R. (1947). Solar radiation at radio frequencies and its relation to sunspotsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences190(1022), 357-375.
  4. Bolton, J. G., & Stanley, G. J. (1948). Variable source of radio frequency radiation in the constellation of Cygnus. Nature161(4087), 312-313.
  5. Bolton, J. G., Stanley, G. J., & Slee, O. B. (1949). Positions of three discrete sources of galactic radio-frequency radiation. In Classics in Radio Astronomy (pp. 239-241). Springer, Dordrecht.