Loading [MathJax]/extensions/tex2jax.js

0

2
2

文字

分享

0
2
2

記憶變差、反應變慢,神經退化是怎麼一回事?

研之有物│中央研究院_96
・2017/05/07 ・3991字 ・閱讀時間約 8 分鐘 ・SR值 532 ・七年級

從基礎研究,了解神經退化原因

失智症是個難解的神經退化疾病,國內外科學家皆投入大量研究,希望找出病理機制以研發新藥。但人腦的神經網絡複雜程度,遠超出目前理解範圍,在用藥之前,無論是科學家或是我們自己,都需要對神經網絡有更清楚的認識。

中央研究院生物醫學科學研究所的陳儀莊特聘研究員,帶領團隊與跨領域專家合作,除了研究神經細胞與神經膠細胞之間的影響,亦盼能以亨丁頓舞蹈症為模型,發展可沿用於治療其他神經退化疾病的藥物。

神經退化疾病,至今仍無藥可醫

2016 年年底,美國一個著名的大藥廠宣佈了其研發 27 年的失智症藥物,在臨床研究上效果不佳。消息一出,無論是科學家、病人或投資者都很沮喪,全美生技股市甚至降了 8-10 %。在這個低迷的氣氛中,曾得過諾貝爾生理學暨醫學獎的生物學家 David Baltimore 站出來鼓勵大家:

其實我們對神經細胞還不夠了解,如果夠了解,很多問題我們會事先想到。我們應該更努力發展新的科技,並加強分享資訊和數據,才能成功。

在台灣,距今十幾年前政府就開始推動藥物發展,例如 NRPB 生技醫藥國家型科技計畫。而在 2012 年立法院的臨時議案中,數十位立法委員聯合簽名,要求政府會同中研院研發改善失智的抗體與藥物。這幾年來,我們社會老年化的狀況更為嚴重,報紙上社會版面常出現因家人無力長期照顧失智長輩而發生的悲傷故事。

但羅馬不是一天蓋成,若只急著研究藥物的藥效,而忽略全面的了解,就很容易出差錯。例如當科學家發現一個新藥物可以修復退化神經細胞的功能時,若在尚未了解此藥物是否造成身體其他組織的副作用時, 就立刻進行開發,此藥物在臨床實驗失敗的機率就很高,因此藥物研發應更深入。

人腦的神經網絡複雜程度遠遠超出目前的理解範圍,這也是為什麼至今仍無藥物可快速根治神經退化疾病的原因。國內外科學家尚在努力地從基礎研究了解人腦的神經網絡,中央研究院也投入大量心力在此領域中,其中一個研究方向是以研究神經細胞為主體,探討神經細胞和其他腦細胞(包括神經膠細胞)之間的影響。

-----廣告,請繼續往下閱讀-----

本文透過陳儀莊特聘研究員的解說,一同從基礎出發,先了解自己的神經網絡,並探討如何發展神經退化疾病模型,進而開發藥物的可能性。

在吃藥前,先認識自己的神經網絡

人腦中的神經網絡各司其職,包含神經細胞、星形膠質細胞、血管、少突膠質細胞、微膠細胞。圖/洪宗宏繪製

人腦的神經網絡中,負責連結神經網絡的「神經細胞」最為重要,神經細胞活動時會有很多電位經過,電位傳導地越快,神經網絡傳遞功能效果越好。但在傳導電位的過程中,如何避免「短路」?就靠「少突膠質細胞」將神經細胞包起來保護。而在腦中佔了 85% 的「星形膠質細胞」,就像支持整個國家發展的基礎工作人員,非常重要。

「星形膠質細胞」一腳連接神經細胞、一腳連接血管,幫助神經細胞接收養分、並協助清理代謝廢物。

個子很小的「微膠細胞」數量很少,僅佔全部腦細胞的百分之五,他們彷彿人腦中的警察,看到壞東西會將之吞噬。當看到發炎狀況時,會釋放出細胞激素 ( cytokine ) 殺死入侵的細菌或抗發炎。幾乎所有的神經退化疾症都和微膠細胞的失能有關。但微膠細胞是個雙面刃,如果它分泌太多細胞激素也會傷害神經細胞,這種情況在人腦老化時很容易發生。

血液中的葡萄糖,經過星形膠質細胞變成乳酸,再進入神經細胞轉成能量。圖/洪宗宏繪製; 圖說改編/林婷嫻、 張語辰

能吃就是福,對於神經細胞而言,順利獲取能量是一件很重要的事。血液中的葡萄糖,會先經過星形膠質細胞變成乳酸,乳酸再進入神經細胞轉成能量。這個乳酸釋放、吸收與轉換能量的過程,有時候效果會變差,對長期記憶的形成及維繫造成不利影響。

-----廣告,請繼續往下閱讀-----

Cristina M. Alberini 博士的研究室曾以實驗證實(註一),在老鼠負責記憶的海馬迴組織中打入大量乳酸,發現老鼠的記憶變好了,因為神經細胞獲得很充足的能量、得以順利運作。所有的記憶的形成和維持,都依賴神經網絡順利運作。如果有人變得健忘,可能是這個神經網絡傳導效果變差了,若能透過增加神經細胞能量的方式,來促進神經網絡傳導效能,也許可以改善失智,以前的記憶也許並不是消失,而是無法順利傳導。

神經退化原因:壞蛋白質堆積致禍

便秘是因為廢物阻塞在腸道,會導致極不舒服的感覺,嚴重時甚至會喪失生活和工作的能力。對人腦中的神經細胞而言,若無法順利代謝壞蛋白質,則會導致堆積成斑塊,也會阻礙神經傳導功能,嚴重甚至造成神經退化疾病,例如失智症、亨丁頓舞蹈症、漸凍人等等。

腦脊髓液流過神經網絡,幫助神經細胞代謝不好的蛋白質,例如造成失智症的類澱粉蛋白( A-β )。圖/洪宗宏繪製;圖說改編/林婷嫻、張語辰

但神經細胞如何倒垃圾呢?就要靠「腦脊髓液」幫忙。星形膠質細胞的腳會包住血管和神經細胞,在血管和星形膠質細胞中間形成一個極小的空間,足以讓大腦中的腦脊髓液通過,把存在於神經細胞的壞蛋白質帶出腦部加以排除、以防堆積成斑塊,例如造成失智症的類澱粉蛋白(A-β)。當腦脊髓液流通地越順暢,代謝效果就越好。

如果家裡突然出現一個隕石,越來越大,越來越大,那你正常的生活機能就會喪失。這就是蛋白質斑塊對神經細胞的威脅。

許多種神經退化疾病的神經細胞,都有蛋白質不正常堆積的情形,包含亨丁頓舞蹈症(下圖 A)、阿茲海默症(下圖 B)、帕金森氏症 、及漸凍人。年輕的時候,神經細胞會把壞蛋白質分解或排出,小小的微膠細胞也會跑來試著吞噬壞蛋白質,如果排清和吞噬的能力好,壞蛋白質累積在腦中就會少。但壞蛋白質終究還是會累積,當累積越來越多,會在神經細胞周圍(或細胞中)累積成一大坨斑塊,導致神經細胞死掉、神經網絡傳導功能降低,這就是神經退化疾病產生的原因之一。

-----廣告,請繼續往下閱讀-----
不同神經退化疾病中,神經細胞都有蛋白質不正常堆積的情形。資料來源/Christopher A Ross & Michelle A Poirier, Nature Medicine 10, S10 – S17 (2004) 圖說改編/林婷嫻、張語辰

為了神經細胞好,你有理由多睡覺

Maiken Nedergaard 博士的研究室,以老鼠做了一個實驗(註二),在腦膜打進去不同分子大小的染料,觀察染料如何隨著腦脊髓液在腦中流動擴散。紅色的染料分子比較大,綠色的染料分子比較小。他們發現腦脊髓液流動擴散的效果,和「年齡」及「睡眠」息息相關。

年輕的老鼠(左方腦切片)與年老的老鼠(右方腦切片),年老的老鼠腦脊髓液流通擴散的效果差很多。資料來源/Dr. Maiken Nedergaard , The nightlife of the brain (2/11 . 2015; NIH Seminar) 圖說改編/林婷嫻、張語辰

如上圖所示,年輕的老鼠(上方腦切片)腦脊髓液流通效果很好,大分子的紅色染料和小分子的綠色染料遍布腦中混成黃色,大小分子在腦中跑得差不多快。但年老的老鼠(下方腦切片)就不是這樣了,只有小分子的紅色染料透過腦脊髓液傳輸得比較快,大分子的綠色染料還是停在從腦膜打入的位置、沒什麼移動。

無論是老鼠或人類,年紀增長之後腦中的代謝功能都會變差,進而出現神經退化,這是個殘酷的事實。

但先別數著年齡哭泣,大家可以從現在開始好好地睡覺,而且要睡飽。因為在 Dr. Maiken Nedergaard 的實驗中,發現睡覺時神經膠細胞會變小,讓腦脊髓液流通的空隙變大、流速變快,是清理神經網絡中壞蛋白質的最佳時機。

-----廣告,請繼續往下閱讀-----

為了讓神經細胞順利清理廢物,每個人都需要好好睡個覺。

以亨丁頓舞蹈症為模型,發展神經退化疾病藥物

了解神經網絡之後,下個目標是藉由神經退化疾病的動物模型,了解哪些機制影響發病,藉以找出用藥的機會。

失智症是老年最常見的神經退化疾病,但病因相當複雜、目前並無完善的動物模型。而「亨丁頓舞蹈症」只有一個基因突變就造成疾病,現階段已經有相當好的動物模型供科學家探討。

陳儀莊與研究團隊從亨丁頓舞蹈症著手研究藥物發展,是由於亨丁頓舞蹈症和其他神經退化疾病有類似的病理機制,例如神經細胞都會有壞蛋白質堆積的狀況、沒辦法正常分解。若有藥物能藉著促進壞蛋白的分解來治療亨丁頓舞蹈症,就能進一步探討同樣的藥物是否也能用於治療漸凍人或失智症等其他神經退化疾病。

人的身體中,所有東西都是雙面刃。

在藥物成功開發前,很多人希望專家可以先告訴自己吃什麼病就會好、吃什麼會糟,但陳儀莊提醒,神經網絡是個相當複雜的系統,每個食物的作用也很複雜,並非一言就能定之。希望大眾可以從認識自己的神經細胞開始,進而了解如何保護神經網絡正常運作。

-----廣告,請繼續往下閱讀-----

另外,亨丁頓舞蹈症會透過基因代代遺傳,目前在世界上有些落後地區仍認為罹患此病可能是家族受到妖魔附身或詛咒,這是對於神經退化疾病不夠了解而產生的誤會。其實神經退化疾病並不會危害他人,反而是病人因為無法好好走路、容易跌倒,或是忘了自己有沒有吃過飯,造成自身的危險。在藥物成功開發前我們都能做到的事,是對神經退化疾病更加了解,照顧好自己的神經網絡,也願意為病友及家屬提供協助。


延伸閱讀

  • 在神經細胞世界裡探險!專訪神經科學家陳儀莊
  • 陳儀莊的個人網頁
  • 中研院知識饗宴「敵我難料──神經退化疾病中的星形膠質細胞」
  • 註一. Gao et al., 2016, PNAS 113: 8526- 8531.
  • 註一. Suzuki et al., 2011, Cell 144: 810-823.
  • 註二. Xie et al., 2013, Science 342: 373-377.
  • 註二. Kress et al., 2014, Ann. Neurol. 76: 845-861.
  • Kao* , Lin* et al., 2017, Human Molecular Genetics (doi: 10.1093/hmg/ddw402).
  • Chiu*, Lin*, Chuang*, Chien* et al., 2015, Human Molecular Genetics 24: 6066-6079.
  • Liu Y-J et al., 2015, FEBS Letters 2015, 589: 432-439
  • Liu Y-J et al., 2015, Human Molecular Genetics 24: 787-801.
  • Hsiao et al., 2014, Human Molecular Genetics 23: 4328-4344.
  • Lin et al., 2013, Mol. Cell Biol. 33:1073-1084.
  • Ju et al., 2011, Journal of Cell Biology 194: 209 – 227.
  • Huang*, Lin *, 2011, PLoS ONE 6: e20934.
  • Chou et al., 2005, Journal of Neurochemistry 93: 310-320.

執行編輯|林婷嫻  美術編輯|張語辰

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3663 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
眼睛痛、視線模糊、視力退化?小心!可能是多發性硬化症
careonline_96
・2024/07/05 ・2072字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

「那是一位 50 多歲的婦女,因為視力變差而就醫。檢查發現是視神經發炎,於是住院接受治療。」臺北榮民總醫院眼肌神經科主任鄭惠禎醫師指出,「腦部核磁共振檢查顯示,除了視神經發炎之外,腦部也有病灶,最終診斷為多發性硬化症。」

剛聽到罹患多發性硬化症時,患者非常難以接受。鄭惠禎醫師說,經過一段時間後,患者漸漸能夠理解這是一個需要好好控制的疾病,也願意聽從醫師的建議接受治療,目前狀況維持穩定,在門診持續追蹤。

多發性硬化症(Multiple Sclerosis,簡稱 MS)是種自體免疫疾病,患者的免疫系統會攻擊自己的中樞神經系統,引起發炎反應,漸漸造成神經退化、中樞神經系統功能受損。鄭惠禎醫師說,多發性硬化症可以在任何年齡發病,較好發於 20 至 40 歲的年輕族群,以女性患者占多數。

多發性硬化症的表現與受到攻擊的部位有關,可能的症狀包括複視、視力異常、色覺異常、眩暈、疲勞、肢體無力、痙攣、手腳發麻、感覺障礙、失去平衡、口齒不清等,而且每次發作可能出現不同的症狀。

-----廣告,請繼續往下閱讀-----

約有 80% 的多發性硬化症患者會表現眼部症狀,而至眼科就診。鄭惠禎醫師指出,視神經炎會造成視力減退、視野缺損、伴隨眼球轉動疼痛、光反射遲緩、甚至失明等;眼球運動系統受到影響,可能出現複視、眼瞼下垂、眼球轉動困難等;中樞神經系統受到影響,可能出現眼球不自主跳動、凝視性麻痺等。

很多原因都會造成視力模糊,大家如果發現有視力模糊的狀況,千萬不能掉以輕心,請盡快至眼科檢查,仔細找出病因。鄭惠禎醫師提醒,至於多發性硬化症患者一定要按時回診追蹤。

「曾經遇過一位多發性硬化症患者,已經發作過視神經炎,但是沒有按時回診追蹤。直到有一天,患者因為視力模糊回到門診。檢查發現患者的視力相當差,視神經已明顯萎縮。若等到視神經萎縮再接受治療,效果大概也相當有限。」鄭惠禎醫師說,「多發性硬化症可能會有一些小發作,而病人沒有明顯的感覺,但是傷害會漸漸累積,神經學後遺症便越來越嚴重。患者務必定期回診!」

積極治療、穩定控制多發性硬化症

針對視神經發炎急性發作的患者,必須先排除感染、壓迫等問題,然後評估是否進行類固醇脈衝治療,以控制發炎。鄭惠禎醫師說,急性期的治療,通常以類固醇治療為主。

-----廣告,請繼續往下閱讀-----

在急性期的症狀緩解後,多發性硬化症患者可能需要接受改變病程的治療。改變病程的治療有助於減少發作次數,讓病情維持穩定,盡可能減少神經破壞,避免神經學後遺症持續累積。

有多種藥物可用於改變病程的治療,包括干擾素、標靶藥物、免疫調節藥物等,醫師會根據患者的狀況選擇合適的藥物。目前也有口服藥物可供 13 至 18 歲之青少年使用,便利性高,有助提升治療遵從度。

多發性硬化症患者務必與醫師密切配合,積極接受治療,減少發作次數,維持生活品質!

筆記重點整理

  • 多發性硬化症是自體免疫疾病,患者的免疫系統會攻擊自己的中樞神經系統,引起發炎反應,使神經系統功能受損。多發性硬化症可以在任何年齡發病,較好發於 20 至 40 歲的年輕族群,以女性患者占多數。
  • 多發性硬化症的表現與受到攻擊的部位有關,可能的症狀包括複視、視力異常、色覺異常、眩暈、疲勞、肢體無力、痙攣、手腳發麻、感覺障礙、失去平衡、口齒不清等,而且每次發作可能出現不同的症狀。
  • 約有 80% 的多發性硬化症患者會表現眼部症狀,包括視力減退、視野缺損、眼球轉動疼痛、光反射遲緩、失明、複視、眼瞼下垂、眼球活動受限、眼球不自主跳動、凝視性麻痺等。
  • 針對視神經發炎急性發作的患者,若無禁忌症,通常會考慮進行類固醇治療。
  • 在急性期的症狀緩解後,多發性硬化症患者可能需要接受改變病程的治療。改變病程的治療有助於減少發作次數,讓病情維持穩定,盡可能減少神經破壞,避免神經學後遺症持續累積。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
2

文字

分享

0
2
2
記憶變差、反應變慢,神經退化是怎麼一回事?
研之有物│中央研究院_96
・2017/05/07 ・3991字 ・閱讀時間約 8 分鐘 ・SR值 532 ・七年級

-----廣告,請繼續往下閱讀-----

從基礎研究,了解神經退化原因

失智症是個難解的神經退化疾病,國內外科學家皆投入大量研究,希望找出病理機制以研發新藥。但人腦的神經網絡複雜程度,遠超出目前理解範圍,在用藥之前,無論是科學家或是我們自己,都需要對神經網絡有更清楚的認識。

中央研究院生物醫學科學研究所的陳儀莊特聘研究員,帶領團隊與跨領域專家合作,除了研究神經細胞與神經膠細胞之間的影響,亦盼能以亨丁頓舞蹈症為模型,發展可沿用於治療其他神經退化疾病的藥物。

神經退化疾病,至今仍無藥可醫

2016 年年底,美國一個著名的大藥廠宣佈了其研發 27 年的失智症藥物,在臨床研究上效果不佳。消息一出,無論是科學家、病人或投資者都很沮喪,全美生技股市甚至降了 8-10 %。在這個低迷的氣氛中,曾得過諾貝爾生理學暨醫學獎的生物學家 David Baltimore 站出來鼓勵大家:

其實我們對神經細胞還不夠了解,如果夠了解,很多問題我們會事先想到。我們應該更努力發展新的科技,並加強分享資訊和數據,才能成功。

在台灣,距今十幾年前政府就開始推動藥物發展,例如 NRPB 生技醫藥國家型科技計畫。而在 2012 年立法院的臨時議案中,數十位立法委員聯合簽名,要求政府會同中研院研發改善失智的抗體與藥物。這幾年來,我們社會老年化的狀況更為嚴重,報紙上社會版面常出現因家人無力長期照顧失智長輩而發生的悲傷故事。

但羅馬不是一天蓋成,若只急著研究藥物的藥效,而忽略全面的了解,就很容易出差錯。例如當科學家發現一個新藥物可以修復退化神經細胞的功能時,若在尚未了解此藥物是否造成身體其他組織的副作用時, 就立刻進行開發,此藥物在臨床實驗失敗的機率就很高,因此藥物研發應更深入。

人腦的神經網絡複雜程度遠遠超出目前的理解範圍,這也是為什麼至今仍無藥物可快速根治神經退化疾病的原因。國內外科學家尚在努力地從基礎研究了解人腦的神經網絡,中央研究院也投入大量心力在此領域中,其中一個研究方向是以研究神經細胞為主體,探討神經細胞和其他腦細胞(包括神經膠細胞)之間的影響。

-----廣告,請繼續往下閱讀-----

本文透過陳儀莊特聘研究員的解說,一同從基礎出發,先了解自己的神經網絡,並探討如何發展神經退化疾病模型,進而開發藥物的可能性。

在吃藥前,先認識自己的神經網絡

人腦中的神經網絡各司其職,包含神經細胞、星形膠質細胞、血管、少突膠質細胞、微膠細胞。圖/洪宗宏繪製

人腦的神經網絡中,負責連結神經網絡的「神經細胞」最為重要,神經細胞活動時會有很多電位經過,電位傳導地越快,神經網絡傳遞功能效果越好。但在傳導電位的過程中,如何避免「短路」?就靠「少突膠質細胞」將神經細胞包起來保護。而在腦中佔了 85% 的「星形膠質細胞」,就像支持整個國家發展的基礎工作人員,非常重要。

「星形膠質細胞」一腳連接神經細胞、一腳連接血管,幫助神經細胞接收養分、並協助清理代謝廢物。

個子很小的「微膠細胞」數量很少,僅佔全部腦細胞的百分之五,他們彷彿人腦中的警察,看到壞東西會將之吞噬。當看到發炎狀況時,會釋放出細胞激素 ( cytokine ) 殺死入侵的細菌或抗發炎。幾乎所有的神經退化疾症都和微膠細胞的失能有關。但微膠細胞是個雙面刃,如果它分泌太多細胞激素也會傷害神經細胞,這種情況在人腦老化時很容易發生。

-----廣告,請繼續往下閱讀-----

血液中的葡萄糖,經過星形膠質細胞變成乳酸,再進入神經細胞轉成能量。圖/洪宗宏繪製; 圖說改編/林婷嫻、 張語辰

能吃就是福,對於神經細胞而言,順利獲取能量是一件很重要的事。血液中的葡萄糖,會先經過星形膠質細胞變成乳酸,乳酸再進入神經細胞轉成能量。這個乳酸釋放、吸收與轉換能量的過程,有時候效果會變差,對長期記憶的形成及維繫造成不利影響。

Cristina M. Alberini 博士的研究室曾以實驗證實(註一),在老鼠負責記憶的海馬迴組織中打入大量乳酸,發現老鼠的記憶變好了,因為神經細胞獲得很充足的能量、得以順利運作。所有的記憶的形成和維持,都依賴神經網絡順利運作。如果有人變得健忘,可能是這個神經網絡傳導效果變差了,若能透過增加神經細胞能量的方式,來促進神經網絡傳導效能,也許可以改善失智,以前的記憶也許並不是消失,而是無法順利傳導。

神經退化原因:壞蛋白質堆積致禍

便秘是因為廢物阻塞在腸道,會導致極不舒服的感覺,嚴重時甚至會喪失生活和工作的能力。對人腦中的神經細胞而言,若無法順利代謝壞蛋白質,則會導致堆積成斑塊,也會阻礙神經傳導功能,嚴重甚至造成神經退化疾病,例如失智症、亨丁頓舞蹈症、漸凍人等等。

-----廣告,請繼續往下閱讀-----

腦脊髓液流過神經網絡,幫助神經細胞代謝不好的蛋白質,例如造成失智症的類澱粉蛋白( A-β )。圖/洪宗宏繪製;圖說改編/林婷嫻、張語辰

但神經細胞如何倒垃圾呢?就要靠「腦脊髓液」幫忙。星形膠質細胞的腳會包住血管和神經細胞,在血管和星形膠質細胞中間形成一個極小的空間,足以讓大腦中的腦脊髓液通過,把存在於神經細胞的壞蛋白質帶出腦部加以排除、以防堆積成斑塊,例如造成失智症的類澱粉蛋白(A-β)。當腦脊髓液流通地越順暢,代謝效果就越好。

如果家裡突然出現一個隕石,越來越大,越來越大,那你正常的生活機能就會喪失。這就是蛋白質斑塊對神經細胞的威脅。

許多種神經退化疾病的神經細胞,都有蛋白質不正常堆積的情形,包含亨丁頓舞蹈症(下圖 A)、阿茲海默症(下圖 B)、帕金森氏症 、及漸凍人。年輕的時候,神經細胞會把壞蛋白質分解或排出,小小的微膠細胞也會跑來試著吞噬壞蛋白質,如果排清和吞噬的能力好,壞蛋白質累積在腦中就會少。但壞蛋白質終究還是會累積,當累積越來越多,會在神經細胞周圍(或細胞中)累積成一大坨斑塊,導致神經細胞死掉、神經網絡傳導功能降低,這就是神經退化疾病產生的原因之一。

不同神經退化疾病中,神經細胞都有蛋白質不正常堆積的情形。資料來源/Christopher A Ross & Michelle A Poirier, Nature Medicine 10, S10 – S17 (2004) 圖說改編/林婷嫻、張語辰

-----廣告,請繼續往下閱讀-----

為了神經細胞好,你有理由多睡覺

Maiken Nedergaard 博士的研究室,以老鼠做了一個實驗(註二),在腦膜打進去不同分子大小的染料,觀察染料如何隨著腦脊髓液在腦中流動擴散。紅色的染料分子比較大,綠色的染料分子比較小。他們發現腦脊髓液流動擴散的效果,和「年齡」及「睡眠」息息相關。

年輕的老鼠(左方腦切片)與年老的老鼠(右方腦切片),年老的老鼠腦脊髓液流通擴散的效果差很多。資料來源/Dr. Maiken Nedergaard , The nightlife of the brain (2/11 . 2015; NIH Seminar) 圖說改編/林婷嫻、張語辰

如上圖所示,年輕的老鼠(上方腦切片)腦脊髓液流通效果很好,大分子的紅色染料和小分子的綠色染料遍布腦中混成黃色,大小分子在腦中跑得差不多快。但年老的老鼠(下方腦切片)就不是這樣了,只有小分子的紅色染料透過腦脊髓液傳輸得比較快,大分子的綠色染料還是停在從腦膜打入的位置、沒什麼移動。

無論是老鼠或人類,年紀增長之後腦中的代謝功能都會變差,進而出現神經退化,這是個殘酷的事實。

-----廣告,請繼續往下閱讀-----

但先別數著年齡哭泣,大家可以從現在開始好好地睡覺,而且要睡飽。因為在 Dr. Maiken Nedergaard 的實驗中,發現睡覺時神經膠細胞會變小,讓腦脊髓液流通的空隙變大、流速變快,是清理神經網絡中壞蛋白質的最佳時機。

為了讓神經細胞順利清理廢物,每個人都需要好好睡個覺。

以亨丁頓舞蹈症為模型,發展神經退化疾病藥物

了解神經網絡之後,下個目標是藉由神經退化疾病的動物模型,了解哪些機制影響發病,藉以找出用藥的機會。

失智症是老年最常見的神經退化疾病,但病因相當複雜、目前並無完善的動物模型。而「亨丁頓舞蹈症」只有一個基因突變就造成疾病,現階段已經有相當好的動物模型供科學家探討。

陳儀莊與研究團隊從亨丁頓舞蹈症著手研究藥物發展,是由於亨丁頓舞蹈症和其他神經退化疾病有類似的病理機制,例如神經細胞都會有壞蛋白質堆積的狀況、沒辦法正常分解。若有藥物能藉著促進壞蛋白的分解來治療亨丁頓舞蹈症,就能進一步探討同樣的藥物是否也能用於治療漸凍人或失智症等其他神經退化疾病。

-----廣告,請繼續往下閱讀-----

人的身體中,所有東西都是雙面刃。

在藥物成功開發前,很多人希望專家可以先告訴自己吃什麼病就會好、吃什麼會糟,但陳儀莊提醒,神經網絡是個相當複雜的系統,每個食物的作用也很複雜,並非一言就能定之。希望大眾可以從認識自己的神經細胞開始,進而了解如何保護神經網絡正常運作。

另外,亨丁頓舞蹈症會透過基因代代遺傳,目前在世界上有些落後地區仍認為罹患此病可能是家族受到妖魔附身或詛咒,這是對於神經退化疾病不夠了解而產生的誤會。其實神經退化疾病並不會危害他人,反而是病人因為無法好好走路、容易跌倒,或是忘了自己有沒有吃過飯,造成自身的危險。在藥物成功開發前我們都能做到的事,是對神經退化疾病更加了解,照顧好自己的神經網絡,也願意為病友及家屬提供協助。


延伸閱讀

  • 在神經細胞世界裡探險!專訪神經科學家陳儀莊
  • 陳儀莊的個人網頁
  • 中研院知識饗宴「敵我難料──神經退化疾病中的星形膠質細胞」
  • 註一. Gao et al., 2016, PNAS 113: 8526- 8531.
  • 註一. Suzuki et al., 2011, Cell 144: 810-823.
  • 註二. Xie et al., 2013, Science 342: 373-377.
  • 註二. Kress et al., 2014, Ann. Neurol. 76: 845-861.
  • Kao* , Lin* et al., 2017, Human Molecular Genetics (doi: 10.1093/hmg/ddw402).
  • Chiu*, Lin*, Chuang*, Chien* et al., 2015, Human Molecular Genetics 24: 6066-6079.
  • Liu Y-J et al., 2015, FEBS Letters 2015, 589: 432-439
  • Liu Y-J et al., 2015, Human Molecular Genetics 24: 787-801.
  • Hsiao et al., 2014, Human Molecular Genetics 23: 4328-4344.
  • Lin et al., 2013, Mol. Cell Biol. 33:1073-1084.
  • Ju et al., 2011, Journal of Cell Biology 194: 209 – 227.
  • Huang*, Lin *, 2011, PLoS ONE 6: e20934.
  • Chou et al., 2005, Journal of Neurochemistry 93: 310-320.

執行編輯|林婷嫻  美術編輯|張語辰

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3663 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

5
0

文字

分享

0
5
0
含糖飲料讓思考能力受損,還和失智有關聯?——《大自然就是要你胖!》
天下文化_96
・2024/06/24 ・2352字 ・閱讀時間約 4 分鐘

認知與失智

阿茲海默症是現代社會面臨的一大困擾,這種可怕的疾病是俗稱老年痴呆的失智症最常見的原因,也是 2022 年全美第七大死因。阿茲海默症是一種行為失能疾病,目前尚無有效的治療方法。這項疾病的特徵是神經元會持續死亡、大腦萎縮、神經元之間形成富含 β 澱粉樣蛋白(beta-amyloid)的蛋白質斑塊,並在神經元內部出現濤蛋白(tau)累積。患者通常一開始的症狀是短期記憶喪失,並在幾年內發展為完全的失智。

阿茲海默症中,Tau蛋白異常會造成腦細胞內的微管瓦解。圖/wikimedia

大多數科學家認為,若能阻止澱粉樣蛋白在腦部沉積或濤蛋白在腦神經中累積,就可以預防失智症。然而,目前有幾種治療失智症的方法,正是採行預防或減少澱粉樣斑塊累積,只是全都失敗,導致有人質疑澱粉樣蛋白斑塊是否真的是致病原因,並開始嘗試尋找其他可能的解釋。

許多科學家指出,阿茲海默症患者在早期通常會表現出兩種顯著的特徵。首先,患者大腦中的某些區域,會減少對葡萄糖的吸收和代謝,因此有人將阿茲海默症稱為「大腦糖尿病」或「第三型糖尿病」。其次,大腦神經元內的能量工廠粒線體,不論是數量或功能都出現下滑,導致 ATP 產量減少。這兩項特徵都顯示生存開關可能涉入其中。

的確,大量攝取糖、高升糖碳水化合物和鹽,全都是阿茲海默症的危險因子,而這些食物正好都會啟動生存開關。肥胖症和糖尿病等疾病也可能提高罹患阿茲海默症的風險。若果糖是導致肥胖症和糖尿病的根本原因,而肥胖症和糖尿病又與阿茲海默症的罹患風險上升有關,那可以合理懷疑:果糖也可能是造成阿茲海默症的原因。

-----廣告,請繼續往下閱讀-----

實驗研究也支持糖與認知之間的關聯。例如,實驗室大鼠飲用含糖飲料之後,思考能力會受損。我的同事生理學家魯尼(Kieron Rooney)每天餵食大鼠兩小時的蔗糖水,濃度為 10%,大約與軟性飲料相同,為期一個月。結果這些喝糖水的大鼠,變得很難找到走出迷宮的路。更令人擔憂的是,即使大鼠停止飲用糖水,這種情況還是持續了六週。同樣的,經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。

經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。圖/envato

這些研究顯示,攝取含糖飲料可能對認知功能造成影響,而且影響所及的時間有可能持續。然而,這不一定代表蔗糖會導致失智。即使每天喝一種或多種含糖飲料,與情節記憶(episodic memory,對過去經歷或事件的回憶)受損和腦容量萎縮有關,但目前還無法做出任何定論。

不過,有愈來愈多證據將果糖與阿茲海默症聯繫起來。阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。也有證據顯示,大腦中的果糖大多是透過多元醇途徑生成。這些患者腦內有大量的山梨糖醇,也就是果糖的前驅物,這跟躁鬱症患者的情況類似。正如我們所知的,果糖一旦生成,會刺激生存開關啟動,造成細胞中的 ATP 含量減少。此外,阿茲海默症患者大腦中負責「清除」AMP 的酵素濃度,比同年齡對照組高出約兩倍。AMP 原本可重新轉化為 ATP,當愈多 AMP 遭到清除,腦內的能量濃度也就隨之下降。

我認為果糖導致阿茲海默症的途徑大致如下。之前提過,在缺少食物時,身體會活化生存開關以保護大腦,這時血液中的葡萄糖無法進入肌肉和肝臟,而會保留在血液中供大腦吸收與使用。這道開關的運作是透過阻斷胰島素作用來完成,因為肌肉和肝細胞需要胰島素才能吸收和使用葡萄糖,但大腦多半不需要。

-----廣告,請繼續往下閱讀-----
阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。圖/envato

然而有例外,大腦中與記憶和決策相關的區域,需要借助胰島素的作用才能攝取葡萄糖。加州大學洛杉磯分校的神經生理學家戈梅茲皮尼拉(Fernando Gomez-Pinilla)發現,大鼠攝取果糖後,大腦中與記憶和決策相關的區域會失去對胰島素的反應,導致葡萄糖吸收減少。實際上,果糖引起胰島素抗性的區域除了肌肉和肝臟,還有與記憶相關的大腦重要區域,這或許正是阿茲海默症的根本原因。

但限制大腦的這些特定區域攝取葡萄糖,對生存有什麼好處?之前提過,衝動和探索屬於覓食行為。記憶受壓抑的動物,可能更願意前往危險區域探索,因為牠們忘了潛在危險,而決策區受損的動物則會變得更衝動。因此可合理推測,果糖會透過在特定大腦區域引發胰島素抗性,以促進覓食行為,這是一種生存反應。

生存開關活化導致特定腦區的功能受到短期抑制,一開始的確能帶來生存優勢,但如果是反覆或慢性的刺激,反而可能導致腦部損傷。這些重要的神經元長期得不到足夠的葡萄糖,最終可能因為營養不良而功能受損。而且果糖代謝會對粒線體造成氧化壓力,使得 ATP 產量減少,更使狀況進一步惡化。一旦 ATP 濃度過低,神經元會死亡,最後的結果就是阿茲海默症。依此觀點來看,阿茲海默症患者大腦的後續變化,例如澱粉樣蛋白和濤蛋白的積累,都是次要的,而阿茲海默症的根本原因,主要是生存開關慢性活化。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。