Loading [MathJax]/extensions/tex2jax.js

0

2
2

文字

分享

0
2
2

記憶變差、反應變慢,神經退化是怎麼一回事?

研之有物│中央研究院_96
・2017/05/07 ・3991字 ・閱讀時間約 8 分鐘 ・SR值 532 ・七年級

-----廣告,請繼續往下閱讀-----

從基礎研究,了解神經退化原因

失智症是個難解的神經退化疾病,國內外科學家皆投入大量研究,希望找出病理機制以研發新藥。但人腦的神經網絡複雜程度,遠超出目前理解範圍,在用藥之前,無論是科學家或是我們自己,都需要對神經網絡有更清楚的認識。

中央研究院生物醫學科學研究所的陳儀莊特聘研究員,帶領團隊與跨領域專家合作,除了研究神經細胞與神經膠細胞之間的影響,亦盼能以亨丁頓舞蹈症為模型,發展可沿用於治療其他神經退化疾病的藥物。

神經退化疾病,至今仍無藥可醫

2016 年年底,美國一個著名的大藥廠宣佈了其研發 27 年的失智症藥物,在臨床研究上效果不佳。消息一出,無論是科學家、病人或投資者都很沮喪,全美生技股市甚至降了 8-10 %。在這個低迷的氣氛中,曾得過諾貝爾生理學暨醫學獎的生物學家 David Baltimore 站出來鼓勵大家:

其實我們對神經細胞還不夠了解,如果夠了解,很多問題我們會事先想到。我們應該更努力發展新的科技,並加強分享資訊和數據,才能成功。

在台灣,距今十幾年前政府就開始推動藥物發展,例如 NRPB 生技醫藥國家型科技計畫。而在 2012 年立法院的臨時議案中,數十位立法委員聯合簽名,要求政府會同中研院研發改善失智的抗體與藥物。這幾年來,我們社會老年化的狀況更為嚴重,報紙上社會版面常出現因家人無力長期照顧失智長輩而發生的悲傷故事。

但羅馬不是一天蓋成,若只急著研究藥物的藥效,而忽略全面的了解,就很容易出差錯。例如當科學家發現一個新藥物可以修復退化神經細胞的功能時,若在尚未了解此藥物是否造成身體其他組織的副作用時, 就立刻進行開發,此藥物在臨床實驗失敗的機率就很高,因此藥物研發應更深入。

人腦的神經網絡複雜程度遠遠超出目前的理解範圍,這也是為什麼至今仍無藥物可快速根治神經退化疾病的原因。國內外科學家尚在努力地從基礎研究了解人腦的神經網絡,中央研究院也投入大量心力在此領域中,其中一個研究方向是以研究神經細胞為主體,探討神經細胞和其他腦細胞(包括神經膠細胞)之間的影響。

-----廣告,請繼續往下閱讀-----

本文透過陳儀莊特聘研究員的解說,一同從基礎出發,先了解自己的神經網絡,並探討如何發展神經退化疾病模型,進而開發藥物的可能性。

在吃藥前,先認識自己的神經網絡

人腦中的神經網絡各司其職,包含神經細胞、星形膠質細胞、血管、少突膠質細胞、微膠細胞。圖/洪宗宏繪製

人腦的神經網絡中,負責連結神經網絡的「神經細胞」最為重要,神經細胞活動時會有很多電位經過,電位傳導地越快,神經網絡傳遞功能效果越好。但在傳導電位的過程中,如何避免「短路」?就靠「少突膠質細胞」將神經細胞包起來保護。而在腦中佔了 85% 的「星形膠質細胞」,就像支持整個國家發展的基礎工作人員,非常重要。

「星形膠質細胞」一腳連接神經細胞、一腳連接血管,幫助神經細胞接收養分、並協助清理代謝廢物。

個子很小的「微膠細胞」數量很少,僅佔全部腦細胞的百分之五,他們彷彿人腦中的警察,看到壞東西會將之吞噬。當看到發炎狀況時,會釋放出細胞激素 ( cytokine ) 殺死入侵的細菌或抗發炎。幾乎所有的神經退化疾症都和微膠細胞的失能有關。但微膠細胞是個雙面刃,如果它分泌太多細胞激素也會傷害神經細胞,這種情況在人腦老化時很容易發生。

血液中的葡萄糖,經過星形膠質細胞變成乳酸,再進入神經細胞轉成能量。圖/洪宗宏繪製; 圖說改編/林婷嫻、 張語辰

能吃就是福,對於神經細胞而言,順利獲取能量是一件很重要的事。血液中的葡萄糖,會先經過星形膠質細胞變成乳酸,乳酸再進入神經細胞轉成能量。這個乳酸釋放、吸收與轉換能量的過程,有時候效果會變差,對長期記憶的形成及維繫造成不利影響。

-----廣告,請繼續往下閱讀-----

Cristina M. Alberini 博士的研究室曾以實驗證實(註一),在老鼠負責記憶的海馬迴組織中打入大量乳酸,發現老鼠的記憶變好了,因為神經細胞獲得很充足的能量、得以順利運作。所有的記憶的形成和維持,都依賴神經網絡順利運作。如果有人變得健忘,可能是這個神經網絡傳導效果變差了,若能透過增加神經細胞能量的方式,來促進神經網絡傳導效能,也許可以改善失智,以前的記憶也許並不是消失,而是無法順利傳導。

神經退化原因:壞蛋白質堆積致禍

便秘是因為廢物阻塞在腸道,會導致極不舒服的感覺,嚴重時甚至會喪失生活和工作的能力。對人腦中的神經細胞而言,若無法順利代謝壞蛋白質,則會導致堆積成斑塊,也會阻礙神經傳導功能,嚴重甚至造成神經退化疾病,例如失智症、亨丁頓舞蹈症、漸凍人等等。

腦脊髓液流過神經網絡,幫助神經細胞代謝不好的蛋白質,例如造成失智症的類澱粉蛋白( A-β )。圖/洪宗宏繪製;圖說改編/林婷嫻、張語辰

但神經細胞如何倒垃圾呢?就要靠「腦脊髓液」幫忙。星形膠質細胞的腳會包住血管和神經細胞,在血管和星形膠質細胞中間形成一個極小的空間,足以讓大腦中的腦脊髓液通過,把存在於神經細胞的壞蛋白質帶出腦部加以排除、以防堆積成斑塊,例如造成失智症的類澱粉蛋白(A-β)。當腦脊髓液流通地越順暢,代謝效果就越好。

如果家裡突然出現一個隕石,越來越大,越來越大,那你正常的生活機能就會喪失。這就是蛋白質斑塊對神經細胞的威脅。

許多種神經退化疾病的神經細胞,都有蛋白質不正常堆積的情形,包含亨丁頓舞蹈症(下圖 A)、阿茲海默症(下圖 B)、帕金森氏症 、及漸凍人。年輕的時候,神經細胞會把壞蛋白質分解或排出,小小的微膠細胞也會跑來試著吞噬壞蛋白質,如果排清和吞噬的能力好,壞蛋白質累積在腦中就會少。但壞蛋白質終究還是會累積,當累積越來越多,會在神經細胞周圍(或細胞中)累積成一大坨斑塊,導致神經細胞死掉、神經網絡傳導功能降低,這就是神經退化疾病產生的原因之一。

-----廣告,請繼續往下閱讀-----
不同神經退化疾病中,神經細胞都有蛋白質不正常堆積的情形。資料來源/Christopher A Ross & Michelle A Poirier, Nature Medicine 10, S10 – S17 (2004) 圖說改編/林婷嫻、張語辰

為了神經細胞好,你有理由多睡覺

Maiken Nedergaard 博士的研究室,以老鼠做了一個實驗(註二),在腦膜打進去不同分子大小的染料,觀察染料如何隨著腦脊髓液在腦中流動擴散。紅色的染料分子比較大,綠色的染料分子比較小。他們發現腦脊髓液流動擴散的效果,和「年齡」及「睡眠」息息相關。

年輕的老鼠(左方腦切片)與年老的老鼠(右方腦切片),年老的老鼠腦脊髓液流通擴散的效果差很多。資料來源/Dr. Maiken Nedergaard , The nightlife of the brain (2/11 . 2015; NIH Seminar) 圖說改編/林婷嫻、張語辰

如上圖所示,年輕的老鼠(上方腦切片)腦脊髓液流通效果很好,大分子的紅色染料和小分子的綠色染料遍布腦中混成黃色,大小分子在腦中跑得差不多快。但年老的老鼠(下方腦切片)就不是這樣了,只有小分子的紅色染料透過腦脊髓液傳輸得比較快,大分子的綠色染料還是停在從腦膜打入的位置、沒什麼移動。

無論是老鼠或人類,年紀增長之後腦中的代謝功能都會變差,進而出現神經退化,這是個殘酷的事實。

但先別數著年齡哭泣,大家可以從現在開始好好地睡覺,而且要睡飽。因為在 Dr. Maiken Nedergaard 的實驗中,發現睡覺時神經膠細胞會變小,讓腦脊髓液流通的空隙變大、流速變快,是清理神經網絡中壞蛋白質的最佳時機。

-----廣告,請繼續往下閱讀-----

為了讓神經細胞順利清理廢物,每個人都需要好好睡個覺。

以亨丁頓舞蹈症為模型,發展神經退化疾病藥物

了解神經網絡之後,下個目標是藉由神經退化疾病的動物模型,了解哪些機制影響發病,藉以找出用藥的機會。

失智症是老年最常見的神經退化疾病,但病因相當複雜、目前並無完善的動物模型。而「亨丁頓舞蹈症」只有一個基因突變就造成疾病,現階段已經有相當好的動物模型供科學家探討。

陳儀莊與研究團隊從亨丁頓舞蹈症著手研究藥物發展,是由於亨丁頓舞蹈症和其他神經退化疾病有類似的病理機制,例如神經細胞都會有壞蛋白質堆積的狀況、沒辦法正常分解。若有藥物能藉著促進壞蛋白的分解來治療亨丁頓舞蹈症,就能進一步探討同樣的藥物是否也能用於治療漸凍人或失智症等其他神經退化疾病。

人的身體中,所有東西都是雙面刃。

在藥物成功開發前,很多人希望專家可以先告訴自己吃什麼病就會好、吃什麼會糟,但陳儀莊提醒,神經網絡是個相當複雜的系統,每個食物的作用也很複雜,並非一言就能定之。希望大眾可以從認識自己的神經細胞開始,進而了解如何保護神經網絡正常運作。

-----廣告,請繼續往下閱讀-----

另外,亨丁頓舞蹈症會透過基因代代遺傳,目前在世界上有些落後地區仍認為罹患此病可能是家族受到妖魔附身或詛咒,這是對於神經退化疾病不夠了解而產生的誤會。其實神經退化疾病並不會危害他人,反而是病人因為無法好好走路、容易跌倒,或是忘了自己有沒有吃過飯,造成自身的危險。在藥物成功開發前我們都能做到的事,是對神經退化疾病更加了解,照顧好自己的神經網絡,也願意為病友及家屬提供協助。


延伸閱讀

  • 在神經細胞世界裡探險!專訪神經科學家陳儀莊
  • 陳儀莊的個人網頁
  • 中研院知識饗宴「敵我難料──神經退化疾病中的星形膠質細胞」
  • 註一. Gao et al., 2016, PNAS 113: 8526- 8531.
  • 註一. Suzuki et al., 2011, Cell 144: 810-823.
  • 註二. Xie et al., 2013, Science 342: 373-377.
  • 註二. Kress et al., 2014, Ann. Neurol. 76: 845-861.
  • Kao* , Lin* et al., 2017, Human Molecular Genetics (doi: 10.1093/hmg/ddw402).
  • Chiu*, Lin*, Chuang*, Chien* et al., 2015, Human Molecular Genetics 24: 6066-6079.
  • Liu Y-J et al., 2015, FEBS Letters 2015, 589: 432-439
  • Liu Y-J et al., 2015, Human Molecular Genetics 24: 787-801.
  • Hsiao et al., 2014, Human Molecular Genetics 23: 4328-4344.
  • Lin et al., 2013, Mol. Cell Biol. 33:1073-1084.
  • Ju et al., 2011, Journal of Cell Biology 194: 209 – 227.
  • Huang*, Lin *, 2011, PLoS ONE 6: e20934.
  • Chou et al., 2005, Journal of Neurochemistry 93: 310-320.

執行編輯|林婷嫻  美術編輯|張語辰

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3652 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
眼睛痛、視線模糊、視力退化?小心!可能是多發性硬化症
careonline_96
・2024/07/05 ・2072字 ・閱讀時間約 4 分鐘

「那是一位 50 多歲的婦女,因為視力變差而就醫。檢查發現是視神經發炎,於是住院接受治療。」臺北榮民總醫院眼肌神經科主任鄭惠禎醫師指出,「腦部核磁共振檢查顯示,除了視神經發炎之外,腦部也有病灶,最終診斷為多發性硬化症。」

剛聽到罹患多發性硬化症時,患者非常難以接受。鄭惠禎醫師說,經過一段時間後,患者漸漸能夠理解這是一個需要好好控制的疾病,也願意聽從醫師的建議接受治療,目前狀況維持穩定,在門診持續追蹤。

多發性硬化症(Multiple Sclerosis,簡稱 MS)是種自體免疫疾病,患者的免疫系統會攻擊自己的中樞神經系統,引起發炎反應,漸漸造成神經退化、中樞神經系統功能受損。鄭惠禎醫師說,多發性硬化症可以在任何年齡發病,較好發於 20 至 40 歲的年輕族群,以女性患者占多數。

多發性硬化症的表現與受到攻擊的部位有關,可能的症狀包括複視、視力異常、色覺異常、眩暈、疲勞、肢體無力、痙攣、手腳發麻、感覺障礙、失去平衡、口齒不清等,而且每次發作可能出現不同的症狀。

-----廣告,請繼續往下閱讀-----

約有 80% 的多發性硬化症患者會表現眼部症狀,而至眼科就診。鄭惠禎醫師指出,視神經炎會造成視力減退、視野缺損、伴隨眼球轉動疼痛、光反射遲緩、甚至失明等;眼球運動系統受到影響,可能出現複視、眼瞼下垂、眼球轉動困難等;中樞神經系統受到影響,可能出現眼球不自主跳動、凝視性麻痺等。

很多原因都會造成視力模糊,大家如果發現有視力模糊的狀況,千萬不能掉以輕心,請盡快至眼科檢查,仔細找出病因。鄭惠禎醫師提醒,至於多發性硬化症患者一定要按時回診追蹤。

「曾經遇過一位多發性硬化症患者,已經發作過視神經炎,但是沒有按時回診追蹤。直到有一天,患者因為視力模糊回到門診。檢查發現患者的視力相當差,視神經已明顯萎縮。若等到視神經萎縮再接受治療,效果大概也相當有限。」鄭惠禎醫師說,「多發性硬化症可能會有一些小發作,而病人沒有明顯的感覺,但是傷害會漸漸累積,神經學後遺症便越來越嚴重。患者務必定期回診!」

積極治療、穩定控制多發性硬化症

針對視神經發炎急性發作的患者,必須先排除感染、壓迫等問題,然後評估是否進行類固醇脈衝治療,以控制發炎。鄭惠禎醫師說,急性期的治療,通常以類固醇治療為主。

-----廣告,請繼續往下閱讀-----

在急性期的症狀緩解後,多發性硬化症患者可能需要接受改變病程的治療。改變病程的治療有助於減少發作次數,讓病情維持穩定,盡可能減少神經破壞,避免神經學後遺症持續累積。

有多種藥物可用於改變病程的治療,包括干擾素、標靶藥物、免疫調節藥物等,醫師會根據患者的狀況選擇合適的藥物。目前也有口服藥物可供 13 至 18 歲之青少年使用,便利性高,有助提升治療遵從度。

多發性硬化症患者務必與醫師密切配合,積極接受治療,減少發作次數,維持生活品質!

筆記重點整理

  • 多發性硬化症是自體免疫疾病,患者的免疫系統會攻擊自己的中樞神經系統,引起發炎反應,使神經系統功能受損。多發性硬化症可以在任何年齡發病,較好發於 20 至 40 歲的年輕族群,以女性患者占多數。
  • 多發性硬化症的表現與受到攻擊的部位有關,可能的症狀包括複視、視力異常、色覺異常、眩暈、疲勞、肢體無力、痙攣、手腳發麻、感覺障礙、失去平衡、口齒不清等,而且每次發作可能出現不同的症狀。
  • 約有 80% 的多發性硬化症患者會表現眼部症狀,包括視力減退、視野缺損、眼球轉動疼痛、光反射遲緩、失明、複視、眼瞼下垂、眼球活動受限、眼球不自主跳動、凝視性麻痺等。
  • 針對視神經發炎急性發作的患者,若無禁忌症,通常會考慮進行類固醇治療。
  • 在急性期的症狀緩解後,多發性硬化症患者可能需要接受改變病程的治療。改變病程的治療有助於減少發作次數,讓病情維持穩定,盡可能減少神經破壞,避免神經學後遺症持續累積。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

5
0

文字

分享

0
5
0
含糖飲料讓思考能力受損,還和失智有關聯?——《大自然就是要你胖!》
天下文化_96
・2024/06/24 ・2352字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

認知與失智

阿茲海默症是現代社會面臨的一大困擾,這種可怕的疾病是俗稱老年痴呆的失智症最常見的原因,也是 2022 年全美第七大死因。阿茲海默症是一種行為失能疾病,目前尚無有效的治療方法。這項疾病的特徵是神經元會持續死亡、大腦萎縮、神經元之間形成富含 β 澱粉樣蛋白(beta-amyloid)的蛋白質斑塊,並在神經元內部出現濤蛋白(tau)累積。患者通常一開始的症狀是短期記憶喪失,並在幾年內發展為完全的失智。

阿茲海默症中,Tau蛋白異常會造成腦細胞內的微管瓦解。圖/wikimedia

大多數科學家認為,若能阻止澱粉樣蛋白在腦部沉積或濤蛋白在腦神經中累積,就可以預防失智症。然而,目前有幾種治療失智症的方法,正是採行預防或減少澱粉樣斑塊累積,只是全都失敗,導致有人質疑澱粉樣蛋白斑塊是否真的是致病原因,並開始嘗試尋找其他可能的解釋。

許多科學家指出,阿茲海默症患者在早期通常會表現出兩種顯著的特徵。首先,患者大腦中的某些區域,會減少對葡萄糖的吸收和代謝,因此有人將阿茲海默症稱為「大腦糖尿病」或「第三型糖尿病」。其次,大腦神經元內的能量工廠粒線體,不論是數量或功能都出現下滑,導致 ATP 產量減少。這兩項特徵都顯示生存開關可能涉入其中。

的確,大量攝取糖、高升糖碳水化合物和鹽,全都是阿茲海默症的危險因子,而這些食物正好都會啟動生存開關。肥胖症和糖尿病等疾病也可能提高罹患阿茲海默症的風險。若果糖是導致肥胖症和糖尿病的根本原因,而肥胖症和糖尿病又與阿茲海默症的罹患風險上升有關,那可以合理懷疑:果糖也可能是造成阿茲海默症的原因。

-----廣告,請繼續往下閱讀-----

實驗研究也支持糖與認知之間的關聯。例如,實驗室大鼠飲用含糖飲料之後,思考能力會受損。我的同事生理學家魯尼(Kieron Rooney)每天餵食大鼠兩小時的蔗糖水,濃度為 10%,大約與軟性飲料相同,為期一個月。結果這些喝糖水的大鼠,變得很難找到走出迷宮的路。更令人擔憂的是,即使大鼠停止飲用糖水,這種情況還是持續了六週。同樣的,經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。

經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。圖/envato

這些研究顯示,攝取含糖飲料可能對認知功能造成影響,而且影響所及的時間有可能持續。然而,這不一定代表蔗糖會導致失智。即使每天喝一種或多種含糖飲料,與情節記憶(episodic memory,對過去經歷或事件的回憶)受損和腦容量萎縮有關,但目前還無法做出任何定論。

不過,有愈來愈多證據將果糖與阿茲海默症聯繫起來。阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。也有證據顯示,大腦中的果糖大多是透過多元醇途徑生成。這些患者腦內有大量的山梨糖醇,也就是果糖的前驅物,這跟躁鬱症患者的情況類似。正如我們所知的,果糖一旦生成,會刺激生存開關啟動,造成細胞中的 ATP 含量減少。此外,阿茲海默症患者大腦中負責「清除」AMP 的酵素濃度,比同年齡對照組高出約兩倍。AMP 原本可重新轉化為 ATP,當愈多 AMP 遭到清除,腦內的能量濃度也就隨之下降。

我認為果糖導致阿茲海默症的途徑大致如下。之前提過,在缺少食物時,身體會活化生存開關以保護大腦,這時血液中的葡萄糖無法進入肌肉和肝臟,而會保留在血液中供大腦吸收與使用。這道開關的運作是透過阻斷胰島素作用來完成,因為肌肉和肝細胞需要胰島素才能吸收和使用葡萄糖,但大腦多半不需要。

-----廣告,請繼續往下閱讀-----
阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。圖/envato

然而有例外,大腦中與記憶和決策相關的區域,需要借助胰島素的作用才能攝取葡萄糖。加州大學洛杉磯分校的神經生理學家戈梅茲皮尼拉(Fernando Gomez-Pinilla)發現,大鼠攝取果糖後,大腦中與記憶和決策相關的區域會失去對胰島素的反應,導致葡萄糖吸收減少。實際上,果糖引起胰島素抗性的區域除了肌肉和肝臟,還有與記憶相關的大腦重要區域,這或許正是阿茲海默症的根本原因。

但限制大腦的這些特定區域攝取葡萄糖,對生存有什麼好處?之前提過,衝動和探索屬於覓食行為。記憶受壓抑的動物,可能更願意前往危險區域探索,因為牠們忘了潛在危險,而決策區受損的動物則會變得更衝動。因此可合理推測,果糖會透過在特定大腦區域引發胰島素抗性,以促進覓食行為,這是一種生存反應。

生存開關活化導致特定腦區的功能受到短期抑制,一開始的確能帶來生存優勢,但如果是反覆或慢性的刺激,反而可能導致腦部損傷。這些重要的神經元長期得不到足夠的葡萄糖,最終可能因為營養不良而功能受損。而且果糖代謝會對粒線體造成氧化壓力,使得 ATP 產量減少,更使狀況進一步惡化。一旦 ATP 濃度過低,神經元會死亡,最後的結果就是阿茲海默症。依此觀點來看,阿茲海默症患者大腦的後續變化,例如澱粉樣蛋白和濤蛋白的積累,都是次要的,而阿茲海默症的根本原因,主要是生存開關慢性活化。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。