Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

後抗生素時代,改用這些殺手細菌來「以菌攻菌」

陳俊堯
・2017/02/23 ・3112字 ・閱讀時間約 6 分鐘 ・SR值 525 ・七年級

經過幾十年來的大量使用,有人煙的地方大概都有抗生素流到環境裡,在全球各地篩選具有抗藥性的細菌。有抗生素在等於就保障了抗藥性細菌的生存。每隔一陣子就會來個新聞提醒我們,某地又有人被超級細菌感染,醫院的抗生素全部失效,醫生束手無策。雖然你自己要真的碰上超級細菌的機會極低,但是我們的確處在一個高風險的時代,人類必須在這些細菌出現時小心圍堵,不能讓它們蔓延開,才不會讓自己碰上菌來了沒藥醫的窘境。

人們一方面往謹慎用藥的方向走,另一方面也積極尋找新一代的抗菌武器。有些人跑遍地球最奇怪的角落,希望在那裡找到的奇怪微生物身懷絶技,能夠借來對付越來越壓制不住的病原細菌;有些人轉而開發新的抗菌武器。於是細菌在自然界裡的天敵就成了新的希望,例如能感染細菌的病毒就是個當然會受到注意的目標。然而,另外一個會殺細菌的生物,是跟病原菌一樣是原核生物的細菌。

獵殺革蘭氏陰性菌的殺手

在我們不熟悉的角落裡,各種生物為了維生可是無所不用其極。這次要介紹的是兩種以獵殺細菌維生的「殺手細菌」。

我們的殺手 1 號是噬菌蛭弧菌Bdellovibrio bacteriovorus),它是種會獵殺其它細菌的細菌。蛭弧菌的大小只有一般細菌的十分之一,可以利用鞭毛讓身體高速轉動,穿入獵物細菌的細胞裡,待在裡頭吞食養份長大,是個高效率的細菌殺手。它們也不挑食,只要是革蘭氏陰性的細菌都鑽得進去,都可以當晚餐。

-----廣告,請繼續往下閱讀-----
噬菌蛭弧菌(Bdellovibrio bacteriovorus)。圖/NIH Image Gallery@flickr

而殺手 2 號是噬綠膿小弧菌(Micavibrio aeruginosavorus)是另一種類型的細菌殺手。會得到這怪名字是因為它有殺死病原菌綠膿桿菌(Pseudomonas aeruginosa的能力。噬綠膿小弧菌會吸附在自己的細菌獵物上,再一點一點吸走它的養份,像吸血鬼那樣咬住吸乾受害者。它們也不挑食,過去研究已經證實它們能攻擊多種不同的革蘭氏陰性細菌。

噬綠膿小弧菌(Micavibrio aeruginosavorus,途中黃色細菌)正在獵殺病原菌綠膿桿菌(Pseudomonas aeruginosa,圖中紫色細菌)。圖/The University of Medicine and Dentistry of New Jersey

這些殺手細菌平常住在自然環境或污水處理廠裡,因為在那樣的地方有很多它們能獵殺的革蘭氏陰性的細菌可以吃。正巧很多人類的病原菌也是革蘭氏陰性的細菌,或許我們可以借助這些細菌殺手來幫我們清除來犯的病菌。這是一種把環境微生物/微生物生態這個學門的知識運用在醫學上的概念。

噬菌蛭弧菌會鑽進獵物細菌裡生長繁殖。圖/Estevezj – Own work, CC BY-SA 3.0, wikimedia commons.

非正規部隊真的能上戰場嗎?

過去已經有人在實驗室裡做過實戰測試,證明這些殺手細菌的確能在培養器皿裡消滅病菌。不過,它們可是活的細菌啊,我們真的可以放手讓它們進入人體,信任它們會乖乖為我們殺敵嗎?

利用它們來治病的第一個考量,是這些外來的殺手細菌會不會攻擊我們,造成不必要的傷害。第二個考量是這些殺手細菌到底能不能活著見到它們的對手。一般病原菌都得有十八般武藝,才能有機會穿過我們身體的層層防禦,進到組織深處致病。但這些殺手細菌的專長只能用來對付細菌而不是人類,因此如果要讓它們發揮功能,我們還得幫它們個忙,把它們直接空降在戰場上才能發揮戰力。

-----廣告,請繼續往下閱讀-----

在動物體內是否可以發揮效用呢?2016 年底發表的一篇研究拿斑馬魚胚胎做過測試。研究人員在斑馬魚體內上注入病原菌福氏志賀氏菌(Shigella flexneri,再加上蛭弧菌來救援。結果發現單獨注射殺手細菌不會影響斑馬魚的存活,而且證實殺手細菌可以趕在自己被免疫系統消滅前殺死病原菌,讓斑馬魚胚胎活下來。用殺手細菌消除病原菌在魚類胚胎裡行得通,那如果場景換成像我們這樣的哺乳類身上,也可以行得通嗎?

終於,在 2017 年的開始,第一篇利用這些殺手細菌在哺乳類成體身上治療感染的研究報告發表,證實用它們來治病的這個想法是可行的。只不過在這個研究裡被治療的哺乳類還不是人,而是先讓老鼠來打頭陣。研究人員在這個研究裡用感染了克雷伯氏肺炎菌(Klebsiella pneumoniae的實驗室大鼠來測試殺手細菌的效果。

先求不傷身體

要把細菌大量放進身體裡,即使是為了治病,還是讓人心裡怕怕的。

這研究的第一步先要證明施用這菌不會傷身。研究人員從大鼠鼻腔小心放進高劑量的殺手細菌,結果發現老鼠在接種這兩種殺手細菌後都沒有異樣,肺部組織也沒有出現病變。他們用更靈敏的 ELISA (酵素免疫分析法,enzyme-linked immunosorbent assay)來看這些細菌是否會刺激到大鼠的免疫系統,結果發現在接種一小時後,免疫系統的確出現小小的騷動,但是兩天後再做檢測,免疫系統的反應就恢復正常了,顯示這些殺手細菌沒有對身體造成感染或其它不良影響。

-----廣告,請繼續往下閱讀-----

接著他們持續追蹤體內的細菌數,發現殺手細菌在接種一小時後,大鼠包括肺部的內臟裡還測得到,接下來兩天內數量持續下降,十天後完全消失,顯示這些殺手細菌沒有能力在哺乳類動物身上長時間停留。整體來說,是很安全的。

殺手細菌特種部隊

接下來要測試殺手細菌的能力了。研究人員先在大鼠接種高劑量病菌,模擬感染後肺部出現細菌的狀況。然後研究人員在接種病菌後 0.5、6、12 及 18 小時將殺手細菌放入肺部,看看它們能不能及時阻止病菌的進攻,拯救這隻老鼠的性命。

不過這是個醫學實驗,老鼠在接種後 24 小時必須得犧牲,讓研究人員仔細檢視細菌造成的影響。在肺部組織切片上,病菌的進攻造成免疫細胞大量湧入,但是只要後來有派殺手細菌上場救援,肺臟裡就跟沒發生感染的控制組一樣平靜。他們檢查了大鼠肺臟裡的病菌數量,發現有加殺手細菌的大鼠只有沒加殺手細菌大鼠菌量的千分之一,有些個體甚至於已經測不到病菌了。從這個結果看來,施用這兩種殺手細菌來治療細菌感染,效果其實蠻好的。

一天四次鼻噴劑比一天飯後四顆藥好嗎?

以往鼻噴劑大多是用在緩解鼻子過敏,如果有一天鼻噴劑中換裝殺手細菌,能幫我們對抗體內的害我們生命的細菌嗎?圖/Andreas Nilsson@flickr

你已經在想像未來怎麼使用這種治療法了嗎?其實這項治療離正式運用還早得很呢。這個研究雖然證明用殺手細菌在動物身上做治療是行得通的,但這畢竟是在老鼠身上做的測試,要用在人身上或要在各大醫院施行,還要有效能及成本上的考量,想必還要做相當多的調整。未來可以接、滴、灑殺手細菌的部位,像是氣管、口腔或是體表,或許都有機會考慮這種新的療法。

-----廣告,請繼續往下閱讀-----

這種新療法真的有比現在使用的抗生素有效嗎?或許沒有。但是在現在這個抗生素年代,病菌只要改變一兩個蛋白質上的結構,就可能讓抗生素無法和細菌的蛋白質結合而失效。但是你想阻止一隻用蠻力鑽進來肆虐的殺手細菌,可能得加強好多層細胞外工事才能辦得到,困難度高很多,因此可以用來做為對付多重抗藥細菌的一道防線。而且這樣可以少吃點藥,你的腎臟細胞會感謝你的。

 

資料來源:

  • Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C, Till R, Mostowy S, Sockett RE.
    Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae.
    Curr Biol. 2016 Dec 19;26(24):3343-3351.
  • Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S, Gupta S, Dharani S, Onyile O, Rinaggio J, Connell ND, Kadouri DE. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. MBio. 2016 Nov 8;7(6)
-----廣告,請繼續往下閱讀-----
文章難易度
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
30 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
螃蟹有痛感嗎?我們是怎麼知道的?
F 編_96
・2025/01/16 ・1669字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live science

螃蟹一直是海鮮美食中的明星,從油炸軟殼蟹到清蒸螃蟹,餐桌上經常見到牠們的身影。有地方也習慣直接將活螃蟹丟沸水煮熟,認為這能保留最多的鮮味。過去人們認為甲殼類缺乏複雜神經結構,不會感受到痛苦,因此不必過度憂心道德問題。但近年來,越來越多研究開始挑戰此一想法,指出螃蟹與龍蝦等甲殼動物可能具備類似疼痛的神經機制。

以前大家相信甲殼類缺乏複雜神經結構,但近期這一認知逐漸受到質疑。 圖 / unsplash

甲殼類是否能感覺到痛?

人類長期習慣以哺乳類的神經構造作為痛覺判斷依據,由於螃蟹沒有哺乳動物那樣的大腦腦區,便被認為只憑簡單反射行動,談不上真正「痛」。然而,新興科學證據顯示包括螃蟹、龍蝦在內的甲殼類,除了可能存在被稱為「nociceptors」的神經末梢,更在行為上展現自我防禦模式。這些研究結果顯示,螃蟹對強烈刺激不僅是本能抽搐,還有可能進行風險評估或逃避策略,暗示牠們的認知或感受方式比我們想像更精緻。

關鍵證據:nociceptors 與自我保護行為

近期實驗在歐洲岸蟹(Carcinus maenas)中觀察到,當研究人員以刺針或醋等刺激手段測量神經反應,牠們顯示與痛覺反應類似的神經興奮;若只是海水或無害操作,則無此現象。此外,透過行為實驗也可看出,寄居蟹在受到電擊時,會毅然捨棄原本的殼子逃離電源,但若同時存在掠食者味道,牠們會猶豫要不要冒著風險離開殼子。這些結果使科學家認為,螃蟹並非單純反射,而可能有對於痛感的判斷。若只是「低等反射」,牠們不會考慮掠食風險等外在因素。

痛覺與保護:實驗結果引發的道德思考

以上發現已在科學界引發廣泛關注,因為餐飲業與漁業中常見「活煮」或「刺穿」處理螃蟹方式,如今看來很可能讓牠們承受相當程度的不適或疼痛。瑞士、挪威與紐西蘭等國已開始禁止活煮龍蝦或螃蟹,要求先以電擊或機械方法使其失去意識,試圖減少痛苦。英國也曾討論是否將甲殼類納入動物福利法保護範圍,最後暫時擱置,但此爭議仍在延燒。

-----廣告,請繼續往下閱讀-----
英國對於是否將甲殼類列入動物福利法的保護範圍,有所爭議。 圖 / unsplash

部分學者保持保留態度,認為雖然甲殼類展現疑似痛覺的行為與神經反應,但與哺乳類相同的「主觀痛感」仍需更多研究證明。大腦與神經系統結構畢竟存在很大差異,有些反射也可能是進化而來的自衛機制,而非真正意義上的感受。然而,科學家普遍同意,既然相關證據已經累積到一定程度,毋寧先採取更謹慎與人道的處理模式,而非輕易推卸為「牠們不會痛」。

海洋生物福利:未來的規範與影響

如果螃蟹被證實擁有痛覺,將牽動更廣泛的海洋生物福利議題,包括鎖管、章魚或多種貝類也可能具有類似神經機制。人類一直以來習慣將無脊椎動物視為「低等生物」,未必給予與哺乳類相同的法律或倫理關注。但若更多實驗持續指出,牠們同樣對嚴重刺激展開避痛行為,社會或終將呼籲修訂漁業與餐飲相關法規。未來可能要求業者在捕撈與宰殺前使用電擊或麻醉,並限制活煮等方式。這勢必對漁業流程與餐廳文化造成衝擊,也引發經濟與文化折衷的爭議。

龐大的實驗數據雖已暗示螃蟹「會痛」,但確鑿的最終定論仍需更多嚴謹研究支持,包括更深入的大腦活動成像與突觸路徑分析。同時,落實到實際操作也需追問:是否存在更快、更人道的宰殺或料理方式?能否維持食材鮮度同時保障動物福利?這種思維轉變既考驗科學進程,也考驗人類對自然資源的態度。也許未來,既然我們仍會食用海產,就該以最小痛苦的方式對待那些可能感受痛苦的生物,為牠們提供基本尊重。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。