0

0
0

文字

分享

0
0
0

仿生軟機器人!Soft robot

Scimage
・2012/01/30 ・392字 ・閱讀時間少於 1 分鐘 ・SR值 576 ・九年級

-----廣告,請繼續往下閱讀-----

雖然生物使用很多種方式運動,但是現在機器人的設計多半仿製有有骨骼支架的生物,使用關節、支架跟驅動器來達成運動。但是有一類的生物,像是軟體動物,是利用軟組織本身的變形來做運動,沒關節、沒骨骼,這類運動卻很少被應用在機器人身上,現在研究人員利用類似的想法做出了下面這個軟的爬行機器人:

主要的原理很簡單:先利用立體印表機設計出模子,模子的設計是裡面有一些不對襯的空隙,然後用矽膠去翻模,就可以做出可以充氣變形的機器人。裡面的空隙設計如下圖,在這樣的設計裡只要控制四隻腳不同的充氣壓力順序,就可以做到影片中那樣有規則性的運動方式。

這樣的軟機器人的設計成本不高,因為整體沒有關節根支架的分別,製造上也容易,或許在未來像是跟人體互動的接觸或是需要柔和方式的運動時可以派上用場!

學術文獻

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

22
0

文字

分享

2
22
0
鑑識故事系列:哪一把武士刀砍了顱骨?
胡中行_96
・2023/08/21 ・2135字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

男子與公車上認識的同好,打算共赴西洋棋賽。途中兩人開始喝酒,醉到無法下棋,男子便受邀至對方家續攤。他們來到德國某小鎮一棟半獨立式的房子,不知何故卻起了爭執。這名新朋友遂攻擊男子,然後致電警方自首。[1]

a. 客廳;b. 死者與刀鞘(sheath);c. 廚房裡的武士刀 A;d. 人行道的武士刀 B 及開山刀。圖/參考資料1,Figure 1 a, c , d and edited b(CC BY 4.0)

勘查現場

警察與鑑識病理學家進入客廳,看見男子四肢蜷曲,橫屍沙發前的血泊中。朝天的後腦勺,有數道深層砍傷。遍佈周遭物品、地板與牆壁的飛濺血斑,方向不一。可以推測男子在跌倒後,以此姿勢繼續受害。他的身邊有兩只刀鞘。相應的武士刀 A 在廚房裡;B 則於屋外的人行道上,一旁還有開山刀。[1]

武士刀

開山刀上沒有血漬,可能不是兇器;兩把沾滿鮮血的武士刀,成了辦案的焦點:[1]

  • 武士刀 A:由長 720 公厘,寬 31 公厘,厚 7 公厘的刀刃;橢圓形護手;以及藍布包裹的刀柄組成,總長 1020 公厘。[1]
  • 武士刀 B:刀刃長 725 公厘,寬 32 公厘,厚 7.5 公厘;加上橢圓護手;還有纏著黑布的刀柄,全長也是 1020 公厘。[1]

兩把武士刀的外型,無疑非常相似。不過,製作刀器時的打磨等動作,以及使用造成的磨損,如果留下足夠的紋路,就可能在死者身上產生不同的痕跡。換句話說,驗屍的時候,要挑選刀痕明確,且含有相當細節的砍傷,來進行比對。[1]

-----廣告,請繼續往下閱讀-----
武士刀 A(上)與 B(下)。圖/參考資料 1,Figure 2(CC BY 4.0)

驗屍

男子的頭、頸後方,與右肩、右臂,有 2、30 處銳器損傷;雙手因自我防衛而受傷;嘴唇、手臂、左乳頭,以及左肩胛附近,則有血腫等鈍器損傷。他的內臟輕微貧血,帶少量屍斑,散發著強烈酒味。血液酒精濃度高達 0.378%,[1]衝突發生的當下,抵禦能力大概有限。

血液酒精濃度(%)可能的症狀
< 0.05多話、放鬆、自信。[2]
0.05 – 0.08判斷力與運動失常,肆無忌憚。[2]
0.08 – 0.15口齒不清;情緒不穩;噁心、嘔吐;視覺、平衡感與肢體協調失常。[2]
0.15 – 0.30想睡、失憶、尿失禁、呼吸困難、失去意識,無法自行走動。[2]
> 0.30[2]>0.40[3]昏迷、死亡。[2, 3]

翻模

鑑識團隊取下顱骨(cranium)最上方顱頂(calvaria)的一部份,用冷水洗淨,吸除水份,放在顯微鏡下檢查:8 淺 7 深,共 15 道器物造成的傷痕。其中 3 道特別深,而且保有充足細節,適合比對兇器,被編號為 I、II 與 III。[1]

接著,他們拿出 AccuTrans® 鑄造材料(AccuTrans® Casting Material),往這 3 道刀痕上抹。[1]根據 AccuTrans® 的官網,這是一種鑑識專用的印模矽膠,連鈔票墨紋都能精準捕捉,而且適用於平滑、粗糙,垂直或水平等各種表面。[4]得到第一個模型後,鑑識人員將這塊顱頂扔進不超過 75 °C,摻有洗衣粉的水中浸泡,直到上面的軟組織能被輕輕刷除。然後以丙酮(acetone)除油待乾,再次用 AccuTrans® 翻模。兩塊矽膠模型被放在 Leica FS-C 光學顯微鏡下比較,確認稍早浸泡的程序,沒有不小心破壞了刀痕。[1]

去除軟組織前後的顱頂上,編號 I、II 和 III 的傷痕。圖/參考資料 1,Figure 3(CC BY 4.0)

顱頂刀痕的模型完成之後,2 把武士刀也要準備一下。先以冷水洗去血漬,並用衛生紙擦乾。拿牙科翻齒模的 Cavex Set Up Wax 硬蠟片,在刀刃的紋路上翻模,再灌入 AccuTrans®,做出模型。[1]

-----廣告,請繼續往下閱讀-----

比對

鑑識團隊除了將顱頂刀痕和武士刀紋路的模型,放在 Leica FS-C 光學顯微鏡下,打斜光比對;也使用辦案專用的 ToolScan 3D 掃描器Lucia Forensic 3D 比較軟體加以分析。他們又拿一般硬度的 Cavex Set Up Modelling 蠟片與褐色的 AccuTrans® AB 鑄造材料,再次製作模型,掃描並分析,以驗證結論。[1]

光學顯微鏡下,顱頂刀痕 I、II 和 III 跟武士刀 A 紋路的比較。圖/參考資料 1,Figure 5(CC BY 4.0)

判決

3 道刀痕都與武士刀 A 吻合,儘管這個結果不能排除 B,但至少證明 A 絕對是兇器。鑑識團隊 3D 電腦斷層掃描顱頂,並將結果匯入電腦輔助設計軟體 Autodesk Inventor,再繪製武士刀 A 配合呈現。然後於法庭上以此系列圖像,展現揮刀的方向與砍傷的時序。最後,兇手因過失殺人被判 9 年徒刑,並強制勒戒。[1]

以 Autodesk Inventor 繪製的武士刀 A 砍顱頂示意圖。圖/參考資料 1,Figure 9(CC BY 4.0)

參考資料

  1. Weber M, Banaschak S, Rothschild MA. (2021) ‘Sharp force trauma with two katana swords: identifying the murder weapon by comparing tool marks on the skull bone’. International Journal of Legal Medicine, 135, 313–322.
  2. What are the effects of alcohol?’. (02 AUG 2022) Department of Health and Aged Care, Australian Government.
  3. U.S. National Library of Medicine. (28 SEP 2022) ‘Blood Alcohol Level’. MedlinePlus.
  4. AccuTrans®’. AccuTrans. (Accessed on 07 AUG 2023)
-----廣告,請繼續往下閱讀-----
所有討論 2
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

0
0

文字

分享

0
0
0
仿生軟機器人!Soft robot
Scimage
・2012/01/30 ・392字 ・閱讀時間少於 1 分鐘 ・SR值 576 ・九年級

-----廣告,請繼續往下閱讀-----

雖然生物使用很多種方式運動,但是現在機器人的設計多半仿製有有骨骼支架的生物,使用關節、支架跟驅動器來達成運動。但是有一類的生物,像是軟體動物,是利用軟組織本身的變形來做運動,沒關節、沒骨骼,這類運動卻很少被應用在機器人身上,現在研究人員利用類似的想法做出了下面這個軟的爬行機器人:

主要的原理很簡單:先利用立體印表機設計出模子,模子的設計是裡面有一些不對襯的空隙,然後用矽膠去翻模,就可以做出可以充氣變形的機器人。裡面的空隙設計如下圖,在這樣的設計裡只要控制四隻腳不同的充氣壓力順序,就可以做到影片中那樣有規則性的運動方式。

這樣的軟機器人的設計成本不高,因為整體沒有關節根支架的分別,製造上也容易,或許在未來像是跟人體互動的接觸或是需要柔和方式的運動時可以派上用場!

學術文獻

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

1

6
0

文字

分享

1
6
0
鑑識故事系列:從下呼吸道取出的矽膠
胡中行_96
・2023/07/31 ・2335字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

這次來醫院的目的,是更換並固定新的侵入性呼吸器材,計劃相當簡單:事前禁食,全程無麻醉,不用住院,做完直接回家。不過,當天程序走到一半,13 歲的德國男孩就過世了。[1]

氣管造口術。圖1/U.S. National Heart Lung and Blood Institute (NIH) on Wikimedia Commons(Public Domain)

氣管造口術

男孩患有原因不明的嚴重先天性神經疾病。[1]大概是食物或液體動不動就落進下呼吸道,他時常感染吸入性肺炎(aspiration pneumonia),[1, 2]因此曾接受氣管造口術(tracheostomy;簡稱氣切)(圖 1):在脖子前方開一個永久性的孔洞,置入氣切管,並連接正壓呼吸器[1]這個氣管造口便於抽清下呼吸道,以維持暢通;[3]但是多年下來形狀走樣,開過數次刀,換了各種氣切管,都無法穩固裝置。不僅空氣外漏,氣切管的充氣氣囊(圖 2),也總是在呼吸器運作時滑出來。於是,男孩的醫師群決定執行氣管造口矯正術(tracheostomal epithesis),把氣切管跟氣管造口之間的縫隙封起來。[1]

氣切管:充氣氣囊(箭頭)及測風球(三角形)。圖2/參考資料1,Figure 1(CC BY 4.0)

氣管造口矯正術

氣管造口矯正術開始,兒童胸腔科醫師拿起新的氣切管,先測試充氣氣囊是否功能正常,再將氣切管從男童的氣管造口插入。以支氣管鏡確認其位置無誤後,拔除呼吸器。然後灌飽氣切管的充氣氣囊,以防止男童吸入異物;同時仍露在體外,用來顯示氣囊狀況的測風球,也相當飽滿。男孩平常能在無呼吸器的情況下,撐好幾個小時,所以及至此刻他的生命徵象依然穩定。[1]

混合槍。圖3/參考資料1,Figure 3(CC BY 4.0)

假體製作師把混合槍(圖3)的前端,伸入氣管造口,從新的氣切管旁,灌注橙色的矽膠印模材料,精確複製周邊組織的構造,好在稍後翻模塑形,填補氣切管跟氣管造口間的空隙。在進行此步驟時,假體製作師發覺矽膠用量異常地大。開始灌注的 60 秒後,男孩的血氧飽和濃度劇降,臉色發青。[1]

-----廣告,請繼續往下閱讀-----

所有動作立刻停止。原本在灌注完成後,要透過氣管鏡,檢查有無矽膠跑進氣管或支氣管。現在兒童胸腔科醫師,以及陸續加入搶救的兒童加護科、兒童腸胃科和耳鼻喉科醫師,只管拼命地把矽膠抽出來,還有進行人工呼吸。他們拔出氣切管,再插入一支新的,然後從支氣管鏡看到矽膠的堆積,遠超過計劃範圍。趕緊給男童上了麻醉劑,推去手術室。[1]

醫療團隊於喉頭鏡支氣管鏡的輔助下,繼續清除矽膠,並且幫他接上體外維生系統(ECMO;又稱葉克膜)。在經過數次努力後,終於從下呼吸道,取出一根 Y 字型的矽膠(圖4)。遺憾 2 小時的搶救下來,男孩仍然回天乏術。[1]

從男孩下呼吸道取出的矽膠。圖4/參考資料1,Figure 6(CC BY 4.0)

鑑識證據

隔天,法醫仔細檢驗這具 140 公分高,28 公斤重的屍體,與死亡相關的發現,包括:取出的矽膠,跟氣管下半部、主支氣管和肺節支氣管完全吻合照片);肺水腫(pulmonary oedema);急性肺氣腫(acute emphysema);以及肋膜下的瘀點(petechiae)等。另外,假體製作師拿的混合槍,容量為 50 毫升;而從男孩體內取出的矽膠(圖 4),約有 43 毫升。至於出事時用的那支氣切管,充氣氣囊與測風球的功能都正常。[1]

法醫確定男孩死於矽膠阻塞下呼吸道,所造成的窒息[1]但是,應該不能超過充氣氣囊頂端的矽膠,究竟是怎麼搞得到處有?

-----廣告,請繼續往下閱讀-----

可能的肇因

2022 年於期刊上發表此個案報告的作者,推測矽膠有可能在這些情況下,流出預定範圍:[1]

  1. 充氣氣囊沒灌飽。[1]
  2. 充氣氣囊移位。[1]
  3. 灌注矽膠的壓力,擠壓氣管壁,而產生流竄的通道。[1]
  4. 灌注矽膠的壓力,大過充氣氣囊防堵的阻力。[1]
  5. 以上假設的各種組合。[1]

責任歸屬

調查完畢後,檢察單位認為:[1]

  1. 此氣管造口矯正術是必要的醫療行為,而且事前有簽署同意書。[1]
  2. 2016 年事件發生時,當地沒有氣管造口矯正術的官方準則。直到隔年,德國聯邦假體製作師協會(Deutscher Bundesverband der Epithetiker)增修指南,才涵蓋氣切造口等開放性傷口的印模。[1]換句話說,當時缺乏判定作法是否正確的標準。
  3. 該假體製作師受過所有相關訓練,具專業認證,而且過去 15 年,執行逾百次氣管造口矯正術。[1]
  4. 基於個體差異,無法估計矽膠的正確用量。[1]
  5. 醫療團隊有即時發現問題,並馬上以適切的方式急救。[1]

綜合以上,檢方以嫌疑不足結案。報導此事件的論文作者,則提出了幾項建議:首先,在氣管造口矯正術的過程中,最好同步使用氣管支氣管鏡,別等事後才檢查有無異狀。如此便能在問題發生的當下,迅速停止動作。再來,充氣的時候,若有氣囊壓力計(圖 5),灌飽與否就不會僅是憑感覺。最後,專業指南必須詳述操作步驟、所需的人員和技術,以及安全須知。[1]

1 號為氣囊壓力計。圖 5/Kriege M, Alflen C, Eisel J, et al. (2017) ‘Evaluation of the optimal cuff volume and cuff pressure of the revised laryngeal tube “LTS-D” in surgical patients’. BMC Anesthesiology, 17, 19.(CC BY 4.0)

  

-----廣告,請繼續往下閱讀-----

參考資料

  1. Wittschieber D, Schulz R, Schmidt PF. (2022) ‘A safe procedure? The unusual case of a fatal airway obstruction by silicone during the production process of a tracheostomal epithesis in a 13-year-old boy’. International Journal of Legal Medicine, 136, 373–380.
  2. Vomiting’. (JUN 2021) Healthdirect Australia.
  3. Ueha R, Magdayao RB, Koyama M, et al. (2023) ‘Aspiration prevention surgeries: a review’. Respiratory Research, 24, 43.
-----廣告,請繼續往下閱讀-----
所有討論 1
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。