Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

1904 年諾貝爾物理獎:惰性氣體由我們一手包辦!—《物理雙月刊》

物理雙月刊_96
・2017/02/19 ・1294字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級

文/余海峯|馬克斯.普朗克地外物理研究所博士後研究員

在科學發展史上,不同學科的科學家合作研究往往能更有效地促進整體科學發展。

1904 年的諾貝爾獎就是證明:這一年的物理獎和化學獎分別頒發給兩位研究同一現象的科學家,他們是物理學家約翰.斯特拉特,第三代瑞利男爵(John William Strutt, 3rd Baron Rayleigh)和化學家威廉.拉姆齊爵士(Sir William Ramsay)。

strutt
John William Strutt, 3rd Baron Rayleigh。圖/nobelprize.org
ramsay
Sir William Ramsay。圖/nobelprize.org

在 19 世紀,人類已經知道世上存在眾多元素。不同元素的物理和化學特性互不相同,而其中有些元素的特性比較相似,化學家開始把元素分門別類。今天,我們都學過元素週期表,知道擁有相似特性的元素會歸入同一列,叫做族。週期表中最後一族的元素被叫做貴氣體或惰性氣體。故名思義,惰性氣體相對其他元素非常不活躍,因此直到 1894 年才被瑞利和拉姆齊共同發現。

不同的元素可以通過化學反應分離開來,或者以物理方法如冷凍或加壓後以變態(state change)的形式與其他物質分離。瑞利發現由這兩種方法分離出來的氮氣密度相差了 0.5%,而他的實驗精確度為 0.01%。這個相差明顯在誤差範圍之外,因此他嘗試以各種原因去解釋這個相差,不過全都失敗。

-----廣告,請繼續往下閱讀-----

1894 年,瑞利舉行了一個講座,座上就有化學家拉姆齊。拉姆齊聽完講座之後非常有興趣,上前與瑞利討論誤差的來源。他們回到各自實驗室之後就立即進行各項實驗,並互相保持聯絡,交換研究進度。

瑞利和拉姆齊最終達成共識,認為已經排除了除了一個可能性以外所有原因。他們發表結論,認為是一種未知的氣體元素造成測量到的氦氣密度相差。他們成功分離出這種未知的氣體並研究其物理和化學特性。這氣體就是氬,惰性氣體的一員。現在我們知道由於惰性氣體的電子結構比其他族的元素穩定,使它們較不常發生化學反應,因此在 19 世紀前一直未被發現。

發現氬之後,瑞利和拉姆齊繼續共同研究,發現了其他惰性氣體:瑞利發現了之前僅在太陽光譜中觀測到的氦(氦的英文 helium 意指太陽)和與羅伯特.懷特洛-格雷(Robert Whytlaw-Gray)共同發現具有放射性的氡,而拉姆齊則發現了氖、氪和氙。現在我們看看元素週期表,就會發現自然的惰性氣體就只有這六種,在族中由輕到重的排序就是氦、氖、氬、氪、氙、氡。換句話說,瑞利和拉姆齊包辦了所有自然惰性氣體的發現

%e6%b0%a3%e9%ab%94%e6%94%be%e9%9b%bb
氦、氖、氬、氪、氙氣體放電發出的光的顏色、其元素代號和其可見光譜。圖/wikimedia

題外話,想必有讀者留意到瑞利的名字了。沒錯,瑞利同時是解釋「天氣為何是藍色的?」的科學家,瑞利散射定律(Rayleigh’s law of scattering)就是他發現的。根據瑞利散射定律,光線波長越短則其被空氣散射的強度越強,因此波長較短的藍色光更容易被地球大氣散射,我們就看到藍色的天空了。

-----廣告,請繼續往下閱讀-----

38%e5%8d%b710%e6%9c%88%e8%99%9f%e5%b0%81%e9%9d%a2

 

本文摘自《物理雙月刊》38 卷 10 月號 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
文章難易度
物理雙月刊_96
54 篇文章 ・ 15 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
0

文字

分享

1
2
0
躺平沒關係,不工作才有用!平常看起來都在放空的「氬」——《原子有話要說》
azothbooks_96
・2023/05/23 ・951字 ・閱讀時間約 1 分鐘

不活潑的「氬」

氬和氦、氖一樣,不容易和其他物質產生化學反應,在元素之中,被稱為稀有氣體。老是發呆,似乎沒什麼優點。

可是,氬常被注入水銀燈、日光燈和燈泡內。氬可以提高日光燈燈光的穩定性,防止白熾燈的燈絲氧化。而且,因為和氖氣味相投,有時氬會摻入霓虹廣告看板內,負責發出藍色和綠色的霓虹燈光。

圖/原子有話要說!元素週期表

雖然氬身為稀有氣體之一,可是其實並沒有那麼罕見。氬在空氣中約占百分之零點九,以極為懸殊的差距僅次於氮和氧,是大氣中第三多的氣體。也因為氬可以用相對較便宜的價格取得,因此受到廣泛的運用。

發現氬的科學家們為氬取了一個不太值得驕傲的名字「不活潑的物質」,然而,其「不活潑」的特性正是它的功能所在。

-----廣告,請繼續往下閱讀-----
圖/原子有話要說!元素週期表

醫療雷射的用途

氬可以做為手術用的雷射刀,由於肉眼能看見光,所以十分方便好用,也可以透過光纖,甚至在水中使用也沒有問題,氬又有止血作用,深受醫療界重用。此外,牙科醫生有時也會用氬做牙齒美白。氬的特質是不需太高溫就能得到強光。在牙齒表面塗上藥劑再以雷射照射,牙齒馬上煥然一新。令人遺憾的是,牙齒美白的療程並沒有健保給付。

【常溫狀態】氣體  【原子量】39.948

【熔點】-189.35˚C 【 沸點】-185.85˚C

【密度】0.00017837 g/cm3

【發現】1894 年,英國化學家藍塞

【語源】希臘文 Argon,意思是不工作的。

——本文摘自《原子有話要說!元素週期表》,2023 年 4 月,漫遊者文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

0
1

文字

分享

0
0
1
1904 年諾貝爾物理獎:惰性氣體由我們一手包辦!—《物理雙月刊》
物理雙月刊_96
・2017/02/19 ・1294字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級

文/余海峯|馬克斯.普朗克地外物理研究所博士後研究員

在科學發展史上,不同學科的科學家合作研究往往能更有效地促進整體科學發展。

1904 年的諾貝爾獎就是證明:這一年的物理獎和化學獎分別頒發給兩位研究同一現象的科學家,他們是物理學家約翰.斯特拉特,第三代瑞利男爵(John William Strutt, 3rd Baron Rayleigh)和化學家威廉.拉姆齊爵士(Sir William Ramsay)。

strutt
John William Strutt, 3rd Baron Rayleigh。圖/nobelprize.org

ramsay
Sir William Ramsay。圖/nobelprize.org

-----廣告,請繼續往下閱讀-----

在 19 世紀,人類已經知道世上存在眾多元素。不同元素的物理和化學特性互不相同,而其中有些元素的特性比較相似,化學家開始把元素分門別類。今天,我們都學過元素週期表,知道擁有相似特性的元素會歸入同一列,叫做族。週期表中最後一族的元素被叫做貴氣體或惰性氣體。故名思義,惰性氣體相對其他元素非常不活躍,因此直到 1894 年才被瑞利和拉姆齊共同發現。

不同的元素可以通過化學反應分離開來,或者以物理方法如冷凍或加壓後以變態(state change)的形式與其他物質分離。瑞利發現由這兩種方法分離出來的氮氣密度相差了 0.5%,而他的實驗精確度為 0.01%。這個相差明顯在誤差範圍之外,因此他嘗試以各種原因去解釋這個相差,不過全都失敗。

1894 年,瑞利舉行了一個講座,座上就有化學家拉姆齊。拉姆齊聽完講座之後非常有興趣,上前與瑞利討論誤差的來源。他們回到各自實驗室之後就立即進行各項實驗,並互相保持聯絡,交換研究進度。

瑞利和拉姆齊最終達成共識,認為已經排除了除了一個可能性以外所有原因。他們發表結論,認為是一種未知的氣體元素造成測量到的氦氣密度相差。他們成功分離出這種未知的氣體並研究其物理和化學特性。這氣體就是氬,惰性氣體的一員。現在我們知道由於惰性氣體的電子結構比其他族的元素穩定,使它們較不常發生化學反應,因此在 19 世紀前一直未被發現。

-----廣告,請繼續往下閱讀-----

發現氬之後,瑞利和拉姆齊繼續共同研究,發現了其他惰性氣體:瑞利發現了之前僅在太陽光譜中觀測到的氦(氦的英文 helium 意指太陽)和與羅伯特.懷特洛-格雷(Robert Whytlaw-Gray)共同發現具有放射性的氡,而拉姆齊則發現了氖、氪和氙。現在我們看看元素週期表,就會發現自然的惰性氣體就只有這六種,在族中由輕到重的排序就是氦、氖、氬、氪、氙、氡。換句話說,瑞利和拉姆齊包辦了所有自然惰性氣體的發現

%e6%b0%a3%e9%ab%94%e6%94%be%e9%9b%bb
氦、氖、氬、氪、氙氣體放電發出的光的顏色、其元素代號和其可見光譜。圖/wikimedia

題外話,想必有讀者留意到瑞利的名字了。沒錯,瑞利同時是解釋「天氣為何是藍色的?」的科學家,瑞利散射定律(Rayleigh’s law of scattering)就是他發現的。根據瑞利散射定律,光線波長越短則其被空氣散射的強度越強,因此波長較短的藍色光更容易被地球大氣散射,我們就看到藍色的天空了。


38%e5%8d%b710%e6%9c%88%e8%99%9f%e5%b0%81%e9%9d%a2

 

本文摘自《物理雙月刊》38 卷 10 月號 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
物理雙月刊_96
54 篇文章 ・ 15 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

4
2

文字

分享

0
4
2
月娘你從哪裡來?月亮形成的新線索!關鍵就在隕石中?
linjunJR_96
・2022/09/07 ・2467字 ・閱讀時間約 5 分鐘

作為我們宇宙中的鄰居,以及夜空中最明亮的一盞燈,月亮自古以來便讓人類心生著迷。古人望向滿月的同時,想起了遠方的至親;天文學家望向滿月時,心中卻出現了另外一個問題:「月亮為什麼在那裡?」

月亮是從地球這邊「飛出去」的嗎? 圖/GIPHY

月球作為繞地球運轉的衛星,並不是和太陽系的其他行星一同形成。目前最受歡迎的月球起源說是所謂的「大碰撞」(The Giant Impact)。今年八月,在中秋節即將到臨之際,科學家在月球隕石中找到了來自地球內部的原生惰性氣體,為大碰撞事件的始末提供了全新的線索。

大碰撞起源:月球是從地球分出去的?

大碰撞學說認為月球是地球遭到撞擊的產物。

一顆與火星差不多大的天體和古代地球斜向碰撞,把地球撞得團團轉的同時,撞擊產生的巨大能量也將大量地殼與地函物質融化、蒸發、向外噴出。這些殘骸碎屑繞著地球高速旋轉,形成一個甜甜圈狀的雲狀區域。月亮便是由這團高溫物質互相吸引聚集而成。

大碰撞學說中,月亮形成的過程。圖/wikipedia

聽起來或許十分異想天開,但這個猜想可是經歷了許多實證考驗。

-----廣告,請繼續往下閱讀-----

首先,一個最簡單的觀察是:現今月球公轉的和地球自轉方向一致。這是擦撞過程中「甩」出去的殘骸形成月球會有的現象。據我們所知,月球的公轉方向和轉速自形成後,便沒有太大改變。大碰撞學說通過了第一關!

在化學成分方面,同位素比例提供了有力的證據。同位素比例是指某種元素的同位素(例如氧元素可以分為氧 16、氧 17、氧 18)在物質中各占多少比例。這些同位素形成穩定的化合物後便不會變動,因此成為科學家追本溯源的重要工具。

也因此在天體地質研究中,地層中的同位素比例是每顆星體獨一無二的指紋,太陽系中每顆星體都有相當不同的氧同位素比例。不過,科學家在二十世紀初期,檢驗了阿波羅十三號帶回的月球岩石樣本。其中,氧同位素比例竟然和地球一模一樣,強力暗示了月球物質和地球有著神聖不可分割的淵源。

除此之外,許多地質證據顯示月球在形成初期,表面是高溫的熔融態,符合大碰撞的說法。類似的撞擊事件也曾經在其他星系被觀測到。

-----廣告,請繼續往下閱讀-----
種種證據使大碰撞學說成為最受歡迎的月亮起源說。 圖/wikipedia

六個月球隕石,可能解開月球原生惰性氣體之謎

如今,月球物質是來自古代地球這件事已被廣為接受,但詳細的形成過程究竟是如何,仍持續隨著觀測證據的增加而不斷地修正討論。目前的一個疑點是揮發性物質的存在。

大碰撞時的高溫理應讓大部分的揮發性物質(例如水和二氧化碳)揮發殆盡,但在月球深處的原始岩層中找到的水樣本,和地球地函中的水有同樣的氫同位素指紋,表示這些水或許是「原生」的,在撞擊形成時便一直留存至今,而不是來自外部的隕石。

要研究揮發性物質的源頭,氦或氖這類的惰性氣體的同位素指紋,便是重要的追蹤工具,可惜我們一直未能在月球礦物中找到惰性氣體。由於月球大氣層十分稀薄,外來的小行星以及富含氫氦原子的太陽風持續轟炸月球表面。想對原生惰性氣體進行研究,還得先排除這些外來汙染的可能。

蘇黎世聯邦理工學院的 Patrizia Will 所帶領的研究團隊,以南極拾獲的六個月球隕石作為研究對象。這六顆隕石皆為玄武岩材質;也就是說,它們是由月球內部的岩漿快速凝結而成。形成後,它們受到更上層的岩層保護,免於宇宙射線和太陽風的高能輻射。這六塊岩石很可能是在某次大型隕石撞擊中,才從月球的岩漿流中被撞擊而出,並在漫長的旅途後抵達地球。

-----廣告,請繼續往下閱讀-----
光學顯微鏡下,含有原生惰性氣體的月球玄武岩隕石 LAP 02436。圖/ETH

要取得隕石的同位素指紋資訊,需要用到質譜儀。這份研究使用的質譜儀靈敏度極高。實驗室人員曾經為了防止外界振動干擾,將它懸掛在天花板上,並為它取名為「Tom Dooley」。Tom Dooley 是美國內戰時期民謠中因謀殺被判處絞刑的人物。

儘管取名的來由十分詭譎,但是這座 Tom Dooley 質譜儀威力十足。它是世界上唯一能夠測量如此微量惰性氣體的儀器,也曾負責分析地球上最古老的物質——高齡七十億年的默奇森隕石(Murchison meteorite)。

目前發現地球上最古老的物質,高齡七十億年的默奇森隕石(Murchison meteorite)。

研究團隊將隕石中的黑色玻璃微粒用 Tom Dooley 進行分析,嘗試找出當中各種同位素的比例。它們在玻璃微粒中發現了存量遠高於預期的氦和氖。從岩石的形成歷史以及同位素特徵中,他們排除了太陽風或小行星汙染的可能,而氖同位素的比例則和地球地函的深處不謀而合。

這些證據表示這些惰性氣體是直接來自地球的地函。這是首次在月球內部礦物中發現地球原生的惰性氣體,研究結果發表在 Science Advances 期刊中。

-----廣告,請繼續往下閱讀-----

這次的發現為大碰撞學說再添一筆證據。往後的研究將繼續挑戰較難測量的氪和氙元素,以及其他容易揮發的鹵素元素等等,藉此追蹤揮發性物質在月球形成的歷史中,究竟是如何存活下來。

美麗的月亮,神奇的月亮,還有許多問題待我們繼續發掘。 圖/GIPHY
  1. Will, P., Busemann, H., Riebe, M., & Maden, C. (2022). Indigenous noble gases in the Moon’s interior. Science advances8(32), eabl4920.
  2. One more clue to the Moon’s origin
-----廣告,請繼續往下閱讀-----
linjunJR_96
33 篇文章 ・ 917 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。