0

0
1

文字

分享

0
0
1

1904 年諾貝爾物理獎:惰性氣體由我們一手包辦!—《物理雙月刊》

物理雙月刊_96
・2017/02/19 ・1294字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

文/余海峯|馬克斯.普朗克地外物理研究所博士後研究員

在科學發展史上,不同學科的科學家合作研究往往能更有效地促進整體科學發展。

1904 年的諾貝爾獎就是證明:這一年的物理獎和化學獎分別頒發給兩位研究同一現象的科學家,他們是物理學家約翰.斯特拉特,第三代瑞利男爵(John William Strutt, 3rd Baron Rayleigh)和化學家威廉.拉姆齊爵士(Sir William Ramsay)。

strutt
John William Strutt, 3rd Baron Rayleigh。圖/nobelprize.org
ramsay
Sir William Ramsay。圖/nobelprize.org

在 19 世紀,人類已經知道世上存在眾多元素。不同元素的物理和化學特性互不相同,而其中有些元素的特性比較相似,化學家開始把元素分門別類。今天,我們都學過元素週期表,知道擁有相似特性的元素會歸入同一列,叫做族。週期表中最後一族的元素被叫做貴氣體或惰性氣體。故名思義,惰性氣體相對其他元素非常不活躍,因此直到 1894 年才被瑞利和拉姆齊共同發現。

不同的元素可以通過化學反應分離開來,或者以物理方法如冷凍或加壓後以變態(state change)的形式與其他物質分離。瑞利發現由這兩種方法分離出來的氮氣密度相差了 0.5%,而他的實驗精確度為 0.01%。這個相差明顯在誤差範圍之外,因此他嘗試以各種原因去解釋這個相差,不過全都失敗。

-----廣告,請繼續往下閱讀-----

1894 年,瑞利舉行了一個講座,座上就有化學家拉姆齊。拉姆齊聽完講座之後非常有興趣,上前與瑞利討論誤差的來源。他們回到各自實驗室之後就立即進行各項實驗,並互相保持聯絡,交換研究進度。

瑞利和拉姆齊最終達成共識,認為已經排除了除了一個可能性以外所有原因。他們發表結論,認為是一種未知的氣體元素造成測量到的氦氣密度相差。他們成功分離出這種未知的氣體並研究其物理和化學特性。這氣體就是氬,惰性氣體的一員。現在我們知道由於惰性氣體的電子結構比其他族的元素穩定,使它們較不常發生化學反應,因此在 19 世紀前一直未被發現。

發現氬之後,瑞利和拉姆齊繼續共同研究,發現了其他惰性氣體:瑞利發現了之前僅在太陽光譜中觀測到的氦(氦的英文 helium 意指太陽)和與羅伯特.懷特洛-格雷(Robert Whytlaw-Gray)共同發現具有放射性的氡,而拉姆齊則發現了氖、氪和氙。現在我們看看元素週期表,就會發現自然的惰性氣體就只有這六種,在族中由輕到重的排序就是氦、氖、氬、氪、氙、氡。換句話說,瑞利和拉姆齊包辦了所有自然惰性氣體的發現

%e6%b0%a3%e9%ab%94%e6%94%be%e9%9b%bb
氦、氖、氬、氪、氙氣體放電發出的光的顏色、其元素代號和其可見光譜。圖/wikimedia

題外話,想必有讀者留意到瑞利的名字了。沒錯,瑞利同時是解釋「天氣為何是藍色的?」的科學家,瑞利散射定律(Rayleigh’s law of scattering)就是他發現的。根據瑞利散射定律,光線波長越短則其被空氣散射的強度越強,因此波長較短的藍色光更容易被地球大氣散射,我們就看到藍色的天空了。

-----廣告,請繼續往下閱讀-----

38%e5%8d%b710%e6%9c%88%e8%99%9f%e5%b0%81%e9%9d%a2

 

本文摘自《物理雙月刊》38 卷 10 月號 ,更多文章請見物理雙月刊網站

文章難易度
物理雙月刊_96
54 篇文章 ・ 13 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

1

2
0

文字

分享

1
2
0
躺平沒關係,不工作才有用!平常看起來都在放空的「氬」——《原子有話要說》
azothbooks_96
・2023/05/23 ・951字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

不活潑的「氬」

氬和氦、氖一樣,不容易和其他物質產生化學反應,在元素之中,被稱為稀有氣體。老是發呆,似乎沒什麼優點。

可是,氬常被注入水銀燈、日光燈和燈泡內。氬可以提高日光燈燈光的穩定性,防止白熾燈的燈絲氧化。而且,因為和氖氣味相投,有時氬會摻入霓虹廣告看板內,負責發出藍色和綠色的霓虹燈光。

圖/原子有話要說!元素週期表

雖然氬身為稀有氣體之一,可是其實並沒有那麼罕見。氬在空氣中約占百分之零點九,以極為懸殊的差距僅次於氮和氧,是大氣中第三多的氣體。也因為氬可以用相對較便宜的價格取得,因此受到廣泛的運用。

發現氬的科學家們為氬取了一個不太值得驕傲的名字「不活潑的物質」,然而,其「不活潑」的特性正是它的功能所在。

-----廣告,請繼續往下閱讀-----
圖/原子有話要說!元素週期表

醫療雷射的用途

氬可以做為手術用的雷射刀,由於肉眼能看見光,所以十分方便好用,也可以透過光纖,甚至在水中使用也沒有問題,氬又有止血作用,深受醫療界重用。此外,牙科醫生有時也會用氬做牙齒美白。氬的特質是不需太高溫就能得到強光。在牙齒表面塗上藥劑再以雷射照射,牙齒馬上煥然一新。令人遺憾的是,牙齒美白的療程並沒有健保給付。

【常溫狀態】氣體  【原子量】39.948

【熔點】-189.35˚C 【 沸點】-185.85˚C

【密度】0.00017837 g/cm3

【發現】1894 年,英國化學家藍塞

【語源】希臘文 Argon,意思是不工作的。

——本文摘自《原子有話要說!元素週期表》,2023 年 4 月,漫遊者文化出版,未經同意請勿轉載。

所有討論 1
azothbooks_96
53 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

4
2

文字

分享

0
4
2
月娘你從哪裡來?月亮形成的新線索!關鍵就在隕石中?
linjunJR_96
・2022/09/07 ・2467字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

作為我們宇宙中的鄰居,以及夜空中最明亮的一盞燈,月亮自古以來便讓人類心生著迷。古人望向滿月的同時,想起了遠方的至親;天文學家望向滿月時,心中卻出現了另外一個問題:「月亮為什麼在那裡?」

月亮是從地球這邊「飛出去」的嗎? 圖/GIPHY

月球作為繞地球運轉的衛星,並不是和太陽系的其他行星一同形成。目前最受歡迎的月球起源說是所謂的「大碰撞」(The Giant Impact)。今年八月,在中秋節即將到臨之際,科學家在月球隕石中找到了來自地球內部的原生惰性氣體,為大碰撞事件的始末提供了全新的線索。

大碰撞起源:月球是從地球分出去的?

大碰撞學說認為月球是地球遭到撞擊的產物。

一顆與火星差不多大的天體和古代地球斜向碰撞,把地球撞得團團轉的同時,撞擊產生的巨大能量也將大量地殼與地函物質融化、蒸發、向外噴出。這些殘骸碎屑繞著地球高速旋轉,形成一個甜甜圈狀的雲狀區域。月亮便是由這團高溫物質互相吸引聚集而成。

大碰撞學說中,月亮形成的過程。圖/wikipedia

聽起來或許十分異想天開,但這個猜想可是經歷了許多實證考驗。

-----廣告,請繼續往下閱讀-----

首先,一個最簡單的觀察是:現今月球公轉的和地球自轉方向一致。這是擦撞過程中「甩」出去的殘骸形成月球會有的現象。據我們所知,月球的公轉方向和轉速自形成後,便沒有太大改變。大碰撞學說通過了第一關!

在化學成分方面,同位素比例提供了有力的證據。同位素比例是指某種元素的同位素(例如氧元素可以分為氧 16、氧 17、氧 18)在物質中各占多少比例。這些同位素形成穩定的化合物後便不會變動,因此成為科學家追本溯源的重要工具。

也因此在天體地質研究中,地層中的同位素比例是每顆星體獨一無二的指紋,太陽系中每顆星體都有相當不同的氧同位素比例。不過,科學家在二十世紀初期,檢驗了阿波羅十三號帶回的月球岩石樣本。其中,氧同位素比例竟然和地球一模一樣,強力暗示了月球物質和地球有著神聖不可分割的淵源。

除此之外,許多地質證據顯示月球在形成初期,表面是高溫的熔融態,符合大碰撞的說法。類似的撞擊事件也曾經在其他星系被觀測到。

-----廣告,請繼續往下閱讀-----
種種證據使大碰撞學說成為最受歡迎的月亮起源說。 圖/wikipedia

六個月球隕石,可能解開月球原生惰性氣體之謎

如今,月球物質是來自古代地球這件事已被廣為接受,但詳細的形成過程究竟是如何,仍持續隨著觀測證據的增加而不斷地修正討論。目前的一個疑點是揮發性物質的存在。

大碰撞時的高溫理應讓大部分的揮發性物質(例如水和二氧化碳)揮發殆盡,但在月球深處的原始岩層中找到的水樣本,和地球地函中的水有同樣的氫同位素指紋,表示這些水或許是「原生」的,在撞擊形成時便一直留存至今,而不是來自外部的隕石。

要研究揮發性物質的源頭,氦或氖這類的惰性氣體的同位素指紋,便是重要的追蹤工具,可惜我們一直未能在月球礦物中找到惰性氣體。由於月球大氣層十分稀薄,外來的小行星以及富含氫氦原子的太陽風持續轟炸月球表面。想對原生惰性氣體進行研究,還得先排除這些外來汙染的可能。

蘇黎世聯邦理工學院的 Patrizia Will 所帶領的研究團隊,以南極拾獲的六個月球隕石作為研究對象。這六顆隕石皆為玄武岩材質;也就是說,它們是由月球內部的岩漿快速凝結而成。形成後,它們受到更上層的岩層保護,免於宇宙射線和太陽風的高能輻射。這六塊岩石很可能是在某次大型隕石撞擊中,才從月球的岩漿流中被撞擊而出,並在漫長的旅途後抵達地球。

-----廣告,請繼續往下閱讀-----
光學顯微鏡下,含有原生惰性氣體的月球玄武岩隕石 LAP 02436。圖/ETH

要取得隕石的同位素指紋資訊,需要用到質譜儀。這份研究使用的質譜儀靈敏度極高。實驗室人員曾經為了防止外界振動干擾,將它懸掛在天花板上,並為它取名為「Tom Dooley」。Tom Dooley 是美國內戰時期民謠中因謀殺被判處絞刑的人物。

儘管取名的來由十分詭譎,但是這座 Tom Dooley 質譜儀威力十足。它是世界上唯一能夠測量如此微量惰性氣體的儀器,也曾負責分析地球上最古老的物質——高齡七十億年的默奇森隕石(Murchison meteorite)。

目前發現地球上最古老的物質,高齡七十億年的默奇森隕石(Murchison meteorite)。

研究團隊將隕石中的黑色玻璃微粒用 Tom Dooley 進行分析,嘗試找出當中各種同位素的比例。它們在玻璃微粒中發現了存量遠高於預期的氦和氖。從岩石的形成歷史以及同位素特徵中,他們排除了太陽風或小行星汙染的可能,而氖同位素的比例則和地球地函的深處不謀而合。

這些證據表示這些惰性氣體是直接來自地球的地函。這是首次在月球內部礦物中發現地球原生的惰性氣體,研究結果發表在 Science Advances 期刊中。

-----廣告,請繼續往下閱讀-----

這次的發現為大碰撞學說再添一筆證據。往後的研究將繼續挑戰較難測量的氪和氙元素,以及其他容易揮發的鹵素元素等等,藉此追蹤揮發性物質在月球形成的歷史中,究竟是如何存活下來。

美麗的月亮,神奇的月亮,還有許多問題待我們繼續發掘。 圖/GIPHY

參考資料

  1. Will, P., Busemann, H., Riebe, M., & Maden, C. (2022). Indigenous noble gases in the Moon’s interior. Science advances8(32), eabl4920.
  2. One more clue to the Moon’s origin
linjunJR_96
33 篇文章 ・ 844 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

2
0

文字

分享

0
2
0
天空為什麼是藍色的?瑞利誕辰|科學史上的今天:11/12
張瑞棋_96
・2015/11/12 ・847字 ・閱讀時間約 1 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

天空為什麼是藍色的?(陽光明明是白光啊!)

圖片來源:Alvesgaspar@wikimedia

這個看似沒那麼困難的問題,竟然難倒了很多物理大師,包括達文西、牛頓、克勞修斯、赫歇爾等人。他們都曾對此自然現象提出解釋,有的說是空氣中的塵埃反射陽光所造成,有人則認為是陽光經過水氣形成的干涉。然而越是乾淨的大氣或越是乾爽的天氣,天空看起來越藍,可見與塵埃與水氣無關。結果這個問題一直到十九世紀末才由英國物理學家瑞利男爵解決。

原來當入射光的波長比碰到的微粒還要大很多時,就會產生散射。瑞利發現散射強度與波長的四次方成反比(稱為「瑞利散射」),也就是說波長越短,越容易散射。空氣分子本身非常小,對可見光都會產生散射,但可見光中的藍紫光波長最短,所以會有更多的藍紫光不斷在大氣中散射,其散射比率高達紅光的五倍。而我們視網膜的感光細胞對藍光比對紫光更加敏感,所以天空看起來才是藍色的。

-----廣告,請繼續往下閱讀-----

清晨或黃昏時,陽光在大氣中得經過更長的路徑才到達我們眼睛,有更多藍光在中途被散射了,所以朝日與夕陽看起來都是橙紅色的。彩霞就是雲反射陽光,所以也是橙紅色。天空不再是白天的藍色,是因為光線變弱了,而呈暗黑色。

除了「瑞利散射」,瑞利還解釋了我們如何判別聲音的方位。原來左右兩只耳朵接收到的音波相位與振幅大小並不完全相同,我們大腦就是根據兩者的差異判斷聲音的來源。

1900年,瑞利根據統計力學提出一個黑體輻射的公式,描述輻射能量與頻率之間的關係。這個公式只有部分與實際吻合,但因為沒有更好的理論,因而促使普朗克提出量子的概念,主張能量有基本單位,因而開啟了量子力學。

瑞利與拉姆西(William Ramsay)於1904年共同獲頒諾貝爾物理獎,不過獲獎原因與上述貢獻都沒關係,而是表揚他們在1894年發現新的氣體元素──氬。

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

張瑞棋_96
423 篇文章 ・ 951 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
1

文字

分享

0
0
1
1904 年諾貝爾物理獎:惰性氣體由我們一手包辦!—《物理雙月刊》
物理雙月刊_96
・2017/02/19 ・1294字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

文/余海峯|馬克斯.普朗克地外物理研究所博士後研究員

在科學發展史上,不同學科的科學家合作研究往往能更有效地促進整體科學發展。

1904 年的諾貝爾獎就是證明:這一年的物理獎和化學獎分別頒發給兩位研究同一現象的科學家,他們是物理學家約翰.斯特拉特,第三代瑞利男爵(John William Strutt, 3rd Baron Rayleigh)和化學家威廉.拉姆齊爵士(Sir William Ramsay)。

strutt
John William Strutt, 3rd Baron Rayleigh。圖/nobelprize.org

ramsay
Sir William Ramsay。圖/nobelprize.org

-----廣告,請繼續往下閱讀-----

在 19 世紀,人類已經知道世上存在眾多元素。不同元素的物理和化學特性互不相同,而其中有些元素的特性比較相似,化學家開始把元素分門別類。今天,我們都學過元素週期表,知道擁有相似特性的元素會歸入同一列,叫做族。週期表中最後一族的元素被叫做貴氣體或惰性氣體。故名思義,惰性氣體相對其他元素非常不活躍,因此直到 1894 年才被瑞利和拉姆齊共同發現。

不同的元素可以通過化學反應分離開來,或者以物理方法如冷凍或加壓後以變態(state change)的形式與其他物質分離。瑞利發現由這兩種方法分離出來的氮氣密度相差了 0.5%,而他的實驗精確度為 0.01%。這個相差明顯在誤差範圍之外,因此他嘗試以各種原因去解釋這個相差,不過全都失敗。

1894 年,瑞利舉行了一個講座,座上就有化學家拉姆齊。拉姆齊聽完講座之後非常有興趣,上前與瑞利討論誤差的來源。他們回到各自實驗室之後就立即進行各項實驗,並互相保持聯絡,交換研究進度。

瑞利和拉姆齊最終達成共識,認為已經排除了除了一個可能性以外所有原因。他們發表結論,認為是一種未知的氣體元素造成測量到的氦氣密度相差。他們成功分離出這種未知的氣體並研究其物理和化學特性。這氣體就是氬,惰性氣體的一員。現在我們知道由於惰性氣體的電子結構比其他族的元素穩定,使它們較不常發生化學反應,因此在 19 世紀前一直未被發現。

-----廣告,請繼續往下閱讀-----

發現氬之後,瑞利和拉姆齊繼續共同研究,發現了其他惰性氣體:瑞利發現了之前僅在太陽光譜中觀測到的氦(氦的英文 helium 意指太陽)和與羅伯特.懷特洛-格雷(Robert Whytlaw-Gray)共同發現具有放射性的氡,而拉姆齊則發現了氖、氪和氙。現在我們看看元素週期表,就會發現自然的惰性氣體就只有這六種,在族中由輕到重的排序就是氦、氖、氬、氪、氙、氡。換句話說,瑞利和拉姆齊包辦了所有自然惰性氣體的發現

%e6%b0%a3%e9%ab%94%e6%94%be%e9%9b%bb
氦、氖、氬、氪、氙氣體放電發出的光的顏色、其元素代號和其可見光譜。圖/wikimedia

題外話,想必有讀者留意到瑞利的名字了。沒錯,瑞利同時是解釋「天氣為何是藍色的?」的科學家,瑞利散射定律(Rayleigh’s law of scattering)就是他發現的。根據瑞利散射定律,光線波長越短則其被空氣散射的強度越強,因此波長較短的藍色光更容易被地球大氣散射,我們就看到藍色的天空了。


38%e5%8d%b710%e6%9c%88%e8%99%9f%e5%b0%81%e9%9d%a2

 

本文摘自《物理雙月刊》38 卷 10 月號 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
文章難易度
物理雙月刊_96
54 篇文章 ・ 13 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。