0

0
0

文字

分享

0
0
0

好球?壞球?打者判斷好壞球的大腦歷程──WBC經典賽系列文(1)

貓心
・2017/03/05 ・3397字 ・閱讀時間約 7 分鐘 ・SR值 553 ・八年級

除了直球與變化球的判斷之外,好壞球的判斷也是一個成功的打者必須具備的條件之一。然而,一個成功的打者到底為什麼能夠成功呢?他在打擊時會注意到投手的哪些細節?他的大腦又如何判斷好壞球呢?這一篇文章要來聊聊,打擊者如何判斷一顆直球是否會進到好球帶。

觀察投手的小訣竅

一個職業的棒球選手,在決定是否應該出棒時,只有短短的0.1秒。因此,能否爭取到更多的時間,判斷投手的球是否會進入好球帶,便是一個打者能否成功擊球的關鍵之一。過去的實驗發現,一個pro級的棒球運動員和一個棒球門外漢,在觀察投手投球動作時,有截然不同的差異。當投手做出預備投球(set)的姿勢之後,一直到投手抬起自由腳、跨步、自由腳落地的這一段時間,無論是專家或是從來沒有打過棒球的人,他們的視線都會落在投手的臉和頭上[1];然而,當投手舉起投球手,一直到球出手的這一段時間,身為一個專業的打者,會將視線專注在預期的出手點(release point)[1][2],以及投手的手肘上[3],然而,不專業的打者則會到處亂看[2],或是把視線停留在投手的投和臉上[1][2]。

1
如果你是一名專業的打者,那麼你的視線會在投手出手時,固定在投手的手肘和出手點上;如果你是一個不曾受過專業棒球訓練的小迷弟/迷妹,則會因為投手太帥而一直看著他的臉。圖引自TAKEUCHI & INOMATA(2009)

而專業運動員與非專業運動員,觀察投手投球時這零點幾秒的差異,則可能會反映在好壞球的判斷,以及出棒的時機點之上。過去的研究發現,專業的棒球打者比沒有受過棒球訓練的人,更能夠快速而正確地判斷出該球是否為好球,並快速地對好球做出攻擊[1][4][5]。事實上,專業的棒球運動員決定是否出棒所花的時間,不僅比非專業的棒球運動員來得快,甚至也比網球選手來得越快,而且一個技巧越好的棒球員,他所花費的判斷時間就越少[6]。

_mg_8572
當投手預備出手時,專業的打者會把視線落在投手的手肘,以及預備出手的位置。 圖/作者攝影

打者判斷好壞球時的大腦變化

看完了一個專業打者如何判斷好壞球之後,接著,我就要帶大家來剖開打者的大腦搂(誤)。過去關於打者判斷好壞球的研究,並不像判斷直球或變化球的研究一般納入腦波儀(EEG)的研究,僅有功能性磁振造影(fMRI)的研究而已,因此很難判斷打者在判斷好壞球時,動用的腦區誰先誰後。然而,過去腦科學提供的研究成果,還是足以讓我們來推敲,打擊者在判斷好壞球時,大腦經歷了哪一些變化。

就如同打者在判斷球種是直球或變化球時一般,打者在判斷好壞球時,也會動用到顳葉中區(middle temporal ,MT),因為這一個腦區有助於察覺運動中的物體[7]。除此之外,打者在判斷好壞球時,還會運用到輔助眼區(Supplementary eye field,SEF)、額葉眼區(frontal eye field,FEF)、上部頂小葉(superior parietal lobule,SPL),以及右腦的腹外側前額葉(ventrolateral prefrontal cortex,VLPFC)[8],以下,我將為大家一一介紹,這些腦區在好壞球判斷時,可能扮演著哪些功能。

輔助眼區與額葉眼區──打者追蹤球路軌跡的兩大腦區

首先先來介紹和眼動有關的兩大腦區:輔助眼區(SEF)和額葉眼區(FEF)。輔助眼區主要是在掃視目標[9][10]及追蹤物體[11][12][13]時會動用到的腦區,除了這些功能之外,過去以猴子作為研究樣本的單一神經記錄( single neurons recording)實驗也發現,猴子在進行好壞球判斷時,會動用到輔助眼區的兩組神經,其中一組被實驗者稱之為好球神經(strike neurons)──這些神經只在猴子判定實驗刺激會通過實驗螢幕上設定的好球帶時,這一組神經才會反應,若猴子認定該刺激不會通過好球帶,則這組神經則不會反應;另一組神經則是線索神經(cue neurons)──這些神經在猴子尚未判定一個刺激是否會通過好球帶,還在做決定時會產生反應,也就是說,這些神經可能有助於打者判定一顆球會不會通過好球帶。

_mg_8548
圖/作者攝影

除此之外,實驗者也發現,當線索神經出現反應後258毫秒,若該球被猴子判定為好球,則好球神經會產生反應,接著再過62.5毫秒之後,猴子的眼睛會開始追蹤那一顆球的軌跡[14]。若這個實驗能夠成功套用到人類在打擊的實戰情形,則它的反應歷程應該會如此:投手投出球→輔助眼區的線索神經蒐集資訊,判定該球的軌跡是否會通過好球帶,若會,則啟動好球神經,觸發眼球追蹤球路準備攻擊;反之則不會啟動好球神經,也不會做出攻擊的準備。

除了輔助眼區之外,額葉眼區也參與了判斷好壞球的認知歷程[8],在刺激出現之前的預備狀態(preparatory set),額葉眼區就會開始產生反應[15],除此之外,額葉眼區也具有抑制眼動反應的功能,在這個fMRI的實驗之中,實驗者要求受試者在判斷「該刺激不會通過螢幕上的好球帶」時,受試者要將視線放在螢幕正中央的注視點上。實驗結果發現,當受試者判斷該刺激為壞球時,比判斷該刺激為好球時,會造成額葉眼區出現更大的活化量[8],這可能和這個腦區涉及到抑制眼動有關[16]。

motor_cortex_monkey
輔助眼區(Supplementary eye field,SEF)與額葉眼區(frontal eye field,FEF)圖/維基百科

接著介紹大腦計算、判斷球路軌跡是否會通過好球帶的兩大認知腦區:上部頂小葉與右腦的腹外側前額葉。上部頂小葉和推算球路軌跡有關,當打者在判斷投手出手的球會不會進入好球帶時,很可能就是運用到這一個腦區來進行計算。上部頂小葉屬於後側頂葉(posterior parietal cortex)的一部分,而後側頂葉則涉及到了空間圖像(spatialimagery)的判讀[17][18]、空間注意力(spatial attention)[19],以及追蹤動態物體軌跡的注意力(attentional tracking of motion trajectories)[20]。

gray726_superior_parietal_lobule
上部頂小葉屬於後側頂葉的一部分。 圖/維基百科

至於右腦的腹外側前額葉,則和抑制計畫好的行動有關[21]。當一個打者忍不住追打一顆壞球時,可能就是投手的球路成功騙過了打擊者,使得這個腦區未能成功抑制打者揮棒的衝動,因而遭到三振出局。除此之外,這個腦區也和規則處理有關──因為打者並不是每一顆球來都要揮棒,而是要挑選進入好球帶的球進行攻擊(至少在這個實驗中的規定情境下是如此),因此,這個實驗涉及到了一套既定規則,和右腦腹外側前額葉的規則處理有關(rule processing)[22],可能是這個原因,才讓這個腦區出現了顯著的活化。

%e6%9c%aa%e5%91%bd%e5%90%8d
圖:Neuropsychopharmacology (2010)

儘管這些關於打者判斷好壞球以及判斷直球與變化球的實驗,提供了我們一些打者在打擊時可能的大腦變化歷程,然而這些大多都只是實驗室中的模擬研究而已,真正的打擊者在打擊時,除了專注投手的球之外,還要抑制觀眾的吵雜聲、處理內心對於比賽勝負的壓力,甚至得執行打帶跑、觸擊等戰術,打擊時的大腦歷程或許會更為複雜。不過這些研究也為棒球科學提供了一些更新一步的見解,或許未來有助於教練們透過模擬實境等方式訓練打擊者的大腦,讓科學得以結合實際的棒球訓練,使得比賽變得更加複雜而精采。

如果你喜歡我的文章,歡迎點圖追蹤粉專 Psydetective-貓心

延伸閱讀:

  1. T. Takeuchi &  K. Inomata (2009).VISUAL SEARCH STRATEGIES AND DECISION MAKING IN BASEBALL BATTING.Perceptual and Motor Skills, 2009, 108, 971-980.
  2. Shank, M., & Haywood, K. (1987) Eye movements while viewing a baseball pitch. Perceptual and Motor Skills, 64, 1191-1197.
  3. Kato, T., & Fukuda, T. (2002) Visual search strategies of baseball batters: eye movements during the preparatory phase of batting. Perceptual and Motor Skills, 94, 380386.
  4. Paull, G., & Glencross, D. (1997) Expert perception and decision making in baseball. International Journal of Sport Psychology, 28, 35-56.
  5. Nakamoto, H., & Mori, S. (2008) Sport-specific decision making in a go/nogo reaction task: differences among nonathletes and baseball and basketball players. Perceptual and Motor Skills, 106, 163-170.
  6. Kida, N., Oda, S., & Matsumura, M. (2005) Intensive baseball practice improves the Go/Nogo reaction time, but not the simple reaction time. Cognitive Brain Research, 22, 257-264.
  7. Marchand, W.R., et al., Putamen coactivation during motor task execution. Neuroreport, 2008. 19(9): p. 957-60.
  8. S.J.Heinen, J.Rowland,B.Lee & A.R.Wade(2006)An Oculomotor Decision Process Revealed by Functional Magnetic Resonance Imaging. The Journal of Neuroscience,26(52),13515–13522.
  9. Schall JD. Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of Rhesus monkeys. J Neurophysiol 66: 530–558, 1991.
  10. Schlag J and Schlag-Rey M. Evidence for a supplementary eye field. J Neurophysiol 57: 179–200, 1987.
  11. HeinenSJ.Single-neuron activity in dorsomedial frontal cortex during smooth pursuit eye movements. Exp Brain Res 104: 357–361, 1995.
  12. Heinen SJ and Liu M. Single-neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements to predictable target motion. Vis Neurosci 14: 853–865, 1997.
  13. Petit L and Haxby JV. Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 81: 463–471, 1999.
  14. Kim YG, Badler JB, Heinen SJ (2005) Trajectory interpretation by supplementary eye field neurons during ocular baseball. J Neurophysiol 94:1385–1391.
  15. ConnollyJD,GoodaleMA,GoltzHC,MunozDP (2005) fMRIactivationin the human frontal eye field is correlated with saccadic reaction time. J Neurophysiol 94:605–611.
  16. Hanes DP, Patterson II WF, Schall JD (1998) Role of frontal eye fields in countermandingsaccades:visual,movement,andfixationactivity.JNeurophysiol 79:817–834.
  17. FormisanoE,LindenDE,DiSalleF,TrojanoL,EspositoF,SackAT,GrossiD, Zanella FE, Goebel R (2002) Tracking the mind’s image in the brain I: time-resolved fMRI during visuospatial mental imagery. Neuron 35:185–194.
  18. Gauthier I, Hayward WG, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (2002) BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron 34:161–171.
  19. SchluppeckD,GlimcherP,HeegerDJ (2005) Topographicorganizationfor delayed saccades in human posterior parietal cortex. J Neurophysiol 94:1372–1384.
  20. Culham JC, Brandt SA, Cavanagh P, Kanwisher NG, Dale AM, Tootell RB (1998) Cortical fMRI activation produced by attentive tracking of moving targets. J Neurophysiol 80:2657–2670.
  21. Aron AR,Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116.
  22. Bunge SA (2004) How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn Affect Behav Neurosci 4:564–579.
文章難易度
貓心
75 篇文章 ・ 95 位粉絲
心理作家。台大心理系學士、國北教心理與諮商所碩士。 寫作主題為「安全感」,藉由依附理論的實際應用,讓缺乏安全感的人,了解安全感構成的要素,進而找到具有安全感的對象,並學習建立具有安全感的對話。 對於安全感,許多人有一個想法:「安全感是自己給自己的。」但在實際上,安全感其實是透過成長過程中,從照顧者對自己敏感而支持的回應,逐漸內化而來的。 因此我認為,獲得安全感的兩個關鍵在於:找到相對而言具有安全感的伴侶,並透過能夠創造安全感的說話方式與對方互動,建立起一段具有安全感的關係。 個人專欄粉專: https://www.facebook.com/psydetective/ 個人攝影粉專: https://www.facebook.com/psyphotographer/

2

4
3

文字

分享

2
4
3
【從中國經典認識大腦系列】從「莊周夢蝶」討論真實與幻覺
YTC_96
・2023/03/24 ・3863字 ・閱讀時間約 8 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
夢蝶,選自明代陸治《幽居樂事圖》冊。 圖/Wikipedia

有一天,莊周夢見自己變成蝴蝶,能翩翩飛舞感受非常的真實,甚至都忘了自己其實是莊周。但夢醒後才發現原來自己還是莊周,不是蝴蝶。由於夢境太過真實,他一時間相當迷惘,搞不清楚自己到底是做夢變成莊周的蝴蝶,還是夢見變成蝴蝶的莊周。

莊周和蝴蝶、現實與虛假,一定是有區別的,但卻在夢境以及現實間混而為一,這也是萬物的交融以及轉化。莊子在《齊物論》透過故事的形式,想要告訴我們萬物皆可同化,達至齊一的境界,人生變幻無常。

既然如此,那所謂的真實和虛幻又有什麼不同呢?這篇文章我會從哲學、心理學、以及神經科學的層面來討論。

主觀感受是大腦對真實世界產生的模擬實境

從生物學來看,我們的感覺以及感知是透過大腦的神經活動對應外界環境所產生表徵[1][2]。因此,美國哲學家、數學家與電腦科學家希拉里.普特南(Hilary Whitehall Putnam)就在《理性、真理和歷史》(Reason, Truth, and History)書中提出一個思想實驗,稱作缸中之腦(Brain in a vat),又或是桶中之腦(brain in a jar)。

假設我們存在一種技術,能將大腦從人體取出,放置在充滿培養液的桶子內維持其生理活性,並能透過超級電腦將真實大腦接收的電訊號完全複製並連結到缸中之腦。超級電腦會提供一個模擬的真實環境(譬如走路),讓缸中之腦能以為自己還控制著身體的主人並在真實的世界活著(圖一)[3]

圖一,認為自己正在走路的缸中之腦示意圖。圖/ Wikipedia

此思想實驗常常用來作為哲學懷疑論(philosophical skepticism)和唯我論(Solipsism, 一種認為只有自我是唯一真實存在的哲學理論)的論證(argument)。因為從大腦的角度,不論我們是在真實世界走路,抑或是在缸中接收走路的電訊號,我們都認為自己正在走路,大腦無法知道自己是顱中之腦還是缸中之腦,也因此我們無法得知何謂真實與虛假。

有趣的是,透過現今的神經科學技術,科學家們也能在小鼠腦中的海馬迴(hippocampus)上,透過刺激記憶痕跡(memory engram)來製造真實世界並未學習過的虛假記憶[4]

身體的「歸屬感」是一種大腦產生的假象

上述的思想實驗又或是動物實驗都存在一個很大的盲點,那就是並沒有真正的人(又或是各位讀者)能證明自己主觀的感受是被大腦牽著鼻子走。思想實驗是存在於假想的情境,科學上並未提供驗證。即便動物實驗測量了的動物行為表現,我們仍舊無法得知動物真正的主觀感受和行為是否一致。

我們常認為自己感受的一切理所當然存在,就如同我們能感受自己的四肢的存在,並隨意的指揮身體的移動,從沒思考過其存在的真實性。

1998 年,美國賓州的心理學家馬修.伯敏尼(Matthew Botvinick) 和強納森・考亨(Jonathan Cohen)就在《Nature》期刊發表了一個簡短的通訊,透過了一個經典的橡膠手錯覺(rubber hand illusion)實驗[5],讓我們知道原來我們身體的感知,其實也是大腦塑造的一種假象。

兩位男子試做橡膠手錯覺實驗。

此研究獲得極大迴響,也影響後續許多哲學理論、心理學、神經科學、以及醫學工程的發展,至今(1998-2022)甚至引用次數已將近五千次。

橡膠手錯覺實驗的操作非常容易,只需要準備一隻假手,一塊不透明的隔板,以及兩支毛筆刷。接著,將假手放在面前的桌子,並透過隔板將自己的手藏在隔板旁不讓自己看到,然後讓另一位夥伴用毛筆刷同時你的真手以及假手,過程中我們必須一直盯著假手。

過了一陣子後,實驗者會開始有假手才是自己真的手的錯覺,甚至當對方用鎚子敲打假手時,我們會有疼痛感。也有研究指出透過橡膠手錯覺,能用來調控痛覺達到止痛效果[6]

橡膠手錯覺的進一步應用甚至能讓實驗者產生自己有三隻手的錯覺[7],此現象稱作畢博布羅克斯錯覺(The Beeblebrox illusion),命名概念取自銀河漫遊指南一位擁有三隻手的角色柴法德.畢博布羅克斯(Zaphod Beeblebrox)[8]

橡膠手錯覺所帶來的身體轉移錯覺現象(body transfer illusion)說明了我們感受到的肉身其實只是大腦產生的一種假象,我們甚至能將自己的身體一部分移轉到虛擬的影像[9]上,讓自己出現類似靈魂出竅、遊離出身體的現象[10],又或是和別人身體交換的感覺[11]。這個現象也說明了在適當的實驗操作下,我們想要體驗莊周夢蝶是極有可能辦到的。

我們對身體的感知也是大腦創造的假象的話,你的手有可能不是你的手…? 圖/GIPHY

大腦內的幽靈——幻覺

為了驗證人們所謂的真實,必須要能針對相同事物與環境進行描述,且大多數的人能給出相似的答案。同時能用超過一種感官驗證該事物的存在。

舉例來說,要確認我面前的是一顆真正的蘋果,除了我眼睛看到外,我甚至能聞到其香味,又或是拿起來吃下肚,而且不只是我,路上隨便的一個人也能和我一樣對該蘋果進行類似的描述。但若是我說眼前的是一顆真的蘋果,但卻發現伸手拿也拿不到,且周圍朋友也說根本沒看到任何蘋果,這就代表著很有可能我出現幻覺(hallucination)。

「嘿!我看到了一顆蘋果,你有看到嗎?」 圖/GIPHY

這邊的幻覺指的是擁有非外界刺激產生的感知,包含聽到、看到、又或是感受到實際並不存在的東西。產生幻覺的人雖然自認該感覺是真實的,但從旁人來看,我們能清楚知道那是虛假不存在的,也因此研究幻覺的大腦神經機制將有助於幫助我們了解那種說不出的「真實感」,到底是如何在大腦被建構出來。

在南北戰爭結束後,美國醫師塞拉斯.威爾.米切爾(Silas Weir Mitchell)在 1866 年的七月《亞特蘭大月刊》(Atlantic Monthly)刊登了一篇喬治‧迪德羅(George Dedlow)北軍中尉被截肢切掉雙腳卻感受到其仍存在的故事[12],並開始用感覺幽靈(sensory ghosts)以及幻影(phantoms)來定義之。

在今日我們稱此幻覺為「幻肢」,是人類失去身體部位後所產生的一種幻覺,會使人感覺失去的部份依舊附著在軀幹上,並與身體一起移動。統計上發現超過八成的截肢患者都會出現幻肢的現象。幻肢產生的神經機制目前還尚未完全清楚,但普遍認為是和截肢後大腦皮質的重組(cortical reorganization)有關[13]

幻覺的出現也與精神疾病、神經退化性疾病或是物質濫用有關。

思覺失調症(schizophrenia)的病人有大約八成曾經出現過幻覺,尤其是幻聽[14]。巴金森氏症(Parkinson’s disease)的病人大約七成五左右也會出現幻覺,尤其是幻視[15]

以神經科學的角度來說,幻覺的發生有很多種原因。 圖/GIPHY

迷幻劑(hallucinogens)、K 他命(ketamine)、致譫妄藥(deliriants),具有阻斷大腦神經傳導物質乙醯膽鹼(acetylcholine, ACh))的物質的抗膽鹼劑(anticholinergic agents)[16],甚至過量攝取咖啡因(caffeine)[17]的報導與幻覺出現有關。

由於幻覺的成因種類太過複雜,目前在神經科學上還不清楚其詳細的機制。目前認為是和失常的訊息整合,以及接收周邊感覺刺激訊息的初級感覺區域有關,其中出現幻覺的巴金森氏症病人就與感覺整合區、視丘(thalamus)在結構上的變化以及多巴胺濃度失調有關[15]。一般幻聽和幻視症狀的人在初級聽覺以及視覺皮質上則出現自主的反應[18]

總結

從莊周自身的角度來說,不論是蝴蝶又或是莊周,他的主觀感受的真實感是真正存在於他的大腦。大腦塑造的真實感,從定義上來看就是一種神經表徵,這和物理真實世界引發的神經反應,又或是人工刺激大腦後產生的虛擬實境世界並無差異。

透過幻覺的研究,科學家們發現和感覺區域的異常以及神經傳導物質的失調有關。真實與虛幻或許不只是一個哲學問題,也是一個科學問題。

參考文獻

  1. https://en.wikipedia.org/wiki/Sense
  2. https://en.wikipedia.org/wiki/Perception
  3. https://en.wikipedia.org/wiki/Brain_in_a_vat
  4. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature. 2012 Mar 22;484(7394):381-5. doi: 10.1038/nature11028.
  5. Botvinick M, Cohen J. Rubber hands ‘feel’ touch that eyes see. Nature. 1998 Feb 19;391(6669):756. doi: 10.1038/35784.
  6. Fang W, Zhang R, Zhao Y, Wang L, Zhou YD. Attenuation of Pain Perception Induced by the Rubber Hand Illusion. Front Neurosci. 2019 Mar 22;13:261. doi: 10.3389/fnins.2019.00261.
  7. Guterstam A, Petkova VI, Ehrsson HH. The illusion of owning a third arm. PLoS One. 2011 Feb 23;6(2):e17208. doi: 10.1371/journal.pone.0017208.
  8. https://www.nationalgeographic.com/science/article/the-beeblebrox-illusion-scientists-convince-people-they-have-three-arms
  9. Slater M, Perez-Marcos D, Ehrsson HH, Sanchez-Vives MV. Towards a digital body: the virtual arm illusion. Front Hum Neurosci. 2008 Aug 20;2:6. doi: 10.3389/neuro.09.006.2008.
  10. Lenggenhager B, Tadi T, Metzinger T, Blanke O. Video ergo sum: manipulating bodily self-consciousness. Science. 2007 Aug 24;317(5841):1096-9. doi: 10.1126/science.1143439. 
  11. Petkova VI, Ehrsson HH. If I were you: perceptual illusion of body swapping. PLoS One. 2008;3(12):e3832. doi: 10.1371/journal.pone.0003832. 
  12. https://www.theatlantic.com/magazine/archive/1866/07/the-case-of-george-dedlow/308771/
  13. Ramachandran VS, Hirstein W. The perception of phantom limbs. The D. O. Hebb lecture. Brain. 1998 Sep;121 ( Pt 9):1603-30. doi: 10.1093/brain/121.9.1603.
  14. Montagnese M, Leptourgos P, Fernyhough C, Waters F, Larøi F, Jardri R, McCarthy-Jones S, Thomas N, Dudley R, Taylor JP, Collerton D, Urwyler P. A Review of Multimodal Hallucinations: Categorization, Assessment, Theoretical Perspectives, and Clinical Recommendations. Schizophr Bull. 2021 Jan 23;47(1):237-248. doi: 10.1093/schbul/sbaa101.
  15. Weil RS, Reeves S. Hallucinations in Parkinson’s disease: new insights into mechanisms and treatments. Adv Clin Neurosci Rehabil. 2020 Jul 13;19(4):ONNS5189. doi: 10.47795/ONNS5189.
  16. https://en.wikipedia.org/wiki/Hallucination#cite_note-17
  17. Crowe, S. F., et al. “The effect of caffeine and stress on auditory hallucinations in a non-clinical sample.” Personality and Individual Differences 50.5 (2011): 626-630.
  18. Zmigrod L, Garrison JR, Carr J, Simons JS. The neural mechanisms of hallucinations: A quantitative meta-analysis of neuroimaging studies. Neurosci Biobehav Rev. 2016 Oct;69:113-23. doi: 10.1016/j.neubiorev.2016.05.037.
所有討論 2
YTC_96
6 篇文章 ・ 7 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士後決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。

0

0
0

文字

分享

0
0
0
好球?壞球?打者判斷好壞球的大腦歷程──WBC經典賽系列文(1)
貓心
・2017/03/05 ・3397字 ・閱讀時間約 7 分鐘 ・SR值 553 ・八年級

國小高年級科普文,素養閱讀就從今天就開始!!

除了直球與變化球的判斷之外,好壞球的判斷也是一個成功的打者必須具備的條件之一。然而,一個成功的打者到底為什麼能夠成功呢?他在打擊時會注意到投手的哪些細節?他的大腦又如何判斷好壞球呢?這一篇文章要來聊聊,打擊者如何判斷一顆直球是否會進到好球帶。

觀察投手的小訣竅

一個職業的棒球選手,在決定是否應該出棒時,只有短短的0.1秒。因此,能否爭取到更多的時間,判斷投手的球是否會進入好球帶,便是一個打者能否成功擊球的關鍵之一。過去的實驗發現,一個pro級的棒球運動員和一個棒球門外漢,在觀察投手投球動作時,有截然不同的差異。當投手做出預備投球(set)的姿勢之後,一直到投手抬起自由腳、跨步、自由腳落地的這一段時間,無論是專家或是從來沒有打過棒球的人,他們的視線都會落在投手的臉和頭上[1];然而,當投手舉起投球手,一直到球出手的這一段時間,身為一個專業的打者,會將視線專注在預期的出手點(release point)[1][2],以及投手的手肘上[3],然而,不專業的打者則會到處亂看[2],或是把視線停留在投手的投和臉上[1][2]。

1
如果你是一名專業的打者,那麼你的視線會在投手出手時,固定在投手的手肘和出手點上;如果你是一個不曾受過專業棒球訓練的小迷弟/迷妹,則會因為投手太帥而一直看著他的臉。圖引自TAKEUCHI & INOMATA(2009)

而專業運動員與非專業運動員,觀察投手投球時這零點幾秒的差異,則可能會反映在好壞球的判斷,以及出棒的時機點之上。過去的研究發現,專業的棒球打者比沒有受過棒球訓練的人,更能夠快速而正確地判斷出該球是否為好球,並快速地對好球做出攻擊[1][4][5]。事實上,專業的棒球運動員決定是否出棒所花的時間,不僅比非專業的棒球運動員來得快,甚至也比網球選手來得越快,而且一個技巧越好的棒球員,他所花費的判斷時間就越少[6]。

_mg_8572
當投手預備出手時,專業的打者會把視線落在投手的手肘,以及預備出手的位置。 圖/作者攝影

打者判斷好壞球時的大腦變化

看完了一個專業打者如何判斷好壞球之後,接著,我就要帶大家來剖開打者的大腦搂(誤)。過去關於打者判斷好壞球的研究,並不像判斷直球或變化球的研究一般納入腦波儀(EEG)的研究,僅有功能性磁振造影(fMRI)的研究而已,因此很難判斷打者在判斷好壞球時,動用的腦區誰先誰後。然而,過去腦科學提供的研究成果,還是足以讓我們來推敲,打擊者在判斷好壞球時,大腦經歷了哪一些變化。

就如同打者在判斷球種是直球或變化球時一般,打者在判斷好壞球時,也會動用到顳葉中區(middle temporal ,MT),因為這一個腦區有助於察覺運動中的物體[7]。除此之外,打者在判斷好壞球時,還會運用到輔助眼區(Supplementary eye field,SEF)、額葉眼區(frontal eye field,FEF)、上部頂小葉(superior parietal lobule,SPL),以及右腦的腹外側前額葉(ventrolateral prefrontal cortex,VLPFC)[8],以下,我將為大家一一介紹,這些腦區在好壞球判斷時,可能扮演著哪些功能。

輔助眼區與額葉眼區──打者追蹤球路軌跡的兩大腦區

首先先來介紹和眼動有關的兩大腦區:輔助眼區(SEF)和額葉眼區(FEF)。輔助眼區主要是在掃視目標[9][10]及追蹤物體[11][12][13]時會動用到的腦區,除了這些功能之外,過去以猴子作為研究樣本的單一神經記錄( single neurons recording)實驗也發現,猴子在進行好壞球判斷時,會動用到輔助眼區的兩組神經,其中一組被實驗者稱之為好球神經(strike neurons)──這些神經只在猴子判定實驗刺激會通過實驗螢幕上設定的好球帶時,這一組神經才會反應,若猴子認定該刺激不會通過好球帶,則這組神經則不會反應;另一組神經則是線索神經(cue neurons)──這些神經在猴子尚未判定一個刺激是否會通過好球帶,還在做決定時會產生反應,也就是說,這些神經可能有助於打者判定一顆球會不會通過好球帶。

_mg_8548
圖/作者攝影

除此之外,實驗者也發現,當線索神經出現反應後258毫秒,若該球被猴子判定為好球,則好球神經會產生反應,接著再過62.5毫秒之後,猴子的眼睛會開始追蹤那一顆球的軌跡[14]。若這個實驗能夠成功套用到人類在打擊的實戰情形,則它的反應歷程應該會如此:投手投出球→輔助眼區的線索神經蒐集資訊,判定該球的軌跡是否會通過好球帶,若會,則啟動好球神經,觸發眼球追蹤球路準備攻擊;反之則不會啟動好球神經,也不會做出攻擊的準備。

除了輔助眼區之外,額葉眼區也參與了判斷好壞球的認知歷程[8],在刺激出現之前的預備狀態(preparatory set),額葉眼區就會開始產生反應[15],除此之外,額葉眼區也具有抑制眼動反應的功能,在這個fMRI的實驗之中,實驗者要求受試者在判斷「該刺激不會通過螢幕上的好球帶」時,受試者要將視線放在螢幕正中央的注視點上。實驗結果發現,當受試者判斷該刺激為壞球時,比判斷該刺激為好球時,會造成額葉眼區出現更大的活化量[8],這可能和這個腦區涉及到抑制眼動有關[16]。

motor_cortex_monkey
輔助眼區(Supplementary eye field,SEF)與額葉眼區(frontal eye field,FEF)圖/維基百科

接著介紹大腦計算、判斷球路軌跡是否會通過好球帶的兩大認知腦區:上部頂小葉與右腦的腹外側前額葉。上部頂小葉和推算球路軌跡有關,當打者在判斷投手出手的球會不會進入好球帶時,很可能就是運用到這一個腦區來進行計算。上部頂小葉屬於後側頂葉(posterior parietal cortex)的一部分,而後側頂葉則涉及到了空間圖像(spatialimagery)的判讀[17][18]、空間注意力(spatial attention)[19],以及追蹤動態物體軌跡的注意力(attentional tracking of motion trajectories)[20]。

gray726_superior_parietal_lobule
上部頂小葉屬於後側頂葉的一部分。 圖/維基百科

至於右腦的腹外側前額葉,則和抑制計畫好的行動有關[21]。當一個打者忍不住追打一顆壞球時,可能就是投手的球路成功騙過了打擊者,使得這個腦區未能成功抑制打者揮棒的衝動,因而遭到三振出局。除此之外,這個腦區也和規則處理有關──因為打者並不是每一顆球來都要揮棒,而是要挑選進入好球帶的球進行攻擊(至少在這個實驗中的規定情境下是如此),因此,這個實驗涉及到了一套既定規則,和右腦腹外側前額葉的規則處理有關(rule processing)[22],可能是這個原因,才讓這個腦區出現了顯著的活化。

%e6%9c%aa%e5%91%bd%e5%90%8d
圖:Neuropsychopharmacology (2010)

儘管這些關於打者判斷好壞球以及判斷直球與變化球的實驗,提供了我們一些打者在打擊時可能的大腦變化歷程,然而這些大多都只是實驗室中的模擬研究而已,真正的打擊者在打擊時,除了專注投手的球之外,還要抑制觀眾的吵雜聲、處理內心對於比賽勝負的壓力,甚至得執行打帶跑、觸擊等戰術,打擊時的大腦歷程或許會更為複雜。不過這些研究也為棒球科學提供了一些更新一步的見解,或許未來有助於教練們透過模擬實境等方式訓練打擊者的大腦,讓科學得以結合實際的棒球訓練,使得比賽變得更加複雜而精采。

如果你喜歡我的文章,歡迎點圖追蹤粉專 Psydetective-貓心

延伸閱讀:

  1. T. Takeuchi &  K. Inomata (2009).VISUAL SEARCH STRATEGIES AND DECISION MAKING IN BASEBALL BATTING.Perceptual and Motor Skills, 2009, 108, 971-980.
  2. Shank, M., & Haywood, K. (1987) Eye movements while viewing a baseball pitch. Perceptual and Motor Skills, 64, 1191-1197.
  3. Kato, T., & Fukuda, T. (2002) Visual search strategies of baseball batters: eye movements during the preparatory phase of batting. Perceptual and Motor Skills, 94, 380386.
  4. Paull, G., & Glencross, D. (1997) Expert perception and decision making in baseball. International Journal of Sport Psychology, 28, 35-56.
  5. Nakamoto, H., & Mori, S. (2008) Sport-specific decision making in a go/nogo reaction task: differences among nonathletes and baseball and basketball players. Perceptual and Motor Skills, 106, 163-170.
  6. Kida, N., Oda, S., & Matsumura, M. (2005) Intensive baseball practice improves the Go/Nogo reaction time, but not the simple reaction time. Cognitive Brain Research, 22, 257-264.
  7. Marchand, W.R., et al., Putamen coactivation during motor task execution. Neuroreport, 2008. 19(9): p. 957-60.
  8. S.J.Heinen, J.Rowland,B.Lee & A.R.Wade(2006)An Oculomotor Decision Process Revealed by Functional Magnetic Resonance Imaging. The Journal of Neuroscience,26(52),13515–13522.
  9. Schall JD. Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of Rhesus monkeys. J Neurophysiol 66: 530–558, 1991.
  10. Schlag J and Schlag-Rey M. Evidence for a supplementary eye field. J Neurophysiol 57: 179–200, 1987.
  11. HeinenSJ.Single-neuron activity in dorsomedial frontal cortex during smooth pursuit eye movements. Exp Brain Res 104: 357–361, 1995.
  12. Heinen SJ and Liu M. Single-neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements to predictable target motion. Vis Neurosci 14: 853–865, 1997.
  13. Petit L and Haxby JV. Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 81: 463–471, 1999.
  14. Kim YG, Badler JB, Heinen SJ (2005) Trajectory interpretation by supplementary eye field neurons during ocular baseball. J Neurophysiol 94:1385–1391.
  15. ConnollyJD,GoodaleMA,GoltzHC,MunozDP (2005) fMRIactivationin the human frontal eye field is correlated with saccadic reaction time. J Neurophysiol 94:605–611.
  16. Hanes DP, Patterson II WF, Schall JD (1998) Role of frontal eye fields in countermandingsaccades:visual,movement,andfixationactivity.JNeurophysiol 79:817–834.
  17. FormisanoE,LindenDE,DiSalleF,TrojanoL,EspositoF,SackAT,GrossiD, Zanella FE, Goebel R (2002) Tracking the mind’s image in the brain I: time-resolved fMRI during visuospatial mental imagery. Neuron 35:185–194.
  18. Gauthier I, Hayward WG, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (2002) BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron 34:161–171.
  19. SchluppeckD,GlimcherP,HeegerDJ (2005) Topographicorganizationfor delayed saccades in human posterior parietal cortex. J Neurophysiol 94:1372–1384.
  20. Culham JC, Brandt SA, Cavanagh P, Kanwisher NG, Dale AM, Tootell RB (1998) Cortical fMRI activation produced by attentive tracking of moving targets. J Neurophysiol 80:2657–2670.
  21. Aron AR,Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116.
  22. Bunge SA (2004) How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn Affect Behav Neurosci 4:564–579.
文章難易度
貓心
75 篇文章 ・ 95 位粉絲
心理作家。台大心理系學士、國北教心理與諮商所碩士。 寫作主題為「安全感」,藉由依附理論的實際應用,讓缺乏安全感的人,了解安全感構成的要素,進而找到具有安全感的對象,並學習建立具有安全感的對話。 對於安全感,許多人有一個想法:「安全感是自己給自己的。」但在實際上,安全感其實是透過成長過程中,從照顧者對自己敏感而支持的回應,逐漸內化而來的。 因此我認為,獲得安全感的兩個關鍵在於:找到相對而言具有安全感的伴侶,並透過能夠創造安全感的說話方式與對方互動,建立起一段具有安全感的關係。 個人專欄粉專: https://www.facebook.com/psydetective/ 個人攝影粉專: https://www.facebook.com/psyphotographer/

2

8
3

文字

分享

2
8
3
【從中國經典認識大腦系列】人之所以異於禽於獸者幾希
YTC_96
・2023/03/23 ・3766字 ・閱讀時間約 7 分鐘

中國古代思想家透過觀察及反思,提出許多做人處事的道理,成為許多經典流傳給數千年後的我們。現代人也許會質疑,那些古老智慧早已過時不適用,甚至不符合科學以及時代潮流。有趣的是,許多經典的背後與現代科學理論相差不遠,甚至能啟發科學家重新詮釋心理學以及大腦運作的理論。

透過這個專題系列,我希望以中國經典當作出發點,讓讀者能從另一個角度認識我們的大腦以及心智的運作,從中體會古老智慧帶給我們的啟示。

或許我們可以從中國經典角度,認識大腦運作。 圖/pixabay

人≠禽獸?

「禽獸不如」是一句常見不過的罵人成語,用來形容品格低下、行為不端正的人。禽指的是鳥類的總稱,而獸指的是四足的哺乳動物,通常指野獸。禽獸兩字的合用,通常指的是鳥類和獸類的合稱。

從字源來看,禽始見於甲骨文,形象是下部有柄的網,一開始是作為動詞指擒拿的行為,並衍伸至指捕捉到的鳥獸,《説文解字》則是以走獸總名定義之,因此一開始禽是用來概括稱呼擒獲到的獵物,並非單指鳥類。一直到數千年前的戰國時期,才開始有禽獸兩字的連用。

「禽」字的甲骨文字型。 圖/小學堂甲骨文

《孟子.滕文公上》:「草木暢茂,禽獸繁殖;五穀不登,禽獸偪人。」

《莊子.馬蹄》:「禽獸成羣,草木遂長。」

這時的禽則專指鳥類,獸字也初見於甲骨文,會意字,從單和犬兩字組合成,單是狩獵工具而犬也是用來協助狩獵,因此一開始是動詞,指打獵。而後定義也包含打獵的對象,即野獸。

「禽」字的甲骨文字型。 圖/小學堂甲骨文

關於人類與禽獸的類比,孟子或許是最早也是最愛用的聖賢之一。

《孟子.滕文公下》:「無父無君,是禽獸也。」

孟子斥責眼中沒有父母、目無君上的人,就像是禽獸一般。孟子強調人與禽獸不同之處,彰顯人類獨有的品德仁義。孟子在《離婁下》更提到:

「人之所以異於禽獸者幾希,庶民去之,君子存之。舜明於庶物,察於人倫,由行義行,非行仁義也。」

人類和禽獸的差異其實只有一點點,一般人把和禽獸不同的地方給丟棄了,而君子則是把差異給留了下來。舜對世間的事物以及人際關係了解相當透徹且明察於心,是遵照仁義之心來處理所有事情,而不是勉強為了行仁義而行仁義。

以上可見孟子強調人與禽獸的差異在於仁義道德價值,而摒棄該中心思想的人則與禽獸並無不同。

西方哲學對於人與動物的論點

不同於東方的中國經典強調人類與禽獸的類比,西方哲學早期就將人類與動物區分開來。

十七世紀的勒內·笛卡兒(René Descartes)把動物稱作是動物機器(animal machine)或是自動機(automata),認為動物沒有思考能力與意識,是沒有靈魂與心智的物質機器。

相比之下的,他的心物二元論(Mind–body dualism)則認為人類是有非物理性的思維物(res cogitans),以及有物質實體的廣延物( res extensa)。笛卡爾的理論也受到唯物論者的挑戰,十八世紀的唯物論代表人物之一,法國醫生和哲學家朱利安.奧弗雷.拉.美特利(Julien Offray de La Mettrie)在《著作人是機器》(Man a Machine :法文:L’homme Machine)中反對物質與靈魂分離的二元論,認為人也是機器,且物質的不同組合能產生人的思想。

法國醫生和哲學家朱利安.奧弗雷.拉.美特利。 圖/wiki

拉美特利的想法也影響後續心理學以及行為理論的發展,20 世紀著名的哲學家,卡爾.雷蒙德.波普爾(Karl Raimund Popper)也討論拉美特利在演化論以及量子力學上的相關,並讚賞拉美特利能在現代科學理論發展前提出一套符合讓科學家以及物理學家們支持的觀點。

演化論說明人與動物的相似性

在科學研究以及演化論尚未發展的時期,神創論(Creationism)解釋人的誕生。創世記 1:26-31提到上帝照自己的形像造人,上帝說:

「我們要照著我們的形像,按著我們的樣子造人,讓他們管理海裡的魚、空中的鳥和地上的牲畜及一切爬蟲。」

這樣的描述也使得人類認為自己在物種上有另一層次的地位,並認為人類與動物是不同的。但從演化論來說,人類在生物學上的歸類是哺乳綱、靈長目、人科、人屬的物種。

我們的大腦也非一開始就如此的發達,這一切還須要歸功於演化上各式各類的動物以及漫長的時間。光從人類的神經解剖構造來看,人腦的神經迴路與老鼠有非常多像似之處,甚至科學家們也能透過研究果蠅大腦來試圖破解人腦的運算機制。

人類大腦與禽獸最大不同是新皮質區域尤其是前腦的部分。

十九世紀的三重腦假說(Triune brain)認為脊椎動物的前腦與行為的演化過程是由爬蟲腦複合區 (Reptilian)、古哺乳動物腦(邊緣系統)(Paleomammalian (limbic system))、新哺乳動物腦(Neomammalian)的三個結構疊加而成[1] (圖一)。人腦的皮質區域非常的發達,甚至演化上必須透過皺褶來增加表面積讓更多腦組織能裝在我們的頭殼內,如此也代表著能在有更多神經細胞存在於每體積單位的腦組織(圖二)。

圖一,三重腦的假說示意圖。 圖/wiki
圖二,右側的人腦與左側的鼠腦比較,可以發現人腦的表面有較多的皺摺。圖/Elizabeth Atkinson, Washington University in St. Louis.

大腦如何進行道德仁義決策

人類與動物最大的不同之一,是道德決策的表現。

面對複雜的社會情境,我們時常會遇到沒有標準答案並讓人陷入兩難的困境,此時我們的大腦會對該情境進行運算,評估任何決定可能帶來的利弊。透過功能性磁振造影(fMRI)的研究發現,情緒是影響與人有關的道德兩難處境(personal moral dilemma)的決策重要因素之一。

當人們進行與人有關的道德兩難(例如:將超載的救生艇上的一個人趕出去來拯救其他人)和與人無關的道德兩難(例如:保留路上撿到的錢包)時,情緒性的處理程序會影響與人有關的道德兩難,並啟動重要相關的腦區包括內側前額(medial frontal gyrus)、後側扣帶皮質(posterior cingulate)以及左右兩側的角回 (left and right angular gyri)[2]

情緒不只表達我們現在想法,也是我們做決策時的重要影響因素之一。 圖/GIPHY

禽獸作為仁義道德的界線,很難想像比禽獸還不如的行為。不過,早在魏晉時期,《晉書.阮籍傳》就記載:

「禽獸知母而不知父,殺父,禽獸之類也,殺母,禽獸之不若。」

竹林七賢的阮籍認為,禽獸都是知道其母不知其父,因此弒殺父親的行爲,屬於禽獸一類,但弒殺其母,則是連禽獸都不如。

如此令人髮指的行為在人類社會上並非少數。反社會以及心理病態的道德淪喪者被認為與背側與腹側的前額葉腦區(dorsal and ventral PFC)、杏仁核 (amygdala)、以及角回(angular gyrus)受損有關[3]

此外,在大腦有不正常的單胺氧化酶 A (MAOA,monoamine oxidase A)基因表現,也影響杏仁核以及前額葉結構發展並導致反社會人格和高度心理病態特質有關[4]

總結

人類自詡為萬物之靈,認為自己優於其他物種。但數千年前的孟子卻已經觀察到人類與禽獸相似的行為表現,並提醒著我們合乎仁義道德的重要性。

大腦控制著情緒以及認知功能,是人體最複雜的器官。

 若大腦生病了,我們的心理健康也會出現問題。歸功於近代科學的發展,我們能透過精密的儀器進行觀察、實驗並提出理論來解釋大腦的運作。人腦是透過演化發展而來,因此與動物們有許多相似之處,而人類發達的前額葉皮質,是發展出意識、複雜認知及仁義道德的重要區域。

人類大腦中的前額葉皮質,是我們發展出意識、複雜認知及仁義道德的重要部位。 圖/GIPHY

由於道德價值是建立在原始的神經迴路之上,若沒有時常警惕以及約束自己,我們大腦與禽獸類似的部分則會有機會主控我們的行為,產生衝動後悔的決定或是失去理智的犯罪行為。

參考資料

  1. The Triune Brain in Evolution. Role in Paleocerebral Functions. Paul D. MacLean. Plenum, New York, 1990. xxiv, 672 pp., illus.
  2. Greene JD, Sommerville RB, Nystrom LE, Darley JM, Cohen JD. An fMRI investigation of emotional engagement in moral judgment. Science. 2001 Sep 14;293(5537):2105-8. doi: 10.1126/science.1062872. PMID: 11557895.
  3. Raine A, Yang Y. Neural foundations to moral reasoning and antisocial behavior. Soc Cogn Affect Neurosci. 2006 Dec;1(3):203-13. doi: 10.1093/scan/nsl033. PMID: 18985107; PMCID: PMC2555414.
  4. Kolla NJ, Patel R, Meyer JH, Chakravarty MM. Association of monoamine oxidase-A genetic variants and amygdala morphology in violent offenders with antisocial personality disorder and high psychopathic traits. Sci Rep. 2017 Aug 29;7(1):9607. doi: 10.1038/s41598-017-08351-w. PMID: 28851912; PMCID: PMC5575239.
所有討論 2
YTC_96
6 篇文章 ・ 7 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士後決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。

1

3
3

文字

分享

1
3
3
揭開大腦「額葉」的神秘面紗,一場名留史冊的工安意外——《大腦不思議》
方寸文創_96
・2023/02/20 ・1855字 ・閱讀時間約 3 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • 作者/汪漢澄
  • 繪者/宋明憲

一八四八年九月十三日早晨,當二十五歲的爆破工人菲尼亞斯.蓋吉[註1]步出家門準備上工的時候,他絕對沒有想到自己即將成為神經科學史上不朽的名字。如果事先知道,他一定會馬上躺回床上睡大覺,拒絕這個殊榮。

然而,命運的安排通常不理會個人的意願。

一切都從一支不長眼的「鐵條」開始

當天下午四點多,築建鐵路的工地上準備要爆破一塊岩石,當時蓋吉先生正轉頭跟同伴說話,臉遙遙對著那個爆破孔,突然間火藥意外點燃,原本插在岩石爆破孔中那根直徑三公分,長度一公尺餘,重達六公斤的鐵條受到爆炸力推擠,像飛彈一樣,射向菲尼亞斯.蓋吉的左臉。

鐵條直穿過他的左臉頰,進入左眼後方,繼續穿透大腦,接著射穿左前額處的顱骨,餘勢不衰,帶著蓋吉的血漿以及腦漿,噴射到二十多公尺遠處才著地。

當時誰都不知道,這起嚴重的工安意外真正離奇的地方才要開始。

鐵條穿過菲尼亞斯.蓋吉顱骨的想像圖。圖/方寸文創出版《大腦不思議

菲尼亞斯.蓋吉沒有死!他在短暫抽搐之後,恢復了知覺,被同伴攙扶著走上牛車,一路坐著到達了醫生那兒,把那位名為約翰.哈洛[註2]的鄉村醫生嚇得不輕。

哈洛醫生親眼看到蓋吉頭顱上那個大洞溢出血塊與腦漿,只能當場幫他做了一些緊急處理。在其後幾週,蓋吉因為腦部的感染併發症,在鬼門關出入了好幾遭,最後居然奇蹟似地康復。

逃出鬼門關後

蓋吉之後又活了十二年,一直到了一八六○年,因為嚴重的癲癇重積[註3]發作而死,那當然也是腦傷的後遺症之一。在這十二年生命當中,蓋吉成為名人,他經常以奇蹟生還者的身分四處露臉,迎合觀眾的好奇心,以賺取一點微薄的收入。不過當時人們對他的獵奇心態,遠超過醫學研究的興趣,加上還沒有儀器設備可以看到腦的內部,以至於我們到今天為止,都還只能間接推測蓋吉腦部的實際受傷情況。

不過有一點可以確定,蓋吉在腦部受傷之後,雖然仍能正常行走、交談,甚至可以做些簡單的工作,但是他的「個性」卻發生了很大的改變。

根據零星的記載,受傷之前的蓋吉是彬彬有禮、尊重別人並且相當精明的人;受傷之後,他卻失去了對金錢的概念,變得粗魯無禮,經常公然發怒,時不時罵幾句髒話。他後來之所以會無法維持正常的工作,而必須靠著四處展示自己的生存奇蹟來謀生,也正是為此。長期治療並觀察蓋吉的哈洛醫生說:「他的理性與動物性之間的平衡似乎壞掉了。」蓋吉的朋友則說得更精準,他們說:「蓋吉不再是蓋吉了。」

蓋吉死後,他的大腦並沒有被保留下來,但是他那顆有個大洞的頭顱骨,以及當初肇事的鐵條,都一起被保存在哈佛醫學院的解剖學博物館長期展示。

原來是「額葉」

到了二十世紀末、二十一世紀初,由於神經影像學技術的發達,有好幾位神經學家以及神經影像專家,利用電腦模型重建當初那根鐵條穿過蓋吉腦部的行進軌跡,結果證明蓋吉腦部受傷的部位是在「額葉」。

蓋吉那時代的醫療與現代相比,當然天差地遠。今天的醫生,如果像哈洛醫生一樣遇到蓋吉這樣的病人,對腦損傷位置以及臨床表現就都會了然於心。

註解

  1. 菲尼亞斯.蓋吉(Phineas Gage,1823‒1860):美國鐵路工頭,因遭受事故意外成為探討大腦機能的重要研究對象。
  2. 約翰.哈洛(John Harlow,1819‒1907):美國醫師,因診治並記錄菲尼亞斯.蓋吉的腦損傷而知名。
  3. 癲癇重積:指癲癇持續發作超過五分鐘,或是五分鐘內癲癇發作超過一次,且在每次發作之間病患沒有恢復正常狀態。

——本書摘自《大腦不思議》,2022 年 12 月,方寸文創出版,未經同意請勿轉載。

所有討論 1
方寸文創_96
3 篇文章 ・ 7 位粉絲
「文章千古事,得失寸心知。」方寸文創滿足知識渴求,解答人生困惑,迎合視覺賞玩,構築閱讀經驗的真善美,力求讓閱讀有益,讓閱讀有趣!