高等生物的免疫系統其實是個龐雜的科學,牽扯到多種免疫細胞之間利用各種細胞激素(cytokines)的奇妙溝通方式,以及利用複雜的細胞表面蛋白來進行與病原或受感染細胞之間專一性辨認等⋯⋯。光是同免疫反應相關的細胞膜上之蛋白質受器,到目前為止就有 200 種以上的發現。這些蛋白質多半以 CD 作為字首並以序列編號命名,例如與 T 淋巴球分化程度有關的 CD4 以及 CD8 蛋白。利用高等生物進行免疫相關研究有時並非通往康莊大道最短的路徑,過於複雜的系統有時會迷惑研究者對研究方向上的掌握。
-----廣告,請繼續往下閱讀-----
相對於高等哺乳動物免疫學的複雜,魚類的免疫系統有如光譜的另一端。
魚類是地球上最早擁有「專一性免疫系統」的物種。所謂專一性免疫系統,即具有淋巴球參與的免疫系統。專一性辨識病原體及記憶學習能力是淋巴球所擁有的獨特功能,像是 B 淋巴球可以生產辨識抗原的抗體(antibody),而 T 殺手淋巴球則可藉由 T 細胞受器(T cell receptor)辨認受病毒感染的細胞,然後將其摧毀。
目前現存的魚類物種大約在 32000 種以上,是地球上最龐大的脊椎動物族群,所以觀察不同魚種間免疫系統的差別可以呈現數億年來漫長的生物演化過程,及免疫系統在環境適應上的彈性,從而驗證我們在高等哺乳動物中所觀察到的現象,並對其現象的存在意義能有所解讀。在今年 8 月份刊載於《自然基因》雜誌(Nature genetics)中一篇名為「真骨魚類的物種形成受到免疫系統的演化的影響(Evolution of the immune system influences speciation rate in teleost fish)」的文章,當中就提出了一項非常有趣的觀察。故事的主角是我們「以為」熟悉(註一)的大西洋鱈魚(Atlantic cod,學名 Gadus morhua)。
在以往的研究當中,科學家們發現大西洋鱈魚的基因體中丟失了一個名為「主要組織相容性複合體蛋白(major histocompatibility complex, MHC)」第二型(MHC class II)的相關基因。主要組織相容性複合體蛋白有如人類細胞表面的「條碼」一般,標示著專屬於個人獨有的標示。在器官移植的過程中排斥現象的發生,主要就是因捐贈者器官上的主要組織相容性複合體蛋白與受贈者體內的主要組織相容性複合體蛋白不相同所致。
從高等哺乳動物所進行的研究中,目前我們已經了解,主要組織相容性複合體蛋白分為兩型,第一型會透過與 T 殺手細胞的辨識,作為對抗病毒病原的入侵,第二型則會與 T 輔助細胞的辨識,進一步誘發 B 淋巴球生產專一性辨識的抗體,來抵禦細菌性病原的入侵。所以,當大西洋鱈魚的基因體丟失的 MHC 第二型蛋白體的基因,是否意味著鱈魚對細菌的入侵完全不具抵抗能力?
當然,現今種的鱈魚對於細菌性病原仍然具有抵抗能力,其原因引發了科學家們的好奇。拜現今基因定序技術的進步與成本大幅度降低所賜,我們得以對生物進行「全基因體定序(whole genome sequencing)」。所謂全基因體定序,係指將生物基因體(genome)中的 DNA 鹼基對定序出來。在 10 多年前人類基因體計畫(human genome project)時期,每個鹼基對的定序需要約新臺幣 10 元的成本,人類的遺傳訊息大約擁有 30億個 DNA 鹼基對,可以想見整個計畫光在 DNA 定序上的龐大花費。
-----廣告,請繼續往下閱讀-----
鹼基對是以氫鍵相結合的兩個含氮鹼基,以胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C)和鳥嘌呤(G)四種鹼基排列成鹼基序列,其中 A 與 T 之間由兩個氫鍵連接,G 與 C 之間由三個氫鍵連接。圖/wiki
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。