0

0
0

文字

分享

0
0
0

人類可以創造出最純粹的藍色嗎?比星期一更blue的「真藍」

Sophie Liao
・2016/08/01 ・4340字 ・閱讀時間約 9 分鐘 ・SR值 532 ・七年級

尋找「真藍」的煉金術士

在你的認知裡,藍色帶給你甚麼感受?是冷靜、憂鬱,還是理智?在星際爭霸戰(Star Trek)裡藍色制服代表的是科學組,像是史巴克和麥考伊醫官;在藝術家的眼裡,藍色可以創造出廣闊無邊界的深邃感,或是河流、海洋以及天空的流動感;不過在最近的新發現裡,藍色除了開啟我們對於視覺以及心理的感受以外,還擁有了科學上的新功用。

blue4
史巴克在平常時候都保持著瓦肯星人冷靜,依循邏輯的形象。圖/Bill Lile@flickr

法國的創作藝術家伊夫·克萊因(Yves Klein)不是第一個發現藍色的男人,但卻可能是第一個為藍色配方申請專利的藝術家[1]。在這裡我們要說明一下顏色(Color)和顏料(Pigment)的不同。所有的顏色都是由光的三原色(RGB),也就是(Red),(Green),和(Blue)組成;因此當我們在色座標上定義出三種主要顏色的位置,並以 X、Y、Z 來表示其在座標軸上的相對位置時,我們就可以依據座標位置來表示色彩[2]。

而顏料則是包含將帶有顏色的粉料(像是有機、無機或是金屬的材料)與不同的介質(像是水、溶劑、樹脂或是油)均勻混合後的產物,如何在成膜物質中展現色彩的著色力,調配出藝術家心裡的目標顏色,是許多藝術家以及顏料公司一直煩惱的問題。

blue 5
光的三原色:紅、綠和藍色。圖/wikipedia

距離現在 60 年前左右,克萊因在米蘭展示了 11 幅全為藍色的單色畫布,這種絕對的藍色被評論家認為能引導人類超越現實的層面,象徵著沒有界線的天空和大海。藍色單色畫的展出獲得了空前的成功,克萊因也將這個純粹的藍色命名為國際克萊因藍(International Klein Blue, IKB),並將克萊因藍衍生到一系列的實驗以及人體創作[3]。

-----廣告,請繼續往下閱讀-----

克萊因藍主要的組成採用了群青顏料(Utramarine pigment),在文藝復興時期群青被視為最高級/高貴的顏料,在人工製造技術開發以前,只能由青金石(lapis lazuli)研磨後的粉末取得。群青能呈現藍色的原因在於礦石中含有硫化物的陰離子(S3−)[4];但是隨著畫家將群青與不同的介質混合調配成顏料後,樹脂的選用、群青粉末聚集或分散不均的狀況都會造成色澤變得黯淡,無法呈現群青的真實樣貌。

為了改善這樣的狀況,克萊因與一位巴黎的顏料交易商愛德華·亞當(Edouard Adam)合作,找到一種組成為聚醋酸乙烯酯(Polyvinyl acetate, PVA)的透明合成樹脂,作為混合群青粉末的媒介[5]。以樹脂作為載體,搭配相容性的溶劑,讓群青粉末能在介質中保持均勻懸浮的狀態,大幅保留了群青的色彩強度,展現一種深邃的光澤感。

blue 1
克萊因藍。圖/wikipedia

克萊因的發現使我們找到一種能保留群青粉末的色彩,又能具備加工性,應用在衣物、繪畫、甚至是宮殿建築施工的顏料製作技術。但就如同大部分人類眼睛所能看到的顏色,克萊因藍實際上也不是全然的藍色,而是混雜了部分的綠色[6],人類對於創造出「真藍」的遐想:毫無其他顏色干擾的 100% 純藍色,仍舊停留在想像的區域。

意外發現的科學產物—「真藍」

blue 6
YInMn Blue(釔銦錳藍)。圖/OSU授權使用

直到 2009 年,俄勒岡州立大學(Oregon State University, OSU)的瑪斯.薩柏拉瑪尼安(Mas Subramanian)教授與他的研究團隊卻在一次高溫實驗中,發現了可能是目前最接近「真藍」的無機粉末。

-----廣告,請繼續往下閱讀-----

瑪斯教授的研究生安德魯.史密斯(Andrew E. Smith)原先的目標是了解氧化錳(Manganese Oxide)的電子特性。在華氏 2000 度(相當於攝氏 1100 度)的燒結下,釔氧化錳(YMnO3)與釔氧化銦(YInO3)形成的固溶體(solid solution)結構因為錳離子(Manganese ions)的配位差異,展現出只吸收紅和綠色波長光線的特性,其餘的藍光則被反射。他們還發現,只要調整銦和錳的比例,就能夠調整吸收與反射的波段,也就能創造出不同深淺的藍色。如果能夠達到完全吸收紅光與綠光,真正反射到人眼的就只剩下藍光區域的波段,也就能創造出所謂「真藍」的純粹感。瑪斯教授依照組成元素將這個新發現命名為「YInMn Blue(釔銦錳藍)」。不過在俄勒岡州立大學大家都暱稱為瑪斯藍(Mas Blue)[7]

blue 4
調整錳離子的比例可以調整藍色的深淺。圖/OSU授權使用

有趣的是,這樣特別的藍色並沒有在當時引起廣泛的討論,因為釔銦錳藍並不是一個全新的無機結構,隨著科學期刊的發表,科學家並沒有了解到釔銦錳藍潛在的可能性,「真藍」也因此沉沒在廣大的科學文獻裡。

「如果不是因為我有在產業界(杜邦有一個專門開發顏料的部門)工作過的經驗,我不會知道這個無機材料的發現是極不尋常,而且具有相當高的商業價值的。」瑪斯教授說。在經過了三年的努力,2012 年 10 月,沒有放棄的瑪斯教授與他的研究團隊為這個藍色粉末取得了美國專利(US 8282728),薛特顏料公司(Shepherd Color Company)在這之後立即與俄勒岡州立大學達成了獨家的保密授權協議,並開始對釔銦錳藍進行各項嚴苛的測試,進而發現了釔銦錳藍更多的可能性。

釔銦錳藍—超越顏色以外的應用

傳統的藍色顏料—鈷藍(Cobalt Blue, CoAl2O4)具備穩定的尖晶石(spinel)結構,耐溫性可以高達攝氏 1200 度以上,這在其他的顏料中是非常少見的特性。由於釔銦錳藍也是在 1100 度的高溫下製作而成,釔銦錳藍本身就已經具備極佳的耐溫性,但除此之外,在薛特顏料公司的測試中,他們還發現釔銦錳藍有三個獨特的特性:

-----廣告,請繼續往下閱讀-----

第一、釔銦錳藍無毒也無致癌性

鈷藍在使用時若發生吸入或食入的狀況,可能會導致鈷中毒(Cobalt poisoning)的狀況。

第二、釔銦錳藍在 UV 吸收測試,戶外環境測試的表現都能相當或優於鈷藍

研究團隊依照工業用顏料的標準,對釔銦錳藍進行了 5000 小時的 QUV 紫外光加速老化測試,釔銦錳藍會在設定的溫度以及濕度條件下,進行反覆的 UV 曝曬,藉此模擬陽光照射的影響,以及在露水或雨水噴灑下的表現。同時研究團隊也在辛辛那提(Cincinnati, Ohio)針對釔銦錳藍與鈷藍(比較對象為 CI Pigment Blue 28)進行 48 個月的連續戶外測試,發現釔銦錳藍能達到工業級顏料的需求。這說明了釔銦錳藍在建材、軍事防偽、以及工程塑料等領域都具有潛在的應用價值。[8]

-----廣告,請繼續往下閱讀-----

第三、釔銦錳藍具有紅外線反射功能。

紅外線佔了太陽光輻射光譜一半以上的比例,也因此是主要的熱能來源。如果屋頂能塗上一層紅外線抗反射材料,大部分的太陽光輻射就可以被反射回去,間接降低了屋頂熱能的吸收,就能達到室內恆溫的效果。釔銦錳藍因此提供了一種新的抗反射材料的顏色可能。[8]

blue 5
釔銦錳藍相較於鈷藍可以反射長波長的紅外線,使其可以應用在屋頂塗料,保持室內的恆溫。圖/OSU授權使用

接續這些研究的發現,2016年對薛特顏料公司或是瑪斯教授來說都將是一個全新的開始。薛特顏料公司預備擴大釔銦錳藍的製造,在法規審核通過後就能開始進行商品化的生產,藝術家和畫家也可以與薛特顏料公司申請釔銦錳藍的樣品進行創作,包含水彩或是銅版畫作品。依據薛特顏料公司的網頁說明,只要付出每十公克十美金的價格,大家就可以在網頁上申請釔銦錳藍的粉末樣品。

而瑪斯教授也沒有閒著,位於俄勒岡州立大學的研究團隊已經展開一系列不同顏色的開發工作,從亮橘色、紫色到綠色的無機顏料,期望能找到更穩定、具備紅外線反射特性、同時又能展現明亮色澤的新材料。

-----廣告,請繼續往下閱讀-----

「釔銦錳藍的出現告訴我們,無機顏料家族裡還有許多顏色等著被發現。」薛特顏料公司的研發主管傑佛里.T.皮克(Geoffrey T. Peake)這樣說。

blue 6
瑪斯教授期望能開發出更多穩定的新顏色。圖/OSU授權使用

https://www.youtube.com/watch?v=mxK4eAZUoJw

註:

  1. 克萊因實際上完成的是 Soleau envelope(法國專有名詞,形式上是一個密封的信函),內文詳載發明的日期以及想法,在法國法律下可以當作一種發明的優先權,遞交到法國工業財產權局(Institut national de la propriété industrielle, INPI)可用於專利權的申請。
  2. 常用的色座標有 RGB 或是 CMYK 系統。
  3. 想親眼看到克萊因藍的作品可以到巴黎龐畢度中心或是美國的現代藝術博物館(MOMA)。
  4. 三硫化物的陰離子(S3−)會吸收 600 奈米左右波長的光線。
  5. 克萊因使用的合成樹脂至今仍在販售,型號為 Rhodopas M or M60A。
  6. 克萊因藍的色座標為 RGB(0, 47, 167),或是 RGB(0%, 18.4%, 65.5%)。實際上也幾乎是公認的克萊因藍色座標。主要原因在於克萊因當年提交Soleau envelope時,詳列了完整的顏料調整配方以及使用材料名稱:包含 1.2 公斤的Rhodopas M;2.2公斤的乙醇(95%工業級);0.6公斤的乙酸乙酯,總共 4 公斤的基料在低溫攪拌下後,再加入50%的群青粉末即可完成克萊因藍的顏料。理論上任何人依照同樣的配方都可以調配出相同的克萊因藍。而RGB(0, 47, 167)或是 RGB(0%, 18.4%, 65.5%)並非是科學上我們描述的顏色比例,而是提供給CSS、HTML辨識的顏色定義代碼。
  7. 釔銦錳藍的參考色座標為 RGB(0, 0, 255)。須注意這裡所列之釔銦錳藍的色座標數值為參考值,並非原始作者測試數據。由於從無機的粉料到調配成顏料配方,到在標準環境光源下去做色座標鑑定,在不同環境光源下皆會有很大的影響,要知道釔銦猛藍做成顏料後的色號,應以薛特顏料公司或其他使用釔銦猛藍之顏料,以標準測試手法才具相對參考價值。因本文在截稿日前未能取得瑪斯教授實驗室的參考數據,故在此列出網路上大家的推測色號,讓讀者能比較看看克萊因藍以及釔銦猛藍的顏色差異。想了解更多釔銦錳藍的發現故事,請參考論文出處:“Mn3+ in Trigonal Bipyramidal Coordination: A New Blue Chromophore”, J. Am. Chem. Soc., 2009, 131 (47), pp 17084–17086
  8. 想了解釔銦錳藍在 UV 和近紅外線波段的吸收數據,請參考論文出處;Andrew E. Smith, Matthew C. Comstock, M.A. Subramanian, “Spectral properties of the UV absorbing and near-IR reflecting blue pigment, YIn1-xMnxO3, Dyes and Pigments“, Volume 133, October 2016, Pages 214-221, ISSN 0143-7208,

參考資料:

-----廣告,請繼續往下閱讀-----
  1. Sasha Frere-Jones, “All About Yves: The Story of International Klein Blue” [May 20, 2015]
  2. Alastair Sooke, “Yves Klein: The man who invented the color“, BBC [August 28, 2014]
  3. 與火同行—-談談 Yves Klein [November 18, 2008]
  4. Stacey Leasca, “A Gorgeous New Color Is About To Be Released Into The World” [June 28, 2016]
  5. Jacob L. Heller, MD, MHA, Emergency Medicine, Virginia Mason Medical Center, “Cobalt poisoning“, MedlinePlus, Medical Encyclopedia
  6. Department of Chemistry, Oregon State University, “The Story of YInMn Blue
  7. List of inorganic pigments, wikipedia
  8. Symbolism of the Color Blue
  9. Megan Fellman, “Who knew there was so much to blue?“, Northwestern University [November 5, 2014]
  10. Aurarelles de Mas Blue, water color of Mas Blue
  11. Philip Ball, “Blue Standard“, [September 27, 2012]
  12. Pigment Discovery Media Attention, Subramanian Research Group [May 23, 2015]
  13. Subramanian Research Group Webpage, Oregon State University
  14. Eliane Coser, Vicente Froes Moritz, Arno Krenzinger, Carlos Arthur Ferreira, “Development of paints with infrared radiation reflective properties” [January 15, 2015]
-----廣告,請繼續往下閱讀-----
文章難易度
Sophie Liao
3 篇文章 ・ 0 位粉絲
泛科學實習編輯,台大化工系畢,涉獵領域包含文學、化學到能源,現在是Big Bang Theory前兩季的忠實觀眾與科學宅,最愛電影之一是星際大戰第六集,家裡尚無光劍。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
毒藥的歷史:死亡、救贖與科學的交匯點——《毒藥的滋味》
PanSci_96
・2024/09/03 ・2429字 ・閱讀時間約 5 分鐘

奪命計劃的冷酷藝術

在犯罪史上,謀殺是特別令人髮指的罪行;而在各種殺人手法之中,只有寥寥幾種會像毒藥那樣,令人有如此奇特的病態迷戀。與一時腦熱的衝動謀殺相比,毒殺所涉及的事前規劃與冷酷的算計,完全符合法律術語中的「惡意預謀」(malice aforethought)定義。毒殺需要預先籌畫並了解受害者的習慣,也必須考慮如何下毒。有些毒藥只要幾分鐘就能奪人性命,其他則可以長期慢性下毒,逐漸在體內積累,最終導致受害者必然的死亡。

這本書沒有要列出下毒者及受害者的清單,而是要探討毒物的性質,以及它們如何在分子、細胞和生理層面影響人體。每種毒藥都有獨特的致死機制,受害者所經歷的各種症狀往往都是線索,有助於抽絲剝繭找出他們被下了什麼毒。在少數情況下,這些知識有助於給予適當的治療,讓受害者能完全康復。但在大多數情況下,就算知道是什麼毒物對於治療也沒有幫助,因為根本沒有解藥。

毒殺因冷酷計劃與預謀惡意而特別令人髮指。 圖/envato

雖然毒物(poison)和毒素(toxin)這兩個詞經常互換使用,但嚴格來說它們並不相同。「毒物」是任何會對身體造成傷害的化學物質,可以是天然的,也可以是人造的,而「毒素」通常是指生物所製造的致命化學物質。不過如果你是被下毒的一方,那麼兩者的差異就只是學術討論了。

毒物的兩面性:從致命陷阱到救命藥

toxikon 這個字源自古希臘文,意思是「箭頭浸泡的毒物」,指的是塗抹在箭頭上以導致敵人死亡的植物萃取物。當 toxikon 這個字與希臘文的「研究」logia 相結合,就成為我們現在的「毒理學」或「毒素研究」(toxicology)這個詞。毒物一詞源自拉丁語的 potio,意思是「喝」,之後慢慢演變成古法語中的 puison 或 poison。「毒物」這個字在一二○○年首次出現在英語中,意思是「致命的藥水或物質」。

-----廣告,請繼續往下閱讀-----

從生物體中獲得的毒物通常是許多化學物質的混合物。例如,致命的茄科植物(也稱為顛茄)的粗萃物相當危險,從這些萃取物中也可以純化出化學物質阿托品(atropine)。同樣的,毛地黃花(foxglove)的植物本身也有毒,還能從中萃取出單一的化學物質毛地黃(digoxin)。

有一些歷史悠久的毒藥是混合幾種不同的毒物製作而成,例如「托法娜仙液」(Aqua tofana)就是混合了鉛、砷和顛茄的毒藥。

在瓶子裡人畜無害的化學物質最後怎麼會變成屍體裡發現的毒?無論是哪一種毒藥,在死亡發生之前都會有三個不同階段:下毒、行動和效果。

下毒有四種途徑:消化、呼吸、吸收或注射。也就是說,它們可能是被吃掉或喝掉,透過腸道進入體內;吸入肺部;直接透過皮膚吸收;或是透過注射到肌肉或血液中進入體內。兇手選擇何種方式讓毒物進入受害者體內,取決於毒物的性質。儘管有毒氣體已被用於殺戮,但這涉及一定程度的技術難度,因此並不實用,而且這種手法通常難以針對特定個人。

-----廣告,請繼續往下閱讀-----

透過眼睛和嘴巴的皮膚或黏膜吸收可能非常有效:兇手不必與受害者有任何接觸,甚至在中毒當下還能留在附近。光是將毒藥塗抹在受害者即將接觸的物品上就足以導致死亡。混合在食物或飲料中為大多數毒物提供了一條簡單的途徑,特別適用於固體結晶毒物,因為它們可以簡單灑在飯菜上或溶解在飲料中就好。

不過有一些毒物必須注射到體內才能發揮作用,有時候這是因為毒藥是一種蛋白質,如果加入食物攝取,就很容易被腸胃分解。此外,兇手一定要離受害者夠近才能注射毒物。

毒藥可透過皮膚、食物、或注射進入體內,兇手無需直接接觸即可致命。 圖/envato

毒藥如何摧毀人體機制?

現在我們來看毒物的核心:它們如何破壞身體的內部運作?

毒物確切的作用方式五花八門,而它們的效果則揭曉了許多人類生理學的奧秘。許多毒物會攻擊神經系統,破壞控制身體正常功能且高度複雜的電子訊號:如果阻斷的是心臟各部分之間的交流,可以視為毒物使心臟停止跳動並導致死亡;如果破壞控制呼吸的橫隔膜肌肉調節,同樣也會使呼吸停止,導致窒息而亡。

-----廣告,請繼續往下閱讀-----

也有些毒物會偽裝,隱藏真實身分後進入身體細胞,這些毒物的外型與細胞的重要成分極為相似,但不完全相同,因此可以進入細胞的新陳代謝過程,但無法執行正確的生化功能。毒物會假冒體內的細胞分子,使得細胞的化學作用緩慢停止,最終死亡。當死亡的細胞夠多,整個身體就會跟著死去。

如果不同的毒物以不同的方式發揮作用,不難想像受害者所經歷的症狀也會不同。以大多數消化型的毒物而言,無論作用方式為何,人體的第一反應通常是嘔吐和腹瀉,試圖藉此從體內清除毒物;影響心臟神經和電流訊號的毒物則會導致心悸,最終導致心跳停止;影響細胞化學性質的毒物通常會引起噁心、頭痛和嗜睡的症狀。毒物的作用及可怕後果的故事在本書中比比皆是。

雖然大多數人認為毒物是致命的藥物,但科學家也已經使用與毒物完全相同的化學物質來梳理細胞和器官內部的分子和細胞機制,利用這些資訊開發能夠治療和治癒多種疾病的新藥。舉例來說,科學家透過研究毛地黃植物中的毒物如何影響身體,成功研發出了治療充血性心臟衰竭的藥物。

現代外科手術時使用的常規藥物,同樣也是透過了解顛茄如何影響人體運作後問世,這種藥物除了能預防術後併發症,甚至還能治療在化學戰中受害的士兵。由此可知,化學物質的本質沒有好壞之分,它只是一種化學物質。造成差異的是使用這種化學物質的意圖:是要保護生命,或是奪去生命。

-----廣告,請繼續往下閱讀-----

——本文摘自《毒藥的滋味:11種致命分子與使用它們的凶手》,2024 年 7 月,方舟文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1258 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
藝術與科學的詩性相遇:《匯聚:從自然到社會的藝術探索》國際交流展
PanSci_96
・2024/06/04 ・3873字 ・閱讀時間約 8 分鐘

本文由策展人紀柏豪提供

想享受一場同時兼具科技與藝術的饗宴嗎?來《匯聚:從自然到社會的藝術探索》國際交流展看看吧!

在當代社會中,藝術的角色正持續演進——它創造了一種新的美學,與社會、科學以及技術變革緊密相連。當社會面臨的挑戰因其複雜性而難以僅靠單一學科解決時,藝術研究因其跨越、融合不同知識領域的能力而具有新的意義。今日,許多創作者和機構採用跨學科方法,將藝術與自然、科學與感性、想像力與現實結合,創造嶄新的經驗、知識和美學。

在藝術與科學這兩個看似迥異的領域中,存在著一個共通的追求——深入理解我們所處的世界。這一追求不僅體現了人類對知識渴望的本能,也反映了我們對於更高層次的自我認知和宇宙認識的探索。藝術家透過創作,探索人類經驗的多樣性和情感的複雜性,用畫筆、雕塑、數位媒介來表達對世界的主觀理解。這種理解可能源於個人感受,也可能反映了廣泛的社會和文化現象。

藝術提供了一種通過感知和情感來接觸和理解世界的方式,使我們能夠透過個別經驗來抵達普遍的真理。科學則通過觀察、實驗和分析來探究自然界的法則和現象,尋求對世界的客觀理解。科學方法使我們能夠系統地收集資料、建立理論並驗證假設,從而深化對物理世界的認識。不僅解答了關於自然界的問題,也幫助我們理解了人類自身在這個宇宙中的位置和作用。

-----廣告,請繼續往下閱讀-----

儘管藝術和科學在方法和目的上有所不同,但它們都反映了人類對於更加全面和深刻理解世界的共同願望。藝術讓我們透過感受和想像來擴展對世界的認識,而科學則通過理性和證據來揭示秩序和結構。由國科會指導、國家實驗研究院主辦的《匯聚:從自然到社會的藝術探索》國際交流展,邀請觀眾一同探索藝術與科學的交會,體驗它們如何共同塑造我們對世界的認識和感知,並反思這一過程如何豐富我們的文化與知識視野。

展覽單元介紹

宇宙共生 —— 科技與宇宙的多維依存

當你仰望星空,有沒有想過我們與宇宙的關係?「宇宙共生」單元展示了科技如何將人類感性延伸至浩瀚的宇宙空間。麻省理工學院媒體實驗室的太空探索倡議小組(MIT Media Lab Space Exploration Initiative)帶來了在極端環境下的實地太空模擬,研究生存策略和科技應用。與之並置的《與細菌混了三千年》(3000 Years Among Microbes)則從微生物的角度重新審視太空探索中的殖民語言,帶來全新的太空想像。藝術家利用極端地貌與顯微影像並置,模糊人與微生物的分野,探討共生體概念在星際生態系中的應用。

感官賦能 ——透過科技重塑環境感知

「感官賦能」單元探索藝術家如何通過科技媒介重塑我們對環境的感知。兩位智利藝術家妮可·拉希利耶(Nicole L’Huillier)與派翠西亞·多明格斯(Patricia Domínguez)的《全像乳糜》(Leche Holográfica)是一場冥想式祈願,透過與不同元素的共鳴和諧,讓我們得以在螺旋時空中構想未來。

值得一提的是,藝術家妮可·拉希利耶與派翠西亞·多明格斯曾透過智利與歐盟的合作,在歐洲核子研究組織(CERN)進行藝術駐村計畫,並在那裡發展她們的作品。CERN 以其在粒子物理學上的重大科研成果而聞名,但即使是最前沿的科學研究,也需要藝術家的啟發。這樣的跨域合作不僅揭示了科學現象的美麗與複雜,更為科學研究注入了新的靈感和視角。藝術家的創意與想像力,能夠以不同於科學的方法來詮釋數據與實驗結果,從而開拓更廣泛的理解和應用。

-----廣告,請繼續往下閱讀-----

拉脫維亞藝術家羅莎‧史密特(Rasa Smite)和萊提斯‧史密茨(Raitis Smits)的《深度感知》(Deep Sensing),通過拉脫維亞伊爾本(Irbene) RT-32電波望遠鏡的歷史敘事,象徵性地橋接了技術的過去與現在,探問「為何擁有地球還不足以滿足人類?」該望遠鏡被前蘇聯遺棄,而藝術家們重返此地,探索這個巨大天線在當代的價值。虛擬點雲天線追蹤從太陽到地球的宇宙粒子流動,創造出沉浸式的視覺和聲音景觀,讓觀眾更易於理解氣候變遷的影響。

羅莎‧史密特和萊提斯‧史密茨是里加RIXC新媒體文化中心的共同創辦人,他們的作品結合科學數據、聲音化和視覺化、人工智慧和擴增實境技術,創造出前瞻性的網絡藝術。他們的作品曾在威尼斯建築雙年展、拉脫維亞國家藝術博物館等地展出,並獲得多項國際獎項。

網絡交織 —— 科技與社會的複雜關係

「網絡交織」單元深入探討科技如何影響我們的社會結構和人際關係。瑪麗莎·莫蘭·賈恩(Marisa Morán Jahn)的《銅色景觀》(Copperscapes)展示了銅在全球化勞動中的角色,揭示了這一自然元素如何影響我們的日常生活。她的作品以銅色眼睛作為見證,表現出礦區社區所承受的「身體負擔」,並在影片《銅的私處史》中探討礦物經濟的複雜性,突顯採礦活動對身體及地球主權的影響。

瑪麗莎·莫蘭·賈恩是具有厄瓜多和中國血統的藝術家,其作品致力於重新分配權力,展示藝術作為社會實踐的可能性。她的作品曾在歐巴馬時期的白宮、威尼斯建築雙年展、古根漢美術館等地展出,並獲得聖丹斯電影節和創意資本等獎項。

-----廣告,請繼續往下閱讀-----

李紫彤與孫詠怡的《岔經濟》(Forkonomy)利用區塊鏈技術,重新構想財產與國家之間的連結,探討擁有權背後的政治意義。這個藝術與社會運動計畫,通過工作坊和數位契約,探討如何購買或擁有一毫升的南海,並質疑現有的性別勞動分工和所有權制度。

李紫彤是台灣的藝術家兼策展人,作品結合人類學研究與政治行動,曾在國內外多個知名展覽中展出。孫詠怡是出生於香港的藝術家和程式撰寫者,專注於數位基礎設施的文化意義及廣泛權力的不對等問題,作品曾獲得林茲電子藝術節金尼卡獎等多項國際獎項。

印度藝術家艾蒂·桑德爾(Aarti Sunder)的《深海節點故事》(Nodal Narratives of the Deep Sea)將海底電纜這一隱藏基礎設施帶入視野,探討其與現代化項目、資本主義擴張及殖民主義的關聯。她的作品通過繪畫、物件和影片,展示了數據傳輸的路徑及其對生態系統的影響。

艾蒂·桑德爾的創作涉及影像、寫作與繪畫,專注於探討科技政治和基礎設施相關議題。她的作品曾在柏林藝術學院、新加坡雙年展、世界文化之家等國際場所展出。

-----廣告,請繼續往下閱讀-----

科藝匯聚 —— 跨學科的創新邊界

「科藝匯聚」單元彰顯了藝術與科學共同探索未知領域的力量。國家太空中心的《來自遙遠的訊息》管絃樂曲選粹、麻省理工學院前衛視覺研究中心(CAVS)的歷史檔案,以及臺灣共演化研究隊的「邊界測繪學」年度計畫成果,展示了藝術家與科學家跨域合作的豐富成果和未來潛能。

跨域交流與活動

在展覽期間,策展團隊與台灣致力於促進科學家與藝術家合作的「共演化研究隊」規劃了一系列精彩的跨域交流活動,讓大家能近距離與藝術家、科學家們交流,體驗科技與藝術如何共同作用於當代社會。

活動包括圓桌論壇、藝術家講座和放映會,涵蓋了多個有趣且深入的主題。例如,在「宇宙共生」週末,觀眾可以參與討論極地科學與藝術實踐的圓桌論壇,聆聽來自麻省理工學院媒體實驗室「太空探索倡議」的成員分享他們在極端地貌探索的經驗。另一活動是國家太空中心委託製作的管弦樂曲《來自遙遠的訊息》放映會,由作曲家趙菁文進行演前導聆,帶領觀眾進入一場視覺與聽覺的雙重盛宴。

在「網絡交織」週末,藝術家李紫彤與孫詠怡將帶來一場關於區塊鏈技術應用於南海議題的討論,這場圓桌論壇將探討技術如何影響社會結構和資源分配。印度藝術家艾蒂·桑德爾則會在線上分享她對於海洋及網路基礎設施的研究與創作,揭示隱藏在我們日常生活背後的複雜科技網絡。

-----廣告,請繼續往下閱讀-----

「感官賦能」週末將邀請拉脫維亞藝術家羅莎‧史密特和萊提斯‧史密茨現場分享他們的作品《深度感知》,並探討電波望遠鏡的技術敘事,展示如何通過藝術手段使抽象的科學數據變得可以感知。這不僅讓觀眾更易於理解氣候變遷的影響,也體現了藝術在科學溝通中的重要角色。他們將分享長期研究「自然廣播」的概念,以及每年舉辦「藝術科學節」的經驗。

在「科藝匯聚」週末,觀眾可以參與科學家與藝術家的提案室,直接感受跨領域合作的火花。這些活動將展示跨學科合作如何激發創新,促進我們對世界更深層次的理解。此外,拍攝麻省理工學院前衛視覺研究中心創始人故事的紀錄片將在台灣首映,導演並將與觀眾進行映後座談,分享創作背後的故事和啟發。

藝術與科學的相互啟發,不僅僅是知識和美學的結合,更是對創新與理解的共同追求。在這個亟需跨學科解決方案的時代,這樣的合作顯得尤為重要,為我們探索未知領域提供了無限可能。這次展覽通過多樣的跨域交流活動,讓觀眾能夠親身體驗並參與其中,進一步體會到藝術與科學融合所帶來的豐富成果和未來潛力。

展覽資訊

  • 展覽名稱:《匯聚:從自然到社會的藝術探索 | 國際交流展》
  • 日期:2024/5/10 至 2024/8/10
  • 時間:週一至週五 09:00-18:00(國定假日休)
  • 地點:科技大樓一樓大廳(臺北市大安區和平東路二段106號)
  • 指導單位:國家科學及技術委員會
  • 主辦單位:國家實驗研究院
  • 策展人:紀柏豪
  • 執行單位:融聲創意
  • 協力單位:共演化研究隊
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1258 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。