0

0
0

文字

分享

0
0
0

人類可以創造出最純粹的藍色嗎?比星期一更blue的「真藍」

Sophie Liao
・2016/08/01 ・4340字 ・閱讀時間約 9 分鐘 ・SR值 532 ・七年級

尋找「真藍」的煉金術士

在你的認知裡,藍色帶給你甚麼感受?是冷靜、憂鬱,還是理智?在星際爭霸戰(Star Trek)裡藍色制服代表的是科學組,像是史巴克和麥考伊醫官;在藝術家的眼裡,藍色可以創造出廣闊無邊界的深邃感,或是河流、海洋以及天空的流動感;不過在最近的新發現裡,藍色除了開啟我們對於視覺以及心理的感受以外,還擁有了科學上的新功用。

blue4
史巴克在平常時候都保持著瓦肯星人冷靜,依循邏輯的形象。圖/Bill Lile@flickr

法國的創作藝術家伊夫·克萊因(Yves Klein)不是第一個發現藍色的男人,但卻可能是第一個為藍色配方申請專利的藝術家[1]。在這裡我們要說明一下顏色(Color)和顏料(Pigment)的不同。所有的顏色都是由光的三原色(RGB),也就是(Red),(Green),和(Blue)組成;因此當我們在色座標上定義出三種主要顏色的位置,並以 X、Y、Z 來表示其在座標軸上的相對位置時,我們就可以依據座標位置來表示色彩[2]。

而顏料則是包含將帶有顏色的粉料(像是有機、無機或是金屬的材料)與不同的介質(像是水、溶劑、樹脂或是油)均勻混合後的產物,如何在成膜物質中展現色彩的著色力,調配出藝術家心裡的目標顏色,是許多藝術家以及顏料公司一直煩惱的問題。

blue 5
光的三原色:紅、綠和藍色。圖/wikipedia

距離現在 60 年前左右,克萊因在米蘭展示了 11 幅全為藍色的單色畫布,這種絕對的藍色被評論家認為能引導人類超越現實的層面,象徵著沒有界線的天空和大海。藍色單色畫的展出獲得了空前的成功,克萊因也將這個純粹的藍色命名為國際克萊因藍(International Klein Blue, IKB),並將克萊因藍衍生到一系列的實驗以及人體創作[3]。

-----廣告,請繼續往下閱讀-----

克萊因藍主要的組成採用了群青顏料(Utramarine pigment),在文藝復興時期群青被視為最高級/高貴的顏料,在人工製造技術開發以前,只能由青金石(lapis lazuli)研磨後的粉末取得。群青能呈現藍色的原因在於礦石中含有硫化物的陰離子(S3−)[4];但是隨著畫家將群青與不同的介質混合調配成顏料後,樹脂的選用、群青粉末聚集或分散不均的狀況都會造成色澤變得黯淡,無法呈現群青的真實樣貌。

為了改善這樣的狀況,克萊因與一位巴黎的顏料交易商愛德華·亞當(Edouard Adam)合作,找到一種組成為聚醋酸乙烯酯(Polyvinyl acetate, PVA)的透明合成樹脂,作為混合群青粉末的媒介[5]。以樹脂作為載體,搭配相容性的溶劑,讓群青粉末能在介質中保持均勻懸浮的狀態,大幅保留了群青的色彩強度,展現一種深邃的光澤感。

blue 1
克萊因藍。圖/wikipedia

克萊因的發現使我們找到一種能保留群青粉末的色彩,又能具備加工性,應用在衣物、繪畫、甚至是宮殿建築施工的顏料製作技術。但就如同大部分人類眼睛所能看到的顏色,克萊因藍實際上也不是全然的藍色,而是混雜了部分的綠色[6],人類對於創造出「真藍」的遐想:毫無其他顏色干擾的 100% 純藍色,仍舊停留在想像的區域。

意外發現的科學產物—「真藍」

blue 6
YInMn Blue(釔銦錳藍)。圖/OSU授權使用

直到 2009 年,俄勒岡州立大學(Oregon State University, OSU)的瑪斯.薩柏拉瑪尼安(Mas Subramanian)教授與他的研究團隊卻在一次高溫實驗中,發現了可能是目前最接近「真藍」的無機粉末。

-----廣告,請繼續往下閱讀-----

瑪斯教授的研究生安德魯.史密斯(Andrew E. Smith)原先的目標是了解氧化錳(Manganese Oxide)的電子特性。在華氏 2000 度(相當於攝氏 1100 度)的燒結下,釔氧化錳(YMnO3)與釔氧化銦(YInO3)形成的固溶體(solid solution)結構因為錳離子(Manganese ions)的配位差異,展現出只吸收紅和綠色波長光線的特性,其餘的藍光則被反射。他們還發現,只要調整銦和錳的比例,就能夠調整吸收與反射的波段,也就能創造出不同深淺的藍色。如果能夠達到完全吸收紅光與綠光,真正反射到人眼的就只剩下藍光區域的波段,也就能創造出所謂「真藍」的純粹感。瑪斯教授依照組成元素將這個新發現命名為「YInMn Blue(釔銦錳藍)」。不過在俄勒岡州立大學大家都暱稱為瑪斯藍(Mas Blue)[7]

blue 4
調整錳離子的比例可以調整藍色的深淺。圖/OSU授權使用

有趣的是,這樣特別的藍色並沒有在當時引起廣泛的討論,因為釔銦錳藍並不是一個全新的無機結構,隨著科學期刊的發表,科學家並沒有了解到釔銦錳藍潛在的可能性,「真藍」也因此沉沒在廣大的科學文獻裡。

「如果不是因為我有在產業界(杜邦有一個專門開發顏料的部門)工作過的經驗,我不會知道這個無機材料的發現是極不尋常,而且具有相當高的商業價值的。」瑪斯教授說。在經過了三年的努力,2012 年 10 月,沒有放棄的瑪斯教授與他的研究團隊為這個藍色粉末取得了美國專利(US 8282728),薛特顏料公司(Shepherd Color Company)在這之後立即與俄勒岡州立大學達成了獨家的保密授權協議,並開始對釔銦錳藍進行各項嚴苛的測試,進而發現了釔銦錳藍更多的可能性。

釔銦錳藍—超越顏色以外的應用

傳統的藍色顏料—鈷藍(Cobalt Blue, CoAl2O4)具備穩定的尖晶石(spinel)結構,耐溫性可以高達攝氏 1200 度以上,這在其他的顏料中是非常少見的特性。由於釔銦錳藍也是在 1100 度的高溫下製作而成,釔銦錳藍本身就已經具備極佳的耐溫性,但除此之外,在薛特顏料公司的測試中,他們還發現釔銦錳藍有三個獨特的特性:

-----廣告,請繼續往下閱讀-----

第一、釔銦錳藍無毒也無致癌性

鈷藍在使用時若發生吸入或食入的狀況,可能會導致鈷中毒(Cobalt poisoning)的狀況。

第二、釔銦錳藍在 UV 吸收測試,戶外環境測試的表現都能相當或優於鈷藍

研究團隊依照工業用顏料的標準,對釔銦錳藍進行了 5000 小時的 QUV 紫外光加速老化測試,釔銦錳藍會在設定的溫度以及濕度條件下,進行反覆的 UV 曝曬,藉此模擬陽光照射的影響,以及在露水或雨水噴灑下的表現。同時研究團隊也在辛辛那提(Cincinnati, Ohio)針對釔銦錳藍與鈷藍(比較對象為 CI Pigment Blue 28)進行 48 個月的連續戶外測試,發現釔銦錳藍能達到工業級顏料的需求。這說明了釔銦錳藍在建材、軍事防偽、以及工程塑料等領域都具有潛在的應用價值。[8]

-----廣告,請繼續往下閱讀-----

第三、釔銦錳藍具有紅外線反射功能。

紅外線佔了太陽光輻射光譜一半以上的比例,也因此是主要的熱能來源。如果屋頂能塗上一層紅外線抗反射材料,大部分的太陽光輻射就可以被反射回去,間接降低了屋頂熱能的吸收,就能達到室內恆溫的效果。釔銦錳藍因此提供了一種新的抗反射材料的顏色可能。[8]

blue 5
釔銦錳藍相較於鈷藍可以反射長波長的紅外線,使其可以應用在屋頂塗料,保持室內的恆溫。圖/OSU授權使用

接續這些研究的發現,2016年對薛特顏料公司或是瑪斯教授來說都將是一個全新的開始。薛特顏料公司預備擴大釔銦錳藍的製造,在法規審核通過後就能開始進行商品化的生產,藝術家和畫家也可以與薛特顏料公司申請釔銦錳藍的樣品進行創作,包含水彩或是銅版畫作品。依據薛特顏料公司的網頁說明,只要付出每十公克十美金的價格,大家就可以在網頁上申請釔銦錳藍的粉末樣品。

而瑪斯教授也沒有閒著,位於俄勒岡州立大學的研究團隊已經展開一系列不同顏色的開發工作,從亮橘色、紫色到綠色的無機顏料,期望能找到更穩定、具備紅外線反射特性、同時又能展現明亮色澤的新材料。

-----廣告,請繼續往下閱讀-----

「釔銦錳藍的出現告訴我們,無機顏料家族裡還有許多顏色等著被發現。」薛特顏料公司的研發主管傑佛里.T.皮克(Geoffrey T. Peake)這樣說。

blue 6
瑪斯教授期望能開發出更多穩定的新顏色。圖/OSU授權使用

https://www.youtube.com/watch?v=mxK4eAZUoJw

註:

  1. 克萊因實際上完成的是 Soleau envelope(法國專有名詞,形式上是一個密封的信函),內文詳載發明的日期以及想法,在法國法律下可以當作一種發明的優先權,遞交到法國工業財產權局(Institut national de la propriété industrielle, INPI)可用於專利權的申請。
  2. 常用的色座標有 RGB 或是 CMYK 系統。
  3. 想親眼看到克萊因藍的作品可以到巴黎龐畢度中心或是美國的現代藝術博物館(MOMA)。
  4. 三硫化物的陰離子(S3−)會吸收 600 奈米左右波長的光線。
  5. 克萊因使用的合成樹脂至今仍在販售,型號為 Rhodopas M or M60A。
  6. 克萊因藍的色座標為 RGB(0, 47, 167),或是 RGB(0%, 18.4%, 65.5%)。實際上也幾乎是公認的克萊因藍色座標。主要原因在於克萊因當年提交Soleau envelope時,詳列了完整的顏料調整配方以及使用材料名稱:包含 1.2 公斤的Rhodopas M;2.2公斤的乙醇(95%工業級);0.6公斤的乙酸乙酯,總共 4 公斤的基料在低溫攪拌下後,再加入50%的群青粉末即可完成克萊因藍的顏料。理論上任何人依照同樣的配方都可以調配出相同的克萊因藍。而RGB(0, 47, 167)或是 RGB(0%, 18.4%, 65.5%)並非是科學上我們描述的顏色比例,而是提供給CSS、HTML辨識的顏色定義代碼。
  7. 釔銦錳藍的參考色座標為 RGB(0, 0, 255)。須注意這裡所列之釔銦錳藍的色座標數值為參考值,並非原始作者測試數據。由於從無機的粉料到調配成顏料配方,到在標準環境光源下去做色座標鑑定,在不同環境光源下皆會有很大的影響,要知道釔銦猛藍做成顏料後的色號,應以薛特顏料公司或其他使用釔銦猛藍之顏料,以標準測試手法才具相對參考價值。因本文在截稿日前未能取得瑪斯教授實驗室的參考數據,故在此列出網路上大家的推測色號,讓讀者能比較看看克萊因藍以及釔銦猛藍的顏色差異。想了解更多釔銦錳藍的發現故事,請參考論文出處:“Mn3+ in Trigonal Bipyramidal Coordination: A New Blue Chromophore”, J. Am. Chem. Soc., 2009, 131 (47), pp 17084–17086
  8. 想了解釔銦錳藍在 UV 和近紅外線波段的吸收數據,請參考論文出處;Andrew E. Smith, Matthew C. Comstock, M.A. Subramanian, “Spectral properties of the UV absorbing and near-IR reflecting blue pigment, YIn1-xMnxO3, Dyes and Pigments“, Volume 133, October 2016, Pages 214-221, ISSN 0143-7208,

參考資料:

-----廣告,請繼續往下閱讀-----
  1. Sasha Frere-Jones, “All About Yves: The Story of International Klein Blue” [May 20, 2015]
  2. Alastair Sooke, “Yves Klein: The man who invented the color“, BBC [August 28, 2014]
  3. 與火同行—-談談 Yves Klein [November 18, 2008]
  4. Stacey Leasca, “A Gorgeous New Color Is About To Be Released Into The World” [June 28, 2016]
  5. Jacob L. Heller, MD, MHA, Emergency Medicine, Virginia Mason Medical Center, “Cobalt poisoning“, MedlinePlus, Medical Encyclopedia
  6. Department of Chemistry, Oregon State University, “The Story of YInMn Blue
  7. List of inorganic pigments, wikipedia
  8. Symbolism of the Color Blue
  9. Megan Fellman, “Who knew there was so much to blue?“, Northwestern University [November 5, 2014]
  10. Aurarelles de Mas Blue, water color of Mas Blue
  11. Philip Ball, “Blue Standard“, [September 27, 2012]
  12. Pigment Discovery Media Attention, Subramanian Research Group [May 23, 2015]
  13. Subramanian Research Group Webpage, Oregon State University
  14. Eliane Coser, Vicente Froes Moritz, Arno Krenzinger, Carlos Arthur Ferreira, “Development of paints with infrared radiation reflective properties” [January 15, 2015]
-----廣告,請繼續往下閱讀-----
文章難易度
Sophie Liao
3 篇文章 ・ 0 位粉絲
泛科學實習編輯,台大化工系畢,涉獵領域包含文學、化學到能源,現在是Big Bang Theory前兩季的忠實觀眾與科學宅,最愛電影之一是星際大戰第六集,家裡尚無光劍。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
以科技修護文物真實面目——張元鳳專訪
顯微觀點_96
・2025/11/25 ・4778字 ・閱讀時間約 9 分鐘

本文轉載自顯微觀點

現代主流藝術的「色感」豐富,卻缺少傳統東方繪畫的「質感」。

— 張元鳳

國立臺灣師範大學文物保存維護研究發展中心(下稱師大文保中心)主任張元鳳口中的「質感」,並非一種難以定義、不證自明的高尚,而是傳統顏料能被感官接收、儀器量測的物理特質。透過顯微科技,文物藝品的「質感」更能被突顯、深入分析。

張元鳳剖析,傳統東方畫顏料來自天然礦物,如青金石、藍銅礦及珊瑚末等。經過搗碎、研磨、淘洗去除雜質,並以水沉澱,區分顆粒大小,製成多彩的色粉。

多次沉澱淘洗之後能獲得小顆粒顏料,與初期沉澱的大顆粒色粉雖來自完全相同的礦物,卻呈現截然不同的飽和度。

-----廣告,請繼續往下閱讀-----
P7212418
師大文保中心學生的礦物顏料練習作品,一種成分的顏料形成多層次色彩。攝影:楊雅棠

張元鳳解釋,「東方繪畫不靠顏料混色而增加色彩,是利用顏料顆粒半徑差異。因為光的亂反射,顏料顆粒愈大就愈鮮艷,顆粒愈小的顏料就愈加淺淡。」而傳統礦物顏料特性的創作風格,至今矗立在我們的生活中。

張元鳳舉例,「台灣廟宇最常見的傳統彩繪模式,是衣甲、雲彩的漸層色彩。內圈的顏料最鮮艷,愈向外就愈淡素,形成華美的漸層。這種技法在日本被稱為繧繝彩色(うんげんざいしき)。」

這種色彩梯度,可以用手指觸摸出來。神像彩繪上,鮮艷的中心顏料顆粒明顯、粗糙如沙礫,素雅的外圍小顆粒顏料則十分滑順。張元鳳說,現在廟宇彩繪已改用油漆等現代顏料,但畫師依然遵循這種衍生自礦物顏料的風格。

由於對礦物顏料的研究,張元鳳對顯微技術的數位化印象深刻。她說,「早期並不容易看見顏料顆粒全貌。現在能堆疊 Z 軸成像的數位顯微鏡,能讓整個顏料顆粒如寶石一般清晰閃耀。繪畫層切片(cross-section)也能清晰展現層次,這是過往顯微鏡做不到的。」

-----廣告,請繼續往下閱讀-----
畫作樣本切片的製作過程,有如醫學病理科製作樣本切片,必須精心挑選部位,進行包埋、切片,並嘗試不同的顯微技術。

師大文保中心:文物手術室

單顆顏料在整幅畫作中僅屬滄海一粟,如同顏料顆粒的體積,師大文保中心的每日文物研究與修護任務中也僅占中心業務一部分。

文保中心隱身在師大校園一隅,嚴格管理的閘門之內溫濕度恆常,地面一塵不染,連所有的照明都去除紫外線以保護文物。

墊高的日本榻榻米圍出中央的主要修護區,上方懸吊多盞手術燈,木桌上安放修護中的文物;四周則圍繞著檢驗攝影室、實驗用抽風櫃、木製工具架等。修護師與學生們錯落在這個融合日式畫室、手術室、化學實驗室的空間中埋首工作。

師大文保中心學生們以手工將褚皮紙製作成細長的頂紙,從一般工作桌到實驗用抽風櫃都是他們修護文物的場域。攝影:楊雅棠
師大文保中心學生們以手工將褚皮紙製作成細長的頂紙,從一般工作桌到實驗用抽風櫃都是他們修護文物的場域。攝影:楊雅棠

每一件進入師大文保中心的文物都必須進行修護前記錄,包含拍攝正面光、側面光、透光影像。還要經過拉曼光譜分析、紅外線、紫外線、X光螢光術(XRF)的檢驗。若有可疑處,就需要使用顯微鏡直接觀察,或是取文物邊緣的結構作為分析樣本。

-----廣告,請繼續往下閱讀-----

透光攝影可以分析紙張在不同位置的厚薄,呈現出脆弱或是加固的跡象;側光使畫紙的凹凸皺褶無所遁形。紫外光則能讓霉斑呈現螢光,使白光下難以分辨的霉斑與普通褐斑展現出差異。

文物汙損性質的檢測之外,紅外光與 XRF 則用於顏料成分分析,尤其 XRF 光譜儀可接收不同材料受 X 光所激發出的次級 X 光,辨別顏料、媒材成分。

修護東方書畫:背面與正面並重

由於濕氣與溫度影響,長年收藏於庫房中的作品經常處於老化狀態,其大面積的黃化可以用典具帖紙(一種極致纖薄的日本和紙)覆蓋,再抹上蒸餾水,以這層極薄的水體吸取、移除黃化成分,並確保顏料穩定不暈開。

楮樹皮製成的典具帖紙具有長而強韌的纖維,能製作出世上最輕薄的紙張。被定為日本文化遺產的典具帖紙不僅能清潔畫面,也能作為背紙支撐書畫。

-----廣告,請繼續往下閱讀-----

修復水溶性媒材製作的文物時,需要將作品局部解體,以水軟化糨糊,才能把舊背紙層層揭開。直到把舊的命紙(最接近畫作的背紙)與畫作分開來,再糊上新的命紙與背紙。若水量太多或施作時間太長,正面畫心的顏料、墨跡也會溶於水中。

紙質文物的折疊或脆弱處,也可以用撕成長條狀的楮皮紙作為「頂紙」支撐。修護中的林朝英的竹葉體書法作品,就是以研究生們細心手工撕成的頂紙進行補強。

P7212428
師大文保中心學生正在依照文物修護需求製作頂紙。攝影:楊雅棠

張元鳳說明,林朝英被稱為清朝唯一台灣藝術家,其書法曾經過多次修復,但是過往觀念與技術較不穩定,導致畫面出現許多凹凸。現在團隊正以乾式手法更換背紙,希望能讓竹葉書法飛舞在平坦潔淨的表面上。

對於前人的修復構造,張元鳳說,「得用鑷子像做手術般移除極小塊的舊背紙,每天只完成 5 公分的進度。文物修護除了技術,也非常考驗定性。」

-----廣告,請繼續往下閱讀-----

修復師知能:藝術史判斷力

在顯微鏡、紅外線、光譜分析等檢驗科技介入後,科學數據提供了客觀數值作為文物歷程的分析依據。但修護師的藝術史知識與批判性思考依然是決策中不可或缺的依據。

張元鳳舉例,以紅外線光譜進行成分檢驗時,需與既有的資料庫比對,但是目前資料庫中繪畫顏料樣本稀少,汽車烤漆的資料卻很多。因此含有鉛或鋅的顏料,經常被系統推斷為汽車烤漆。

張元鳳笑說,「如果缺乏對文物歷史的知識,只遵從儀器檢測與資料庫,就會被誤導『前人是用如同烤漆的顏料作畫』,那是不可能的!」

又或是在東方畫上面發現顏色鮮艷,半徑卻特別小的顏料顆粒,就應該萌生疑心。以創作年代常見的顏料顆粒進行比對,確認是否有後人補畫全色,又或者其實是仿造贗品。而非毫不批判地接受檢測結果。

張元鳳說,修護師的知識與文物的檢驗資料庫統合化、豐富化,能降低被誤導的風險,提升修護者對檢驗結果的辨別能力,而這兩個方向都需要修護研究單位長期的努力與合作。

-----廣告,請繼續往下閱讀-----

科學檢驗藝術的客觀面

對於科學檢測技術對文物修護的影響,張元鳳認為在早期的修復中,常常出現受當下主流文化影響的詮釋,導致原本的創作被掩蓋。科學檢測技術實現了修護倫理的「客觀精神」與真實性基礎。

她回憶說,剛開始堅持使用科學檢測作為修護依據的時期,也有人質疑「修就修,為什麼要做這麼多有風險的檢查?」

現在,來自不同學科領域的學生在師大文保中心學習文物保護技術,多元的檢驗科技,反而更能善用每一次檢測、每一丁點樣本提供的資訊。張元鳳發現,來自理工領域的學生對操作檢測儀器、解讀圖表較有信心,但是美術領域的學生因為具備創作經驗,更能夠對檢驗結果進行合理詮釋。

對於跨領域的修護技術學習歷程,張元鳳說,「包括我在內,有些美術背景學生最初接觸檢測科技時會感到害怕或辛苦。我希望可以讓學生們免於這種痛苦,所以要求自己先學會各種技術來傳授他們。」

-----廣告,請繼續往下閱讀-----

在最近的技術發展中,張元鳳相當期待XRF可以實現對文物進行大範圍 mapping(面掃描)的功能,並輸出定量成果,如此將能大幅提升成分檢驗的精準與效率。

同時她也很期待3D X-ray提供來更高效率的纖維構造分析,過往使用顯微鏡觀察,必須將文物纖維剝成細小的狀態,過程相當困難。若能使用高解析度的 3D X 光檢驗,對人力與樣本的使用會更有效率。

誰人眼中的完好:文物修護原則

忒修斯之船(Ship of Theseus)是古希臘最早的哲學難題之一,也或許是被修復過最多次的文物:雅典人在數百年間不斷替換忒修斯之船朽壞的部位,當這艘船的所有部位都被更新過,它還是原本那艘船嗎?若不是,何時開始它不再算是同一艘船?

對修護師來說,在每一次修護專案開始時,可能都需要經歷過一次類似的思想實驗,「如何修護,才能確保文物總是同一件作品?」

張元鳳認為,文物修護的基礎原則包含適宜性、安全性、可辨識性、可逆性。採取干預最低、效益最高的檢測與修護方法。任何後加的材料都需與原作成分相異,能讓未來的修復者得以辨認,且能在無損原作的條件下去除。

因此師大文保中心在修護時,都採用可去除的媒材。例如關公頭冠上氧化發黑的金屬,就以可去除的金粉覆蓋。在恢復原貌與可逆性中找到平衡。

張元鳳指出,「修護工作的目標,是讓恢復、保持文物應有的真實模樣,並確保我們的修護能被意見不同的後人除去。」

呂鐵州 後庭 北美館
呂鐵州膠彩畫作品《後庭》進入師大文保中心前,已在庫房閒置超過十年,且因後人修復不當導致畫面損傷、構圖偏誤。文保中心經嚴謹考究與討論,再次將此畫作清理裝裱,恢復為完整日式屏風架構。Source: 台北市立美術館

文化變遷:正視融合的結果

若說張元鳳對文物修護的忒修斯之船命題,以文物的「真實原貌」作為答案,那麼專精東方藝術的她對文化變遷則以「融合」優先於「鞏固」原貌。

她以台灣風行一時的膠彩畫為例,這種由日本藝術家引入台灣的畫作在日治時期被稱為「灣製(日本)畫」,國民政府稱之為「東洋畫」並加以冷落,之後由藝術家林之助正名為膠彩畫,漸漸重獲重視。

張元鳳指出,當年國民政府視膠彩畫為日本殖民象徵。但日本的膠彩畫卻是由唐朝流傳而來,並高度保留唐朝工筆重彩的技法,其實可以視為中華藝術的延伸。

張元鳳拿出正在修護的日本型紙,說明這些由江戶時代工匠精心雕刻的印刷模板已經有 200 年歷史,在 19 世紀大量流入歐洲,影響歐洲的文化潮流。其重複的精美樣式,成為歐洲文化至今活躍的元素。如時尚精品 Louis Vuitton 就是在 19 世紀末受型紙等日本文物啟發,設計出歷久不衰的品牌識別紋樣。

伊勢型紙 Wikimedia 1
精緻的日本文化遺產,手工製作的伊勢型紙。Source: Wikimedia
師大文保中心不僅邀請日本專業修護學者合作修護台灣文物,也接受來自日本的修復委託。圖中張元鳳手持的型紙已有200年以上歷史。攝影:楊雅棠
師大文保中心不僅邀請日本專業修護學者合作修護台灣文物,也接受來自日本的修復委託。圖中張元鳳手持的型紙已有 200 年以上歷史。攝影:楊雅棠

張元鳳笑說,「考慮到日本型紙歷史的中華元素,LV 等歐洲精品也能看作是一種東方文化的產物。」

面對文化元素的流動,張元鳳認為,「選擇融合,創作才會愈來愈豐富;切割只會讓文化愈形單薄。尊重每件文物的歷史,正視真實脈絡,是與台灣主體性相輔相成的價值。」

延伸資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
毒藥的歷史:死亡、救贖與科學的交匯點——《毒藥的滋味》
PanSci_96
・2024/09/03 ・2429字 ・閱讀時間約 5 分鐘

奪命計劃的冷酷藝術

在犯罪史上,謀殺是特別令人髮指的罪行;而在各種殺人手法之中,只有寥寥幾種會像毒藥那樣,令人有如此奇特的病態迷戀。與一時腦熱的衝動謀殺相比,毒殺所涉及的事前規劃與冷酷的算計,完全符合法律術語中的「惡意預謀」(malice aforethought)定義。毒殺需要預先籌畫並了解受害者的習慣,也必須考慮如何下毒。有些毒藥只要幾分鐘就能奪人性命,其他則可以長期慢性下毒,逐漸在體內積累,最終導致受害者必然的死亡。

這本書沒有要列出下毒者及受害者的清單,而是要探討毒物的性質,以及它們如何在分子、細胞和生理層面影響人體。每種毒藥都有獨特的致死機制,受害者所經歷的各種症狀往往都是線索,有助於抽絲剝繭找出他們被下了什麼毒。在少數情況下,這些知識有助於給予適當的治療,讓受害者能完全康復。但在大多數情況下,就算知道是什麼毒物對於治療也沒有幫助,因為根本沒有解藥。

毒殺因冷酷計劃與預謀惡意而特別令人髮指。 圖/envato

雖然毒物(poison)和毒素(toxin)這兩個詞經常互換使用,但嚴格來說它們並不相同。「毒物」是任何會對身體造成傷害的化學物質,可以是天然的,也可以是人造的,而「毒素」通常是指生物所製造的致命化學物質。不過如果你是被下毒的一方,那麼兩者的差異就只是學術討論了。

毒物的兩面性:從致命陷阱到救命藥

toxikon 這個字源自古希臘文,意思是「箭頭浸泡的毒物」,指的是塗抹在箭頭上以導致敵人死亡的植物萃取物。當 toxikon 這個字與希臘文的「研究」logia 相結合,就成為我們現在的「毒理學」或「毒素研究」(toxicology)這個詞。毒物一詞源自拉丁語的 potio,意思是「喝」,之後慢慢演變成古法語中的 puison 或 poison。「毒物」這個字在一二○○年首次出現在英語中,意思是「致命的藥水或物質」。

-----廣告,請繼續往下閱讀-----

從生物體中獲得的毒物通常是許多化學物質的混合物。例如,致命的茄科植物(也稱為顛茄)的粗萃物相當危險,從這些萃取物中也可以純化出化學物質阿托品(atropine)。同樣的,毛地黃花(foxglove)的植物本身也有毒,還能從中萃取出單一的化學物質毛地黃(digoxin)。

有一些歷史悠久的毒藥是混合幾種不同的毒物製作而成,例如「托法娜仙液」(Aqua tofana)就是混合了鉛、砷和顛茄的毒藥。

在瓶子裡人畜無害的化學物質最後怎麼會變成屍體裡發現的毒?無論是哪一種毒藥,在死亡發生之前都會有三個不同階段:下毒、行動和效果。

下毒有四種途徑:消化、呼吸、吸收或注射。也就是說,它們可能是被吃掉或喝掉,透過腸道進入體內;吸入肺部;直接透過皮膚吸收;或是透過注射到肌肉或血液中進入體內。兇手選擇何種方式讓毒物進入受害者體內,取決於毒物的性質。儘管有毒氣體已被用於殺戮,但這涉及一定程度的技術難度,因此並不實用,而且這種手法通常難以針對特定個人。

-----廣告,請繼續往下閱讀-----

透過眼睛和嘴巴的皮膚或黏膜吸收可能非常有效:兇手不必與受害者有任何接觸,甚至在中毒當下還能留在附近。光是將毒藥塗抹在受害者即將接觸的物品上就足以導致死亡。混合在食物或飲料中為大多數毒物提供了一條簡單的途徑,特別適用於固體結晶毒物,因為它們可以簡單灑在飯菜上或溶解在飲料中就好。

不過有一些毒物必須注射到體內才能發揮作用,有時候這是因為毒藥是一種蛋白質,如果加入食物攝取,就很容易被腸胃分解。此外,兇手一定要離受害者夠近才能注射毒物。

毒藥可透過皮膚、食物、或注射進入體內,兇手無需直接接觸即可致命。 圖/envato

毒藥如何摧毀人體機制?

現在我們來看毒物的核心:它們如何破壞身體的內部運作?

毒物確切的作用方式五花八門,而它們的效果則揭曉了許多人類生理學的奧秘。許多毒物會攻擊神經系統,破壞控制身體正常功能且高度複雜的電子訊號:如果阻斷的是心臟各部分之間的交流,可以視為毒物使心臟停止跳動並導致死亡;如果破壞控制呼吸的橫隔膜肌肉調節,同樣也會使呼吸停止,導致窒息而亡。

-----廣告,請繼續往下閱讀-----

也有些毒物會偽裝,隱藏真實身分後進入身體細胞,這些毒物的外型與細胞的重要成分極為相似,但不完全相同,因此可以進入細胞的新陳代謝過程,但無法執行正確的生化功能。毒物會假冒體內的細胞分子,使得細胞的化學作用緩慢停止,最終死亡。當死亡的細胞夠多,整個身體就會跟著死去。

如果不同的毒物以不同的方式發揮作用,不難想像受害者所經歷的症狀也會不同。以大多數消化型的毒物而言,無論作用方式為何,人體的第一反應通常是嘔吐和腹瀉,試圖藉此從體內清除毒物;影響心臟神經和電流訊號的毒物則會導致心悸,最終導致心跳停止;影響細胞化學性質的毒物通常會引起噁心、頭痛和嗜睡的症狀。毒物的作用及可怕後果的故事在本書中比比皆是。

雖然大多數人認為毒物是致命的藥物,但科學家也已經使用與毒物完全相同的化學物質來梳理細胞和器官內部的分子和細胞機制,利用這些資訊開發能夠治療和治癒多種疾病的新藥。舉例來說,科學家透過研究毛地黃植物中的毒物如何影響身體,成功研發出了治療充血性心臟衰竭的藥物。

現代外科手術時使用的常規藥物,同樣也是透過了解顛茄如何影響人體運作後問世,這種藥物除了能預防術後併發症,甚至還能治療在化學戰中受害的士兵。由此可知,化學物質的本質沒有好壞之分,它只是一種化學物質。造成差異的是使用這種化學物質的意圖:是要保護生命,或是奪去生命。

-----廣告,請繼續往下閱讀-----

——本文摘自《毒藥的滋味:11種致命分子與使用它們的凶手》,2024 年 7 月,方舟文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1266 篇文章 ・ 2631 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。