0

1
1

文字

分享

0
1
1

科學期刊該描述科學家是如何製造致命感冒病毒嗎?

陸子鈞
・2011/12/24 ・2718字 ・閱讀時間約 5 分鐘 ・SR值 544 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

史無前例地,美國政府要求科學期刊不要發表有關致命病毒H5N1的實驗細節,避免惡意份子使用那些資訊。這樣的管制是否明智?

H5N1禽流感病毒鮮少感染人類,不過若感染了,將是一發不可收拾的結果。這支病毒在1997年香港,首次感染人類,將近600名患者,其中約60%的人死亡。

雖然禽流感病毒不具有高感染性,但長期以來,科學家當心它可能突變,或許和人類感冒病毒融合,得到在人群間容易傳播的特性,像是在2009年引起A型流行性感冒的H1N1/A病毒一樣。這場惡夢從禽流感首次感染人類之後十幾年,至今尚未成真。目前,H5N1只會感染那些頻繁接觸得到H5N1的鳥類的人。

假如H5N1具高傳染性,我們將面臨另一場改變世界的疫情,像是1918年的流行感冒。好在,到目前為止我們都算幸運。

那只是因為自然界還沒有途徑讓H5N1變得高感染性。但並不表示科學家沒有辦法。由威斯康辛大學及伊萊茲馬斯大學主導的研究中,科學家製造出能在雪貂間輕易傳播的H5N1病毒株。雪貂是用來研究人類感冒病毒的實驗動物-這也表示,病毒也能輕易在人類間傳播。

無法得知科學家確切如何辦到的,大多的資料從九月之後,就在科學發表及會議中化整為零。合理的推斷,研究團隊下一步就是將成果發表在重要的科學期刊中,除了描述新的病毒株,也包括它的遺傳組成。這也表示,任何有受過足夠科學訓練的人-可能是另一名科學家或恐怖分子,都能讀到這篇報告,並自己製成這支新的H5N1病毒株。

意識到這個風險,美國政府在本週二作了一個史無前例的決定:要求科學期刊不能發表H5N1實驗的細節,避免相關資訊會落入惡棍手中,製成生化武器。看來就兩本期刊會面臨這問題-ScienceNature,他們決定先保留製成「超級H5N1」的相關成分,只發佈研究及結論。不過也許只要這些內容,也就足以讓讀者自己推敲出相關配方了。

週二Foreign Policy的專欄作者Laurie Garrett發表一篇評論,深入「人造H5N1」爭議,推測監管此類研究的國家生物安全委員會(National Science Advisory Board for Biosecurity, NSABB),有幾項可能動作:

一、建議所有可信的科學期刊,減少釋出相關研究報告,特別是針對這份研究;

二、同意發表全篇文章,並免費開放;

三、建議出版,不過刪除重要的段落。

委員會原先採第三個選項,建議ScienceNature和其他可能發表相關研究的期刊,刪除部分的實驗材料與方法,讓其他科學家知道這個研究團隊作了什麼,但無從得知是如何做的。

NSABB委員會的決定是:

根據多方考量,NSABB決定建議美國衛生福利部(Department of Health and Human Services, HHS)要求研究報告作者及科學期刊編輯,為了科學發現的重要性對公共衛生和科學社群,考慮修改這篇報告。NSABB建議發表大概的研究結論,及顯著的成果,但不包含研究方法及其他可能使有心人士重複該實驗的細節。

或許看起來很瘋狂,即使科學家也曾進行過類似可能帶來風險的實驗-很小的實驗。致命的H5N1病毒也許會從實驗室中外洩,引發大流行,就像史蒂芬金的小說《末日逼近》(The Stand)情節一樣。不過,NSABB認為諸類研究有助於科學家了解病毒,進而知道如何對抗它。

科學期刊出版社修改研究報告的作法可能有些疑問。隱藏部分資訊或許讓其他科學家難以重複該實驗,但卻未必能阻止生化恐怖分子推敲出製備超級流感的詳細配方。Science的編輯Bruce Alberts於週二發表一則聲明:

NASBB強調必須確保研究細節不會落入邪惡的手裡。我們強烈支持NASBB的職份,還有他們促使科學的社會責任之重要性。

然而,同時科學家也曾考慮過,隱瞞可能和公共衛生有關的訊息,表示對流行感冒研究負責。許多研究流行感冒的科學社群,尤其那些研究相關病毒株的科學家,出於善意地必須知道研究細節,以保護大眾。

釐清這史無前例的現況非常重要。科學期刊-尤其是科學家本身,致力於藉由同儕評論,推動免費及公開的研究發表制度。這是現代科學發展的基石,尤其對高標準的期刊-像是ScienceNature,是學術界的拱心石。沒有期刊會沒有好理由就同意審稿,就像Garrett在她發表於Foreign Policy的評論中所提及:

如果科學家必須使用文字描述(即使尚未發表)的技術,製成高傳染性、高致病性的禽流感,研究成果理論上能被低科技的邪惡份子利用。或許,更危險地,自然演化會藉由病雞、豬、甚至人類出現這株病毒。科學家已捲入恐怖分子及大流行疫情之中。此外,以往科學家也在大眾的信任下,進行合法的研究,在天花及小兒痲痺的實驗中,利用放射線,讓病毒變得更具致命性。

 Garrett在這還指出另一爭議,即使期刊決定保留研究細節,但無疑地,對病毒的研究已經在世界各地的實驗室中完成。而且並非全都在絕對安全的實驗室中進行。以疾病管制局(Centers for Disease Control and Prevention)的BSL-4等級實驗室為例,設有像電影《全境擴散》(Contagion)中的氣密裝置,科學家在裡頭穿著太空裝,操作像是天花或伊波拉病毒的致命微生物。而新H5N1病毒株,目前僅在BSL-3等級實驗室中操作;配有高效空氣濾過裝置,及淋浴設備,進出實驗室的操作員必須更換衣物……換句話說,安全,但或許不夠安全。壞消息是,安全往往被高估,而且離每位研究員很遠。

就像Bruce Alberts在Nature中所提到,即使是相對安全的實驗室,病毒溢出的風險遠大於零:

過去十年來,嚴重急性呼吸道症候群(severe acute respiratory syndrome, SARS)在中國大陸、台灣、新加坡的四間等級為BSL-3或BSL-4的高封閉實驗室中,意外感染研究人員。九月一份美國國家科學研究委員會(US National Research Council )的報告指出,在2003至2009年間,在操作列管藥劑時有395起案件違反安全規定,包括七起感染事件,這也讓危險的病毒從高密閉性的實驗室中溢出。

比其他病原體更危險的是,溢出的感冒病毒會快速傳染。明尼蘇達大學「傳染病研究及政策中心」主任Michael Osterholm表示:「當SARS或其他BSL-4實驗室中的藥劑溢出,造成全球感染的程度有限。不過當溢出的是會快速在全球傳染的感冒病毒,將帶來嚴苛的考驗。」

另一方面,如果H5N1必須限制在BSL-4實驗室中研究,將減緩對疫苗研發及制定相關預防政策的進度,因為世界上只有少數實驗室有如此高規格的設備。此外,我們隱瞞越多有關H5N1人工病毒株的細節,就讓相關研究領域的科學家,越少資訊能為未來自然爆發的禽流感疫情作準備。這是一把雙面刃-無論決定公開,或不公開這項研究。

拜科技所賜,科學變得更學科分化。不同領域的專家,可以進行更深入的研究,並彼此分享成果,使得發展比以往更快速,也有更多的新發現。以兩支高感染性疾病為例-2009年的SARS和2009年的A型流感,全球各地的實驗室,即時找出病毒,挽救性命。不過分工合作也有另外的風險,生物操作防護,會受到研究網絡的分散-一旦有一名研究員操作失誤,就可能會引發不可想像的災難。

資料來源:TIME: Should Journals Describe How Scientists Made a Killer Flu? [December 21, 2011]

相關報導:ScienceInsider: U.S. Biosecurity Panel Calls for Asilomar-Style Moratorium on H5N1 Papers [23 December 2011]

文章難易度
陸子鈞
295 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

1
0

文字

分享

0
1
0
被 Covid-19 感染後,病毒進入人體後去了哪裡?嗜好你哪一個細胞?——《從一個沒有名字的病開始》
商周出版_96
・2022/11/14 ・3757字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

我們的生命被機緣所定義,即使是那些我們錯過的。
——《班傑明的奇幻旅程》

「有症狀的人,請戴口罩。」

這是長久以來,預防呼吸道感染的策略。我們一貫以呼吸道症狀,來辨識誰是那個可能散播病毒的「行動病毒複製機」。但隨著新冠病毒的出現,呼吸道症狀不再適用於辨識感染性與否;於是在疫情蔓延期間,防疫策略是無論有沒有症狀都得戴上口罩,甚至激進一點的作法,直接規定大眾關在家中、減少移動。

疫情蔓延期間,無論是否有症狀都得戴上口罩。圖/Pixabay

但是病毒真的這麼安分,就只待在呼吸道嗎?透過不同研究,我們可以一窺在 Omicron 出現前,新冠病毒在人體內到底「去了哪裡」。

最受新冠病毒青睞的人體細胞

新冠病毒透過棘蛋白與人類細胞表面的 ACE2 蛋白質受體結合。與特定細胞受體結合,是病毒「可能」入侵人體的第一個步驟。

那麼人體中哪些地方有最多 ACE2 呢?不管是口腔或鼻腔黏膜的上皮細胞,都有非常高量的 ACE2。

值得注意的是,與 SARS 病毒相比,新冠病毒棘蛋白與人體 ACE2 分子的親和力,增加了 10~20 倍[1]

也就是說,當你吸入含有病毒的空氣(機率較低),這些新冠病毒在路過上呼吸道之際,附著在上皮細胞的機率可能是 SARS 病毒的 10~20 倍,或者更有可能是透過你沾染病毒的手,觸摸鼻腔、口腔、眼睛的黏膜表皮(機率較高),而給了病毒機會感染上皮細胞。這足以解釋,為何新冠病毒最初感染階段,都是先在上呼吸道複製,且被感染的人甚至在沒有症狀的情況下,就具有傳播病毒的能力。這一點與 SARS 病毒非常不一樣,SARS 主要感染下呼吸道,且病人要在肺炎重症發病後 3~4 天才具有效感染性。

2020 年新冠疫情剛爆發時,穿梭在東亞各國的鑽石公主號遊輪[2],因為一位被感染的乘客在香港上了船,造成全遊輪被隔離在日本橫濱港。最終咽喉試子呈 PCR 陽性的有 712 人(占 19.2%),其中超過 50% 的人自始至終都沒有覺察到病毒的存在,這就是無症狀感染的比例。另外,約有 20% 的感染者出現下呼吸道肺炎症狀,以及 30% 屬於輕症的上呼吸道感染。整體來看,最大宗的感染者(80%)呈現輕微或無症狀。

而根據研究,24% 的確診者,眼睛結膜試子也會呈 PCR 陽性,陽性率約可維持五天左右。

現在就很清楚,為什麼防疫宣導一直告訴大家不要用手摸眼睛、嘴巴、鼻子,這是絕對有科學根據的。這些黏膜表皮,就是病毒入侵人體的要害,同時是人體系統受到影響的元凶,值得持續探討。

免疫機制控制病毒不亂竄

病毒在口腔或鼻腔黏膜上皮細胞的複製過程中,我們的身體也不是閒著沒事等病毒大軍進攻。當病毒嘗試與 ACE2 結合時,人體有足夠的時間,透過自身的先天性免疫反應對付病毒。

當免疫系統開始作用,我們可能會出現發燒、流鼻水、咳嗽等症狀。因為鼻腔與口腔是貫通的,病毒可以緩慢移到口咽、鼻咽、喉咽和整個上呼吸道,附著在黏膜上與 ACE2 結合進行複製。所以當我們使用快篩劑,無論是鼻咽或是唾液快篩,很容易從這些部位檢測到病毒。

鼻咽或是唾液快篩容易檢測到病毒。圖/Envato Elements

如果身體的先天免疫機制和肺部防禦能力夠強,透過上呼吸道局部的免疫反應,將病毒圍堵並控制,就可以預防病毒侵入下呼吸道和其他器官。病毒感染上呼吸道的表皮,並沒有影響到關鍵的人體功能(嬰幼兒除外,因為他們的呼吸通道較窄小,若有任何發炎腫脹,就可能造成呼吸困難的緊急狀況),因此新冠感染者多數呈現無症狀,或者可能只有輕微的上呼吸道症狀。最終新冠患者在完全無症狀或症狀輕微的情況下,有效地抵抗了病毒的入侵;大多數健康的年輕感染者都是這樣的情況。

但若是入侵的病毒量過高,或個人先天性的免疫力不足,病毒會在體內持續擴散。嚴重呼吸道感染症狀,甚至呼吸衰竭,可能發生在 1~3% 的人身上,而且經由解剖的結果已證實呼吸衰竭是最主要的死因。

德國解剖註冊中心在 2021 年10 月之前就已收集 1,129 名新冠疫歿者的解剖資料[3],認定 86% 的死因為新冠病毒感染,14% 為其他共病。研究發現,肺部的病變,以及病毒侵襲肺細胞,以至於大量發炎細胞浸潤,從而得出「嚴重發炎反應造成肺功能衰竭」是最主要的死因這個結論。

新冠病毒讓我們再度正視,肺臟這個重要器官,因其功能所需而座落在如此易受傷害的人體部位。台灣每年的十大死因,肺炎都有上榜,可見不論健康與否,一不小心,肺炎都可能成為終結生命的最後一根稻草。

病毒與你的「表面關係」可以很長久

我們已經知道新冠病毒嗜好人體的呼吸道,除此之外,它還有其他落腳處嗎?

回答這個問題之前,得先釐清一個重點:不同變異株喜歡去的人體部位不一樣。Delta 嗜好感染肺部,Omicron 的感染位置大多止於上呼吸道的咽喉部位。(參見第三章)

為什麼要知道病毒在我們體內去了哪裡?根據觀察,新冠確診者癒後可能出現各式與呼吸道功能無明顯關係的症狀,也就是現在俗稱的「長新冠」(Long Covid)。病毒學家因此懷疑,病毒是否透過不同機制持續存活在人體內,造成更深層的器官感染,才會導致多元症狀的長新冠出現。這是非常值得探討的問題。

事實證明,的確如此。

病毒透過不同機制持續存活在人體內。圖/Envato Elements

除了呼吸道的分泌物及口水(咽喉感染相關)等新冠診斷的主要檢體外,糞便也經常被檢測到病毒存在的跡象,頻繁到可以用下水道的病毒監測系統瞭解疫情的起伏,甚至可以監測變異株的多寡[4]

腸胃道:病毒長存的溫床

病毒不只頻繁出現在糞便中,還會長期存在某些人的腸胃道內。史丹佛大學團隊進行的長期研究[5],針對 113 名新冠輕症與中症的病人(重症已被排除),追蹤研究十個月,收集並分析他們糞便中是否仍有病毒 RNA。

結果發現,在確診後的第一週內,49.2% 的患者糞便中可檢測到新冠病毒 RNA; 四個月後仍有 12.7% 的人糞便中檢測得到病毒 RNA,但此時這些人的口咽試子的病毒 RNA 都已呈陰性,而在七個月後, 還有 3.8% 的人糞便中仍能檢測到病毒 RNA。仔細分析後,發現胃腸道症狀(腹痛、噁心、嘔吐)與病毒 RNA 是否持續存在於糞便中具有關聯性。

作者同時提醒,以上研究是在變異株 Omicron、Delta 出現之前進行的。不同變異株可能對呼吸道與胃腸道有不同嗜好或親和力,可能也會表現出清除率(每單位時間去除某種物質)的差異,這是病毒變異株固有的生物學特點,可能影響潛在疾病的特性。同時病毒如何存在於體內,也會受到自然感染生成的免疫反應,或疫苗接種引起的宿主免疫狀態的影響而有所差異。

病毒如何存在於體內會受疫苗接種引起的宿主免疫狀態而有所差異。圖/Envato Elements

另一項多中心的合作研究[6],長期追蹤 87 位新冠確診患者六個月,發現他們的 RBD 特異性記憶型 B 細胞數量維持不變(沒有減少),還出現單株抗體細胞有更新的現象,表達的抗體具有更多抗原差異,但病人血清對原始病毒株的中和抗體效價則持續下降。這表示六個月後,這些確診病人體內的 B 細胞仍持續對新冠病毒製造的分子作出反應,而這些病毒分子的來源就是腸胃道。研究指出,14 位確診者當中有一半可以在他們的小腸中檢測到新冠病毒 RNA,同時呈現陽性免疫反應。

病毒不只長存於腸胃,而且還是活跳跳的病毒。另一項研究[7]提供了充分證據。該研究追蹤免疫功能下降的病患,在確診一年之後,還可以從他們的盲腸組織細胞及乳房細胞直接培養出活病毒。研究者的結論是,免疫功能低下的患者,同時經歷了長新冠症狀和持續的病毒複製。整體而言,這些研究結果以及新興的長新冠研究,提高了胃腸道做為病毒長期藏匿之處,且可以長期影響症狀的可能性。

最後我們要問,除了上述提及的部位,還有其他人類的分泌物可以檢測到病毒嗎?我們必須釐清病毒會在哪些分泌物出現,以便在執行防疫措施時,可依重點需求區分輕重緩急的必備資訊,否則防疫很容易落入草木皆兵,造成不必要的恐慌與浪費資源。

* 本文內容所引用的文獻均發表在 Omicron 出現之前。基於 Omicron 與其他變異株在細胞嗜性的差異,本文部分內容不適用於 Omicron 感染。

——本文摘自《從一個沒有名字的病開始》,2022 年 11 月,商周出版,未經同意請勿轉載。

參考資料

  1. Wrapp et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):-1263.
  2. Sakurai et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med. 2020 Aug 27;383(9):885-886.
  3. von Stillfried et al., First report from the German COVID-19 autopsy registry. Lancet Reg Health Eur. 2022 Feb 18;15:100330.
  4. Amman, et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-022-01387-y
  5. Natarajan, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (N Y). 2022 Jun 10;3(6):371-387.e9.
  6. Gaebler, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021 Mar;591(7851):639-644.
  7. RNAhttps://www.researchsquare.com/article/rs-1379777/v2
商周出版_96
101 篇文章 ・ 344 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商業出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

1

6
5

文字

分享

1
6
5
雨後天空總是特別清澈,是什麼汙染了我們的天空?科學家化身「空污偵探」,把它們通通寫上名單!
研之有物│中央研究院_96
・2022/09/04 ・4755字 ・閱讀時間約 9 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|陳儀珈
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

空污從哪來?我們又要如何追查它的行蹤?

陽光、空氣和水是生存的三大要素,而空氣品質在工業快速發展過程中,逐漸受到世界各國重視。空氣污染中的懸浮微粒(particulate matter, PM),已被國際癌症研究署(International Agency for Research on Cancer, IARC)列為第一級致癌物。人體長期暴露在高污染的環境中,將可能增加罹患肺癌風險。空污從哪來?如何追蹤污染流向?中央研究院「研之有物」專訪院內環境變遷研究中心研究員兼空氣品質專題中心執行長周崇光,看科學家如何捕捉空氣污染物的行蹤。

把污染通通寫下來!每三年更新一次的「空氣污染排放清冊」

如果要瞭解並管制空氣污染,必須先知道:到底是什麼污染了空氣?

每隔三年,環境保護署會公布最新的「臺灣空氣污染物排放量清冊」(Taiwan Emission Data System, TEDS),收錄全國各種來源的空氣污染物排放,而中研院環變中心的空氣品質專題中心任務之一,就是持續發展新的技術,獨立驗證這個排放清冊,進而提供環保署做為改善的基礎。

空氣污染排放清冊將排放量數據分為四大類。圖/研之有物(資料來源:空氣品質改善維護資訊網

周崇光提到,空氣污染源在排放清冊中分為「點源」、「線源」、「面源」和「生物源」,這四類來源的監測、管制辦法都不同。

點源,例如工廠的煙囪、通風口等;線源,如道路交通工具的機車、汽車等;面源則像是火災、農業活動、河川揚塵、大陸沙塵暴等一整面的污染源;生物源,是指植物排放的揮發性有機物,例如大家很喜歡的芬多精,其實是反應性非常強的一大群化學物質,很容易在空氣中發生化學反應並衍生出臭氧或是懸浮微粒

空氣要如何計算?空氣被污染了多少算的出來嗎?

以點源為例,若我們想知道點源的污染排放量,最精準可靠的方式就是「直接量」。

例如,研究人員可以直接在火力發電廠的煙囪上裝設偵測器,長期或定期監測氮氧化物的排放量,獲得最準確的排放量數據。

可惜的是,許多污染物的排放量沒辦法用儀器直接測,例如火力發電廠的煙囪中,明明二氧化硫、氮氧化物都可以直接測,但我們卻無法準確測得細懸浮微粒(粒徑小於或等於 2.5 µm 的懸浮微粒,又稱 PM2.5) 的數據。

周崇光說,電廠煙囪內部環境相當嚴苛,水氣高、溫度也高,礙於當前儀器的技術, PM2.5 的偵測器非常難以在攝氏溫度高達 100 多度的煙囪中穩定地運作,也因此造成 PM2.5 監測資料的不足。

倘若沒有辦法直接監測,周崇光提到,研究人員可以算出「排放係數」,藉此推估多少的原料會產生多少的污染物,例如燃燒一公噸的煤,會產生多少公斤的懸浮微粒。

再退而求其次的話,則可以透過「質量平衡法」,以揮發性有機污染物為例,利用製程或化學反應式計算反應物的質量、能量進出,推估出污染物的大致排放量。

從直接的監測資料到質量平衡法,依照排放量的可靠度被列等為 A 級至 D 級,並將排放來源不明確的資料列為 U 級。

空氣污染排放清冊中,除了將排放分為點源、線源、面源和生物源以外,又可依照數據的可靠度,細分為 A、B、C、D、U 五類,A 數據可靠度最高,B 次之,以此類推。圖為臺灣空氣污染物排放量清冊(TEDS)第 11 版的點源排放量分布。圖/研之有物

在上圖第 11 版的臺灣空氣污染物排放數據中,屬於點源的總懸浮微粒(TSP)僅有極少的資料是直接且連續的監測數據,有 43% 左右的數據來自定期的管道檢測、56% 來自質量平衡法的推估。

由此可知,總懸浮微粒的數據背後具有一定的誤差,而相對的,硫氧化物(SOx)有三分之一的數據來自直接量測,較為精準。

從排放量的計算和推估中,其實可以看得出來,礙於技術和環境條件,空氣污染排放清冊存在不小的誤差。因此,當前科學家不斷致力改善儀器,或用其他可靠方式驗證這些排放量資料。

「看到了!」,用衛星捕捉污染物的流向!

空品專題中心的「臺灣中西部空氣污染之診斷與歸因研究」,為中央研究院 110 年度的關鍵突破研究計畫之一,在周崇光的帶領下,團隊致力破解中西部的空污謎題。此計畫中的其中一項子計畫,即是透過人造衛星的遙測技術,來協助驗證排放量和推估關鍵污染源。

衛星數據為 2021 年臺灣上空的二氧化氮(NO2)年平均柱密度(column density),表示單位面積懸浮在臺灣上空的 NO2 總量。圖/研之有物

研究團隊使用歐洲太空總署(ESA)發射的哨兵 5 號衛星的儀器,藉由分子光譜的特徵描繪出二氧化氮在臺灣的空間分布。

過往衛星對這些污染物的解析度僅有 20 x 20 公里左右,在這樣的解析度下,根本難以確認如火力發電廠般污染源的影響程度,但哨兵 5 號上的大氣觀測儀器(The TROPOspheric Monitoring Instrument,簡稱為 TROPOMI) 已經可以做到 7 x 3.5 公里的高解析圖像,讓研究人員得以大致推估出這些關鍵污染源的影響力。

由於衛星是從太空望向地球,因此單靠分析分子光譜只能獲得垂直的、像是柱子一樣的濃度數據,研究人員必須透過大氣方程式並考量化學反應的狀況「回推」,一個一個網格計算出二氧化氮的分布。

歐洲太空總署的哨兵 5 號衛星與下方展開的大氣觀測儀器 TROPOMI。圖/ESA/ATG medialab

排放清冊的排放量,是研究人員到各個污染源收資料、整理工廠申報資料,全部加總後,再算出空污排放量,是一種像是金字塔般的「bottom-up」(由下而上)作法。

而人造衛星與「到處收資料」的方式不同,衛星觀測是一種「top-down」(從上到下)作法,先從觀測了解某處增加了多少空氣污染物,再想辦法去回推污染源和各地參數的互動關係。

結合「top-down」和「bottom-up」,科學家可以將兩者相互搭配並驗證資料,確認空氣污染物的排放量與傳播途徑。

周崇光提到,以工業區或港口碼頭為例,柴油貨車每年進出的次數高達數萬趟,排放出大量的交通廢氣,但礙於技術,目前仍然沒有辦法精準定量這些污染並申報給環保署,推估排放量和真實污染量之間可能存在很大的誤差。因此,若能搭配人造衛星這種獨立且不受影響的偵測技術,就能夠更公正、更準確的驗證排放資料是否有誤。

最快的了解就是融入!特務 F 混入電廠的煙囪,破解空污來源

除了檢視排放量,了解空氣污染物「怎麼飛」,也是非常重要的課題。

為了找出空氣污染物的傳輸路徑,周崇光帶領的團隊曾經在 2018 年的時候和德國布萊梅大學的 EMeRGe-Asia 團隊合作,透過研究飛機「HALO」和特殊追蹤劑,調查臺中火力發電廠污染物的傳播途徑。

在一般的大氣環境中,即使研究人員確定了某地點的污染物濃度非常高,他們也很難判斷當地污染物的來源,到底是來自隔壁 A 工廠?還是從 B 電廠飄過來?

再來,其實研究人員也很難隨時掌握空氣污染源的流向,例如火力發電廠煙囪排出的污染物到底飄去哪裡了?

因此,在這次的跨國合作中,研究團隊使用了「全氟甲基環己烷」(Perfluoromethylcyclohexane, PMCH) 當作「追蹤劑」,就像是空氣污染物中的特務 F,被放入臺中火力發電廠的煙囪中,隨著煙囪中的空氣污染物一起被噴向天空、隨風飄散。

由於 PMCH 無論在自然環境或是工業污染中均相當少見,環境的背景濃度非常低,加上全氟化合物有不容易和其它物質反應的化學惰性,又可以在實驗室進行極低濃度偵測,因此非常適合當追蹤劑。

當時研究團隊在臺中火力發電廠的煙囪中投入了 10 公斤的 PMCH 後,分別以研究飛機和地面採樣站進行觀測,並跟著煙流的可能路徑針對不同的污染物進行採樣,調查中火污染煙流的傳輸路徑。

圖為德國航太中心的大氣研究飛機「HALO」(High Altitude and LOng Range Research Aircraft)。圖/flickr

研究結果發現:當東北季風盛行時,由臺中火力發電廠煙囪排出的空氣污染物主要會向南飄散,空氣樣品中 PMCH 、氮氧化物、二氧化碳和一氧化碳濃度同步的變化(見下圖),證實了大氣模式所描繪的污染路徑。

但可惜的是,這種研究方法只能當作一種「逼不得已的手段」,畢竟任何特殊的化學品都可以被視為一種污染,尤其全氟化合物吸收紅外線的能力非常強,是屬於國際公約列出的主要溫室氣體之一,因此只能在非常必要的時刻下使用。

周崇光表示,臺中火力發電廠的煙囪高達 250 公尺,加上排氣的動能和熱浮力,空氣污染物可以很快地上升到 500 公尺,甚至更高的空中,然後隨著大氣環流擴散和稀釋,傳統的高煙囪策略就是以此降低工業污染對鄰近地區空氣品質的衝擊。

然而在這次的調查中,研究團隊卻發現,臺灣附近的大氣環流非常不利於污染物擴散,以致於上午排出的污染物到下午還滯留在中南部的空中,許多原本預期會向外飄散的污染物最終仍然下沉,並對中南部的空氣品質造成衝擊。這次的實驗結果讓周崇光團隊獲得啟發,更加投入對臺灣邊界層環流的調查研究。

同時周崇光也強調,中研院空品專題中心非常感謝臺中火力發電廠協助這次的實驗,這個空污滯留現象是整個西南部區域的大氣特性,只是在這次研究藉由臺中火力發電廠案例表現出來。這表示臺灣西南部的大氣條件不利擴散,使得我們面對空氣污染的衝擊格外地脆弱。

2018 年周崇光團隊和 EMeRGe-Asia 團隊合作,使用研究飛機和追蹤劑 PMCH,調查臺中火力發電廠污染煙流的傳輸路徑,圖中可看到 PMCH 從臺中擴散到整個中南部的濃度趨勢,地點 1 為布袋附近,地點 2 為北港附近。從地點 2 的污染物數據,可看到 PMCH 、氮氧化物、二氧化碳和一氧化碳濃度有相同的變化趨勢。
圖/研之有物

以上,中研院空品專題中心致力解決臺灣空氣污染防制的瓶頸,首要第一步就是持續驗證空氣污染物排放清單。由於技術和環境限制,排放清單資料有一定誤差;因此需要透過衛星觀測做交叉檢驗,確認污染物的排放量與傳播途徑。有了排放清單的基礎之後,下一步就是研究造成臺灣西南部空氣擴散不佳的根本原因,以及深入探討都市區空污的主角「衍生型 PM2.5」。

延伸閱讀

所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2202 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

2
0

文字

分享

1
2
0
陳建仁接受 PanSci 泛科學採訪:「我常常看 PanSci 喔!」
PanSci_96
・2022/08/25 ・662字 ・閱讀時間約 1 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

今日(2022/8/25)前副總統,中研院院士陳建仁接受 PanSci 泛科學採訪,分享 2002 年 SARS 後台灣防疫上的改革,對於這次 COVID-19 防疫準備與策略的影響,以及面對與病毒共存的現在,未來台灣防疫是否還能做得更好。他也溫暖地表示自己早已是 PanSci 的讀者,大大激勵了到訪的我們。

陳建仁表示:「我常常說,台灣防疫能成功,有 2300 萬無名英雄(unsung hero) 。」 他認為各種非醫療介入手段 (NPI,Nonpharmaceutical Interventions) 如戴口罩、勤洗手、維持社交距離,是靠所有人配合才能達成。而台灣能在相對短時間內快速提升疫苗覆蓋率,甚至在 18-65 歲年齡段達到近 100%,也是眾志成城,守護彼此的彰顯。然而由於關於疫苗的錯假資訊流傳,部分媒體報導沒能正確傳達風險,造成 75 歲以上族群疫苗覆蓋率偏低,未達到 70% ,也讓他不禁嘆息。不過他觀察數據,認為配合快篩跟抗病毒藥物即時投遞,亦已有效降低重症死亡率。

世界各國漸漸從第一階段的「溯源、阻絕」,第二階段的「疫苗覆蓋」,進入第三階段「與病毒共存」,陳建仁認為最重要的是應對環境與病毒變異,隨時調整策略,信賴專業領導,避免過多政治干擾。他觀察世界衛生組織 (WHO) 在近期的表現,認為已較疫情初期改善許多,而有了這次經驗,面對未來難以預知的各種公衛挑戰,全世界都將準備得更好。

泛科學獲得文化部補助,正在製作 《Taiwan Keywords》 系列影片。以 12 個關鍵字為主題,呈現臺灣地區 12 項前沿科技與科學發展。本次採訪內容之精華將在影片製作完成後,於 Taiwan PlusPanSci 的 YouTube 頻道播出,不想錯過的話,就先訂閱起來,開啟小鈴鐺吧!

所有討論 1
PanSci_96
1011 篇文章 ・ 1122 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。