0

2
0

文字

分享

0
2
0

世界末日之後,你必須成為會做工具的工具人!——《最後一個知識人》

PanSci_96
・2016/06/26 ・4588字 ・閱讀時間約 9 分鐘 ・SR值 528 ・七年級

攸關生存的金屬

金屬具有完全不見於其他材料的種種特性。有些十分堅硬、強韌,適合用來製造工具,武器或結構零件,好比釘子或完整大梁。不過金屬也具有可塑性,不像陶瓷那麼酥脆——金屬受壓時會變形,不會碎裂,還可以拉成細絲,能用來固定、製造圍籬或傳導電力。多種金屬還能抗拒非常高的溫度,是打造高性能機器的理想材料。

800px-Rusty_tools
能夠製造金屬器具,將大大地增加你在末日生存的能力。圖/wikipedia

你在「大墜落」過後,必須盡快重新養成的能力,不只是掌握用鐵,還得加上鐵碳合金:。鋼含有鐵、碳混合原子,而且遠遠超過各部分的加總。把碳原子納入,大幅改變了金屬的特性,而且你可以因應不同用途,改變碳原子比例,從而控制鋼的強度和硬度。

我們到後面才會檢視,該如何從無到有,開始製造鐵和鋼,因為緊接災後,你肯定很容易就能撿到鋼鐵材料。只要重新學會鐵匠的傳統技能,這些撿來的品項,也就可以活化再利用:在平爐(編按:有蓄熱室的煉鋼爐)或鍛造爐上的砧板一邊處理作品,一邊讓它保持灼熱,同時也用鎚子和鐵砧改造外形。綜觀整段文明史,人類之所以有辦法利用堅硬的鐵,理由便在於,鐵受熱會暫時改變物理特性,質地軟化並具展延性,得以搥打塑造成形,輾軋成薄片或者抽成管、線。這很重要,因為這表示,你可以使用鐵製工具來處理鐵材,製造出更多工具。

如何加工鐵器

用鐵製造工具,最重要的知識就是有關於如何讓鐵硬化的原理——淬火回火。要讓鐵硬化,可以把它加熱至火紅,好讓內部鐵碳晶體,轉化為硬組態的同素異形體(編按:同一元素因為分子式排列方式不同而有不同的物理形態,但化學生質相似)(它沒有磁性——這可以在加熱時檢測)。不過隨後若是讓它緩慢冷卻,這種晶體就會恢復原來形式,所以必須急速冷卻,才能得到你想要的。採淬火加工,再把高熱鐵件泡進水中或油中。然而堅硬的物質也會很脆——易碎裂的鋼鎚、劍或彈簧都毫無用處——所以製品淬火之後還必須回火。這種做法是再加熱,維持較低溫度一段時間,讓某個比例的分子結構鬆弛開來——刻意犧牲材料的部分強度,換回一些柔軟度。你可以經由回火來調節鐵的材料特性,而這就是因應功能來需求改造金屬的基本要點。

-----廣告,請繼續往下閱讀-----
blacksmith-1174956_640
掌握了焠火跟回火技術,就能因應需求作出不同硬度的鐵器。圖/owenon@flickr

還有一項重要技術到比較晚近才發展成形,那就是銲接,用已融金屬來膠合金屬。乙炔能產生的熱度,凌駕所有可燃氣體,在氧氣流中的燃燒溫度超過攝氏三千二百度。要產生銲接氣炬,可以經由一支點燃的噴嘴,分別控制加壓氧和乙炔氣流。純氧可以藉由電解水取得,或者往後將液化氣體分餾後來取得。乙炔可以取水與碳化鈣塊相互反應後釋出,而碳化鈣本身,則是取生石灰和木炭(或焦炭)一起擺進火爐加熱生成,這兩種物質我們已經介紹過了。除了膠合金屬,氧乙炔火燄還能做為鋼鐵的切割氣炬,產生氧氣噴流來燒熱金屬,再切出整齊的線條。

電弧銲機所產生的溫度還更高,約可達到攝氏六千度——如舞動閃電的威力。串接一批電池或使用一台發電機,就能產生充足電壓,持續觸發火花(或電弧),躍過目標金屬和碳電極的間隙,讓電極在金屬表面移動,就能銲熔或切割。這種臨時湊合的氧乙炔氣炬或電弧切割機,是拾荒小組奉派進入死寂城市時不可或缺的設備,可以用來拆解廢棄殘骸,拾回最有用的物資。使用電弧爐是熔解廢鋼料,回收再利用的有效做法。電熔爐基本上就是台巨型電弧銲機,電力從大型碳電極湧現,通過金屬並熔解,裡面還有石灰岩助銲劑,用來去除雜質,表面化為熔渣,熔鋼則如水壺倒水般傾倒出來。使用可再生電源來運作的電弧爐是一門必須掌握的重要技術,這樣才能紓解末日後世界對熱能燃料的需求。

不過取得金屬物資的能力,只做對一半,你還必須能夠熟練處理這類材料,依你所需樣式打造成形。假使你找不到還能操作的工具機,那麼你有多少機會,可以從頭製造出新機具?

製作小型工作室

一九八○年代,一位機械師提出了一項優雅的例證,他打造出一個支具齊備的五金工作坊——包括車床、金屬成型機、直立鑽床和銑床等一應俱全——材料不過就是黏土、沙、木炭和幾塊廢金屬。鋁是個不錯的選擇,因為鋁熔點低,方便鑄造,而且非常不容易腐蝕,因此就算在末日災變過後許久,依然可以找到。

-----廣告,請繼續往下閱讀-----

這項出色計畫的核心是個小型鑄造設備,撿來的金屬桶,裡面鋪了一層黏土耐火內襯,使用木炭焙燒,並從桶側導入氣流來強化燃燒作用。用這台火爐熔化撿來的鋁,已經綽綽有餘,接著就可以把熔融金屬倒入模範裡,鑄造出五花八門的機具零件。外範的製造原料可以採用細沙混入黏土(做為黏著劑)並添點水,接著讓它緊緊包覆內模,外框則是個兩件式木盒。

以下影片,示範了如何用生活中可見的器具製作一個小型鑄造廠,並在融化鋁罐後,用沙範創造出五花八門的器具。

要打造的第一台機器是車床。簡單的車床含一件平坦長梁,稱為床座,頭座固定於一端,另一端則是尾座,能鬆開鎖具並沿著床軌左右滑動。工件裝置於頭座上的心軸——或栓在面板上,或以可動爪夾頭鉗住——接著整個工件由一套滑輪或齒輪系統帶動,繞著這個中心軸旋轉,至於原動力就看你已經駕馭了哪些類型(水車、蒸汽機或馬達)。尾座可以用來支撐工件的另一端,並能因應不同長度沿著床座滑動,也可以裝上鑽頭等工具,於是你就可以旋轉工件並沿著中心軸線鑽孔。車床還有個刀座,上面安裝切削工具,同樣能沿著床座滑動,由於採用橫滑台,能精準調校工件位置,邊轉動邊切削,雕琢出合宜的剖面。最令人稱奇的是,這台車床不只能夠複製出它本身的所有零組件,打造出更多車床,而且當你憑空徒手製造這第一台車床,還在初步階段之時,已經可以利用它來打造出其餘必要零件,完成這項設備。

車床
車床,含左側用來固定工件的頭座(主軸台)和旋轉心軸,以及右側的尾座,還有中間承托切削工具的活動式刀座。

為了能在工件上切出精確螺紋,你必須沿著床座方向安裝一根長條導螺桿,就能順暢移動刀座,而且最好是與頭座、心軸的齒輪耦合,讓雙方動作完美協調。你在末日後世界真正得期盼能撿到已經做好的長條導螺桿,因為要切削出螺距固定的螺紋,可說難如登天。依我們的歷史經驗,第一道精密的金屬螺紋是歷經反覆改良,走過漫長進程,才終於打造成形,接著才以此製造出其他眾多成品,你肯定希望不必再次走過這趟路程。

-----廣告,請繼續往下閱讀-----

一旦車床到手,你就可以運用它來製造組件,完成其他遠遠更為複雜的工具機,好比銑床。車床的用途是利用車刀來處理在夾頭上旋轉的工件,銑床則是用轉動車刀,切削固定在夾頭上的工件,具有十分廣泛的功能——有了銑床之後,你大致就能打造出其他零件。所以這項示範,也就相當於技術史的縮影:簡單的工具製造出比較複雜的工具,包括自己的進化版,並反覆這個循環,一步步向上推展。

從礦石中分離金屬

不過萬一你找不到純化金屬供鍛造或鑄造,或者你能撿到的都已經用光了呢?你該怎樣從岩石煉出金屬?冶煉的原則是去除礦石中金屬化合物的氧、硫或其他元素。這必須消耗一種燃料來達到高溫,還要一種還原劑和一種助熔劑。木炭(或焦炭)是發揮頭兩樣功能的極佳用料,它能燒出猛烈火燄,在熔爐中燃燒時,還會釋出一氧化碳,這種強效還原劑能去除氧氣,留下純金屬。簡陋煉鐵爐的藍圖,看來就像燒製石灰的窯爐設計。爐內裝填了一層層木炭燃料和粉碎的鐵礦石。礦石混入一些石灰岩,做為助熔劑來降低耐火脈石(無利用價值的固體礦物)的熔點,讓它在爐內化為液體並吸收金屬雜質。助熔劑形成熔渣並流掉,於是你就可以從爐中提取純金屬珍寶。

倘若熔爐的運作溫度,達不到足以熔鐵的高溫,那麼你就必須取出海綿團狀固體金屬,擺在鐵砧上搥打,讓鐵融合在一起並打出殘留熔渣。這種純熟鐵還不夠堅硬,不能用來製造工具,必須再次用木炭猛烈加熱,吸出一些碳並形成鋼材,接著又一次擺上鐵砧處理。這樣反覆摺疊、打扁,基本上就是在攪拌固態材料,產生出均勻的鋼材,最後便可以拿來鍛造成最後形式。這是會令鐵匠腰酸背痛的苦工,而且鋼材產量也嚴重受限。發展出現代文明的關鍵,是養成有效大量製鋼的產能。底下就告訴你該怎麼做。

解決之道是強力鼓風讓空氣向上流過層疊爐料,增強燃燒。中國人在公元前五世紀就發明了鼓風爐(比歐洲早了一千五百多年),隨後並改良設計,使用水車驅動活塞風箱。為達到更高效能,加熱到更高溫度,可以使用從熔爐煙道逸出的高熱燃燒廢氣來預熱空氣,鼓風入爐。鼓風爐中剛熔煉完成的鐵材吸收了許多碳原子,於是熔點便降到攝氏一千二百度。金屬液化從爐底流出,沿著地面的溝渠,再注入一列鑄範。最終成品就是生鐵(pig iron,直譯為「豬鐵」)——起這個名字是由於,中世紀鑄造工匠認為,那一個個鑄範,看來就像一窩新生小豬依附著母豬吸奶。

-----廣告,請繼續往下閱讀-----
鼓風爐
煉鐵鼓風爐。礦石、燃料和助熔劑從爐頂往下流,接著從爐底注入強烈高熱氣流,施壓向上流過層疊爐料。

這種含碳量高的鐵,熔點降低了,必要時可以重新熔解,像熱蠟一般倒入範中。因此鑄鐵工序變得非常便利,能快速鑄造出種種品項,如鍋子、管路或機械組件等,維多利亞時代的人,還製造出許多鑄鐵大梁。不過鑄鐵有一項嚴重缺陷:由於含碳量高,質地很脆,舉例來說,鑄鐵橋梁有個缺點,一旦結構元件受力彎折或拉伸,整座橋梁往往就會崩塌。

後來是一項革新發明,才真正使工業革命後期不斷發展下去,採這種做法,就能把鼓風爐所煉出的生鐵,輕鬆變換成鋼材。就碳含量而言,鋼的比例介於純熟鐵和酥脆的生鐵或鑄鐵(3–4%)之間,從約含0.2%碳,用來打造機器齒輪或結構鋼材的堅韌鋼料,到約含1.2%碳,用來打造滾珠軸承和車床切削工具的堅硬鋼料。所以你該怎樣脫除含碳生鐵?

貝塞麥煉鋼轉爐(Bessemer converter)是個梨狀巨桶,內襯耐火磚,安裝在支軸上,因此桶子可以傾倒。先熔融生鐵,注入容器,隨後從桶底幾個開孔把空氣打進桶內,和冒出氣泡的水族箱幫浦增氧機相似。額外的碳原子和氧反應,化為二氧化碳逸出,其他雜質也經氧化,合成熔渣後清出。這裡有個很幸運的現象,碳原子燃燒時會釋出充分熱量,讓鐵裡外都保持熔融狀態。

這時會遇上難題,因為熔煉時必須把碳原子成分幾乎全部去除,卻仍得留下將近百分之一,實際操作時,很難準確判斷。掌握最後成分的訣竅,要靠事後反溯法,先進行轉化,直到你有十足把握,肯定所有碳原子都已經去除,接著就把你想放回純鐵裡面的最後碳原子依比例混入。這種貝塞麥煉鋼法是史上頭一種廉價的大量煉鋼法,你最好是盡快蛙跳返回這個時間點。

-----廣告,請繼續往下閱讀-----

臉譜5月_無書腰立體書封

 

 

如果你所知道的文明已經不存在了,你要如何在新世界活下去?跳過原始生活,利用知識再開啟明治維新、工業革命,而末日後的新文明,會是什麼樣的文明呢?來自科學家的末日狂想,形成一本事事未雨綢繆的科普之書。《最後一個知識人》,臉譜出版

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2568 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

3

41
3

文字

分享

3
41
3
傳統鋼鐵業是碳排大戶!綠色鋼鐵是什麼?打造零石化的永續鋼鐵有可能嗎?又有哪些挑戰需要克服?
鳥苷三磷酸 (PanSci Promo)_96
・2023/09/04 ・2778字 ・閱讀時間約 5 分鐘

本文由 VOLVO 委託,泛科學企劃執行。

你知道嗎?光是鋼鐵產業就佔全球碳排放量的百分之九。據國際能源署(IEA)的報告,2019 年,鋼鐵業的直接碳排放量已超過水泥和化工產業,成為碳排放的大戶。更糟糕的是,在未來的 30 年中,全球對鋼鐵的需求量預計將增加 1.5 倍。

鋼鐵產業是高耗能產業,因此會產生大量的碳排放。此外,鋼鐵生產的「原料」中也包含大量的「碳」,這使得鋼鐵產業很難完全擺脫碳排放。

然而,難題也會成為契機。如果我們能找到新的製程,開發出低碳甚至零碳的煉鋼新技術,那麼我們不就能夠一口氣減少全球大量的碳排放了嗎?

鋼鐵是各種工業的基礎,也是基礎建設的骨幹,對於鋼鐵的需求估計只會持續增加。圖/envatoelements

傳統鋼鐵如何製成?為何會產生大量的「碳」?

在探討傳統鋼鐵如何改變製程、達到減碳的目標前,我們先簡單了解一下鋼鐵的煉製過程。從地殼中開採出來的鐵礦通常含有各種鐵的氧化物,而在氧化物被還原成鐵的過程中,需要加入焦炭來把氧化物的氧拿走。在高溫下,焦炭會先變成一氧化碳,接著與熔融鐵礦中的氧化鐵進行反應,形成二氧化碳和生鐵。生鐵中含有部分的碳成分和其他雜質,需要進入轉爐中進行高溫處理,才能煉成各種鋼材。

-----廣告,請繼續往下閱讀-----

要達到煉鋼所需的高溫,還需要燃燒大量的化石燃料,排放大量二氧化碳。在氧化鐵的還原過程中,使用焦炭也會產生額外的二氧化碳。因此,平均每產出一公噸鋼就需要排放快兩公噸的二氧化碳,相當於鋼材自身重量的兩倍。

目前,鋼鐵工業的能源依賴性仍有 75% 是煤炭,這種依賴化石燃料的現狀絕非減碳目標的好消息。國際能源署估計,為達成目前設定的減碳目標,鋼鐵產業至少需要在 2050 年之前將碳排放量砍半。

但鋼鐵是許多基礎建設的基石,對鋼鐵的需求估計只有增加、不會減少。目前全球鋼材回收率已達 90%,仍無法滿足鋼鐵不斷增長的需求;傳統製程的能源效率經過不斷地改良,也已達到技術上的極限。這該如何解決呢?

近十年來,一些鋼鐵企業開始引進碳捕捉技術,利用特殊材料吸附二氧化碳並儲存,供化工產業作為原料,或冷卻後封存到地底。如此一來,就能避免排放到大氣中。

-----廣告,請繼續往下閱讀-----

然而,因為煉鋼廢棄的組成非常複雜,目前的碳捕捉效率也無法做到百分之百。要實現 2050 年的碳中和目標,勢必就要去思考解決煉鋼技術的創新議題。阻止全球暖化腳步刻不容緩,歐洲有幾家企業想到了新方法,運用潔淨的氫氣來煉鋼

煉鋼需要極高的溫度,因此也需要大量燃燒化石燃料。圖/envatoelements

零碳排煉鋼?氫氣的成本是挑戰

提到煉造零石化鋼鐵,就必須拋開傳統使用焦炭還原氧化鐵的方法。這種方法以氫取代焦炭作為還原劑,反應完成後,氫氣就會氧化成水蒸氣,完全不會產生二氧化碳,真正實現減低碳排的目的。

然而,氫氣要從哪裡來?目前工業上最廣泛使用的製氫方法就是從天然氣中提取,過程中不可避免的也會排出二氧化碳。因此,真正想要朝減低碳排邁進,就必須使用綠能來電解水,產出「綠氫」。

不過,綠氫煉鋼要面對的第一個現實問題就是資金投入的大量成本。由於電解水產氫的能源消耗差不多是固定的,因此綠氫的價格可以說和綠能的價格直接相關。根據歐洲議會的報告指出,現有綠氫的價格大約落在每公斤 3.6 到 5.3 歐元。相較之下,由天然氣提取氫氣的成本約每公斤 1.5 歐元。

-----廣告,請繼續往下閱讀-----

雖然綠氫的價格高了兩三倍,但是在同一份報告中,歐洲議會也提到由於綠能的價格持續下修,綠氫價格已經在過去十年內已經下降了 60%,並且很有機會在未來持續下降。保守估計,綠氫價格有機會在 2030 年降至每公斤 1.8 歐元。到時候,綠氫煉鋼的成本只會比煤炭煉鋼高出不到 10%。

因此,相較於碳捕捉或其他新型態煉鋼技術,綠氫煉鋼的技術和成本皆較為樂觀,是各界目前較看好的零碳鋼鐵解決方案!而且也早就有企業著手開始設置生產計劃。

在 2016 年,位於瑞典的鋼鐵廠 SSAB、便和能源公司 Vattenfall 與鐵礦集團 LKAB 聯手開啟了 Hybrit 計畫,預計透過綠氫和綠能,完全排除化石燃料的使用,走向綠色鋼鐵的新挑戰,目標將瑞典全國的碳排放減少 10%。

在製程中,除了改用綠氫進行還原反應之外,煉鋼過程中也不再透過燃煤加熱,而是採用電弧爐,用綠能產生的電弧放電,來產生煉鋼所需的高溫。

-----廣告,請繼續往下閱讀-----

2020 年,Hybrit 計畫設立了首間完全零化石燃料的試驗煉鋼廠,並在僅僅一年後產出了第一批零石化鋼鐵,預計在 2026 年開始進行商業規模的大量生產,可以說是領先全球的零石化程表。而且,Hybrit 計畫在 2021 年生產的首批零石化鋼鐵可不只是做出來展示用的,這批別具意義的鋼材已經交付給瑞典車廠 VOLVO,拿來打造未來的環保低碳汽車。

用氫來煉造零石化鋼鐵的第一步:氫氣要從哪裡來? 圖/envatoelements

踏出世界的第一步:VOLVO 零石化鋼材車

在汽車生產過程中,鋼鐵是碳排放的主要來源之一。依據 2021 年的資料,製造一輛 VOLVO 汽車所需鋼材產生的碳排放量佔整體製程中的約 33%。

但目前 VOLVO 旗下車款都已開始著手使用零石化鋼材,成為全球首家運用零石化煉鋼製程的汽車製造商。雖然零石化鋼材的使用率尚未達到百分之百,但 VOLVO 已簽署 SteelZero 倡議計畫,支持無石化煉鋼的製程。並承諾在 2030 年達成這項協議中,對鋼鐵採購的嚴格要求,以在 2050 年前完成採購的鋼材皆要「乾淨、零碳」為目標。

此外,VOLVO 也計畫在 2030 年達到所有車款都百分之百不使用動物皮革,降低對畜牧業的需求,減少溫室氣體的排放。

-----廣告,請繼續往下閱讀-----

除了在工藝選材上的用心,VOLVO 也透過供應商管理、生產製程、轉型電動化等各種方式貫徹友善環境與永續經營。像自 2008 年起,VOLVO 在歐洲的所有工廠都開始使用水力發電所提供的電力。到目前為止,全球工廠已使用超過 80% 的碳中和電力。

最關鍵的是,VOLVO 產品本身的全面電氣化目標,所有車款都有電動版本可供選擇,並目標在 2030 年成為純電動汽車品牌,以達到《歐洲綠色新政》設下的 2050 淨零排放目標。

總結而言,綠色鋼鐵是實現零石化的永續鋼鐵生產的關鍵。雖然面臨著一系列挑戰,但只要政府、企業和大眾共同努力,我們有信心打造一個更加環保、永續發展的未來。VOLVO 作為汽車行業的領頭羊,將繼續挑戰永續創新,成為更環保的典範。

-----廣告,請繼續往下閱讀-----
所有討論 3