0

4
3

文字

分享

0
4
3

從炫技料理到可食用水球:食品科學中的晶球技術(下)

Sophia
・2019/08/10 ・2495字 ・閱讀時間約 5 分鐘 ・SR值 544 ・八年級

上一篇文章,我們介紹了在分子料理中被稱作晶球技術的「人工魚卵製造技術」,為了達到球化效果,各式膠體、乳化劑、安定劑與鹽類等食品添加物進入調理場中。身為主要添加物之一的「海藻酸鹽」凝膠與成膜的特性,可保留液體狀的中心,常應用於包裹或製作特色食品。接下來,就讓我們來揭曉這些技術在應用上有哪些變化吧!

哪些因素會影響晶球成品?

圖/pixabay

除了海藻酸鈉與鈣離子的濃度會影響產物,還有許多因素會影響晶球膠體成型的外觀、粒子強度,以及包覆性。

反應速率

各種鈣離子化合物與褐藻酸鈉溶液的反應速率不同,藉由使用不同種鈣離子化合物(如:氯化鈣,乳酸鈣與葡萄糖酸鈣)所造成反應速率的差異,可以製造適當厚薄與硬度的晶球膠膜。

溫度

高溫可以加快鈣鹽與海藻酸鈉的溶解速度,這時海藻酸鈉還不會與鈣離子產生反應,等到冷卻後反應生成「熱不可逆凝膠」,在高溫下依然能保持此物理型態。

-----廣告,請繼續往下閱讀-----

製作過程凝膠順序的差異

改變凝膠順序是另一種常見的手法,可以分成「基本球化」與「反轉球化」等兩大方向。

原圖參考資料 Tsai et al 2017
  1. 基本球化技術採用直接滲透,在食品(溶液,如果汁等)中加入海藻酸鈉,然後滴入含有鈣離子的溶液中。操作簡單,但成膠速度會受鈣離子擴散影響,長時間反應甚至會變成整顆球體凝膠,因此較適用於餐廳廚房快速製備上桌的分子料理。
  2. 「反轉球化技術」,利用食品本身含鈣的特性,或額外添加鈣的方式,滴入褐藻酸鈉溶液,讓周圍膠化形成膠膜,所形成的球殻厚度通常比基本球化的球殼再厚一點,較容易維持球形,但相對不脆且不易爆開,此方法可以預先製備球體,也能夠避免酸性、含酒精或本身含有大量鈣離子的液體無法適當溶解海藻酸鈉的問題。
  3. 「二次凝膠球化技術」,則是將反轉球化所形成的晶球,再放入鈣離子溶液中,形成更強的交聯反應,以提升膠膜穩定度,此種方法常用於保護與控制釋放機能性成分之晶球製作。

剪切力、流體方向與液滴形狀

在工廠大量製作時,為避免因生產速度過快,導致液滴無法呈現球狀,可利用控制剪切力,與控制流體方向等工程技術加以改善。綜合上述條件,再搭配射出力道與剪切刀片模具,就可以生成各式形狀與口感的海藻酸鈉凝膠,如:仿海藻脆絲、髮菜、素魚翅、素海蜇皮,以及仿魚子醬等多樣化食品。

除了料理,也來參一腳減塑行動

為了減少寶特瓶與塑膠的使用量所研發的 Ooho 可食用水球,也運用了晶球技術的原理。

每顆裝有 20-150ml 的水,包覆在雙層可食用膜中,雙層可食用膜的主要成分為氯化鈣及海藻酸鈉。為了盛裝較多水量,一開始會先將水冷凍後,沾附氯化鈣溶液,再與膠體溶液反應形成包覆膜,待解凍後,即可完成一個個方便攜帶,不用塑料包裝的水球了。其中,外層膜可防止汙染,食用方式可直接吞入,吸食裡面的水分,或是將外膜撥開後吞入。

-----廣告,請繼續往下閱讀-----

研發團隊目前與大型活動如博覽會,音樂祭,馬拉松等配合,減少寶特瓶與盛裝用的紙杯、塑膠杯的浪費;近期也應用於裝載果汁,醬料與雞尾酒等。雖然要完全替代塑膠包裝,還有許多像是保存期限、裝載量、在沒有額外包裝的情況下,是否堅固與方便攜帶,以及是否能夠大量運輸等問題尚待解決,但這只是個開端,期望未來能有更多的應用。

日益精進的微膠囊技術:除了褐藻酸鈉以外,還有……

除了上述所說的分子料理與食品外,這種凝膠特性在食品業還有更多發展空間。「微膠囊」可以當作一種微粒包裝技術,藉由不同的高分子聚合物當壁膜,包覆著固體、液體或氣體之核心材料。根據不同壁膜的厚度與性質,能夠改變溶解度與分散性、讓液體形式的食品可以轉變為固體、降低揮發性、保護機能活性、防止營養物質損失,以及增加吸收效率等功能,廣泛應用於醫學,食品,藥品與化妝品工業中。

食品中常見的壁膜材料除了褐藻酸鈉外,可依照材質特性分為:

  • 水溶性膠體:洋菜、紅藻膠、卡拉膠、三仙膠等
  • 纖維素衍生物:羧甲基纖維素
  • 蛋白質類:吉利丁、膠原蛋白等

有些微膠囊技術(如:微流道技術)雖然在實驗室或中間型工廠開發成功,卻因製造成本過高而難以在食品業界量產,不過在生醫藥領域仍有持續開發的優勢。目前多應用於製作固化香料、酸味劑、天然色素、營養劑、益生菌,與風味調味料等。

-----廣告,請繼續往下閱讀-----

分子料理與食品科學的相輔相成

圖/pixabay

分子美食學——用科學的方式,理解食材分子經過烹調的科學原理,運用所得的經驗和數據進行再創造,除去料理迷思,事半功倍做出的料理。

分子美食學最開始的發起者並非職業廚師,而是由化學家 Herve This 和物理學學者 Nicholas Kurti 所創立。雖然料理說白了,就是一連串的物理反應和化學作用,但是美好的飲食饗宴,卻來自料理者對於美味的執著。

在食品業,因為「假魚子」遭受抨擊的晶球技術,用於分子料理卻廣受歡迎,亞德里亞公開食譜的方式,或許也是另一種讓民眾接受度提高的原因之一。即使在科學家眼中,分子料理屬於食品科學的一部分,但往往食品工廠誕生的食品卻常止於製造出來而已,對於建立與消費者溝通的橋梁,與了解消費者需求這部分,不可否認,分子料理提供了更好的五感體驗,這也是食品科學可持續進步的新方向。

參考文獻

  • 黃玉鈴, 蔡豐富, 張修銘, 王文良, & 江伯源. (2012). 海藻酸-“鈣鹽”-微膠囊成型性及粒子品質比較. 農林學報, 61(2), 185-202.
  • 詹現璞, & 吳廣輝. (2011). 海藻酸鈉的特性及其在食品中的應用. 食品工程, 1(7).
  • Ahirrao, S. P., Gide, P. S., Shrivastav, B., & Sharma, P. (2014). Ionotropic gelation: a promising cross linking technique for hydrogels. Res Rev J Pharm Nanotechnol, 2, 1-6.
  • Fu, S., Thacker, A., Sperger, D. M., Boni, R. L., Buckner, I. S., Velankar, S., … & Block, L. H. (2011). Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. Aaps Pharmscitech, 12(2), 453-460.
  • Lee, P., & Rogers, M. A. (2012). Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. International Journal of Gastronomy and Food Science, 1(2), 96-100.
  • Tsai, F. H., Chiang, P. Y., Kitamura, Y., Kokawa, M., & Islam, M. Z. (2017). Producing liquid-core hydrogel beads by reverse spherification: Effect of secondary gelation on physical properties and release characteristics. Food Hydrocolloids, 62, 140-148.
  • The Making of Sodium Alginate and Its Surprising Uses, Alginic Acid
  • Spherification
  • 利用微流道操控技術生成褐藻酸鈣微粒子作為奈米金載體之研究
  • Notpla
-----廣告,請繼續往下閱讀-----
文章難易度
Sophia
6 篇文章 ・ 4 位粉絲
與許多食品人一樣誤打誤撞,只因為愛吃進入了這個領域,一腳踏入後發現這坑太大,不多拉些人進來那怎麼可以!

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
環保從今天開始、從 i 開始,和家樂福一起減塑、減廢,愛地球!
鳥苷三磷酸 (PanSci Promo)_96
・2023/09/12 ・1851字 ・閱讀時間約 3 分鐘

  • 文/陳彥諺

環保行動從源頭出發

說到「環保」,許多人第一時間想到的關鍵字就是「減塑」、「限塑」,在現代社會中,大量塑膠製品、塑膠袋充斥在生活中,而一次性使用的塑膠製品就是環保行動的最大敵人。不過,你知道嗎?發明塑膠袋的初衷,其實是為了拯救地球。
在塑膠袋發明以前,紙袋、布袋是主流的包裝用品。為了讓人們能有好看、方便、低成本的包裝材料運輸物品,1959 年,瑞典工程師斯坦・圖林發明了塑膠袋,其輕便、價格低廉、耐用、可重複使用,也可以取代紙袋以減少伐木量。

圖一、1959年,瑞典工程師斯坦・圖林發明了塑膠袋,其輕便、價格低廉、耐用、可重複使用,也可以取代紙袋以減少伐木量。

卻沒想到,這麼好用又便宜的塑膠袋問世後,在20 世紀末以前,紙袋、布袋幾乎被塑膠袋取代了,但是,人們並沒有如圖林發明當時所設想的,將耐用的塑膠袋重複利用,以減少地球負擔,反而衍生出單次使用後便丟棄的習慣,時至今日,塑膠垃圾更造成了嚴重的環境污染。

然而,地球是大家的,是每一個人的,也是家樂福所關心的。

家樂福十多年來,響應聯合國永續發展目標 SDGs,除了推行友善農業關懷土地,也以透明系列商品支持動物福利,2019 年,更設立影響力概念店,鼓勵消費者自備購物袋,同時把家中不需要的紙袋,帶到店中分享給需要的民眾,家樂福以具體行動響應 SDG 12 責任消費與生產,希望改變從 i 開始。

-----廣告,請繼續往下閱讀-----
圖二、家樂福響應 SDGs,改變從 i 開始

家樂福賣場實際響應環保行動

(A) 生活區:瓶身再生塑膠的環保洗護產品

日常生活中,洗澡洗髮使用的盥洗用品,是塑膠瓶罐的一大來源。家樂福攜手台鹽生技、台灣設計研究院、點睛設計,從原料到包裝,皆秉持著永續再生、環境友善、天然純淨的原則,推出Re系列永續商品。

Re代表減量(Reduce)、再利用(Reuse)、回收(Recycle),更代表著這項產品的永續再生(Power of Regeneration)。落實的行動包含,瓶身、瓶蓋採用 100% 再生塑料,運輸紙箱採用 FSC 森林環保紙箱等。

(B)食品區:可回收包裝減少食物浪費

食品的包裝,也是生活廢棄物的一大來源。家樂福除了停止使用保麗龍外,更在食品的包裝方法上,採用「貼體包裝」。

以往常見的食材包裝,是將食材放在保麗龍盒上,再以保鮮膜覆蓋,因為保鮮膜並無法完全密合食材本身,保鮮效果有限。而家樂福採用 APET/PE 材質的貼體包裝,結合抽真空原理與加熱技術,讓包材可以貼合食材,形成食材的第二層皮膚,減少與氧氣、微生物的接觸外,更能有效保存食材,減少食物浪費,同時減少保麗龍使用,一年可少用3百萬個保麗龍。

-----廣告,請繼續往下閱讀-----

(C) 收納區:減塑收納寶物,再生塑料一級棒

在收納部分,家樂福提供了消費者環保折疊購物袋的新選擇,樣式活潑可愛的環保折疊購物袋,材質為 RPET,是回收寶特瓶材質,每 2.8 個寶特瓶可做 1 個折疊購物袋,不只可供消費者重複使用,且產品本身便已達到循環利用。

另外,居家生活不可或缺的垃圾袋,家樂福也有新實踐!家樂福環保清潔袋,是回收家樂福或各通路的PE膠膜,經過工廠處理、回收篩選、製作成 100% 再生塑膠粒子後添加美國香氛除臭精油製袋,讓以往丟棄的回收膜,經過處理後有了新生命,而且不需添加新塑膠,就能製成接近新料等級的優質產品。

圖三、家樂福賣場的實際行動,以「再生塑膠」的回收再利用達成減塑目標

從今天開始、從 i 開始,和家樂福一起減塑、減廢,愛地球!

為了地球,家樂福不遺餘力。從友善農業、動物福利開始,再從減廢減塑著力。當家樂福自有品牌取消了飲料組裝的收縮膜包裝,策略從賣場及商品包裝減塑,每年約減少 340 噸塑膠,1067 噸的碳排。

塑膠產品的誕生初衷,是為了讓地球、讓人們的生活更好。雖然在過去的消費習慣下,對地球造成了嚴重影響,但是,要愛地球,永遠不嫌晚。從今天開始、從i開始,和家樂福一起減塑、減廢,愛地球吧。

-----廣告,請繼續往下閱讀-----
圖四、從 i 開始,和家樂福一起減塑、減廢,用消費發揮影響力
-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
3

文字

分享

0
1
3
塑膠汙染不能只靠回收解決!「全面減少塑膠生產」為何如此重要?——《科學月刊》
科學月刊_96
・2023/05/13 ・2615字 ・閱讀時間約 5 分鐘

  • 作者/張凱婷

作者簡介
綠色和平減塑專案負責人。都市與社區規劃背景,從事環境倡議工作六年,致力支持全球與在地的永續與環境保護行動。

  • Take Home Message
    • 塑膠廢棄物的汙染愈加嚴重,特別是一次性塑膠包裝。據統計,2040 年全球塑膠廢棄物將會累積至6.46 億公噸。
    • 分析報告指出「源頭控制、減量」比「回收」或「替代材質」更適合作為塑膠汙染的解決方案。
    • 正進行談判協商的全球塑膠公約須以零廢棄為原則限制生產與使用,優先淘汰一次性塑膠,以終結塑膠汙染世代。

自人類開始使用各種形態、材質的塑膠,只花了不到一個世紀的時間,就讓塑膠汙染成為全球性、最緊急的環境挑戰之一,影響著我們的健康、自然生態及氣候。

即使全球統一的回收標誌已運行了 40 年之久,但所有被產生出來的塑膠垃圾只有 9% 進入回收利用。塑膠廢棄物的末端處理成效令人沮喪,但塑膠用量仍年年升高。根據統計,全球自 1950 年代至今已累積製造了 83 億噸的塑膠,2021 年的塑膠產量更已達到 3.9 億公噸,與半個世紀前 1964 年的 1500 萬噸相比,相差了 20 倍。

根據世界經濟論壇(World Economic Forum,WEF)估計,一次性塑膠包裝占所有塑膠產量的 40%,為塑膠產業的最大宗,相當於每年有 1.61 億噸的塑膠包裝在市面上僅用一次就被丟棄。塑膠包裝也因此成為海洋及全球淨灘統計中最大量的垃圾。

-----廣告,請繼續往下閱讀-----

塑膠演變成環境汙染的原因在於它幾乎無法完全被分解,而且會隨著陽光長期照射,脆化、分解、破碎成更小的碎片或顆粒,形成塑膠微粒。由於塑膠微粒的尺寸小、重量輕,透過大氣可以使它的傳播距離更遙遠,不僅漂浮在我們呼吸的空氣中,甚至可以進入並積聚在我們的器官、組織、血液中。

單靠回收無法解決問題 「減量、控制」才是最具吸引力的解決方案

皮尤慈善信托基金會(The Pew Charitable Trusts)2020 年出版的海洋塑膠分析報告書——《打破塑膠浪潮》(Breaking the Plastic Wave)指出,全球塑膠汙染的情形會愈來愈嚴重,若沒有系統性的轉變,到了 2040 年全球每年產生的塑膠廢棄物將會倍增,累積在海洋中的塑膠垃圾會比現在多出四倍,來到6.46 億公噸(圖一)。

圖一|未來20年塑膠汙染影響推估
如果一切情況都跟現在一樣,預估2040年全球每年產生的塑膠廢棄物將會倍增。
(資料來源:The Pew Charitable Trusts/Breaking the Plastic Wave

不過,這份報告也提出相關解決方案,包括:

  • 源頭控制、減量:直接淘汰塑膠、擴大消費者重複使用方案、推出新的包裝商業模式
  • 替代材質:紙、紙+淋膜、可分解材質
  • 回收:機械回收、化學回收
  • 終端處理:廢棄物燃料化、焚燒、掩埋

報告指出,若要解決塑膠汙染,無法靠單一的解決方案,且每一個解決方案可以帶來的減量效果都有所不同。其中,「源頭控制、減量」——透過直接淘汰包裝、擴大消費者重複使用的選項、新興的商業模式,在綜合環境、經濟和社會角度成為最具吸引力的減量方案,可以最大程度減少塑膠汙染,還能帶來經濟效益並緩解溫室氣體排放(圖二)。

-----廣告,請繼續往下閱讀-----

我們必須要以前所未有的速度和規模創建新的商業模式、產品設計、材料、技術和回收系統,以加速朝向循環經濟發展。

圖二|不同解決方案可帶來的塑膠減量效益
(資料來源:The Pew Charitable Trusts/Breaking the Plastic Wave

企業自願性承諾減塑緩不濟急

2018年,艾倫麥克阿瑟基金會(Ellen MacArthur Foundation)邀請眾多企業及政府簽署自願性的「新塑膠經濟全球承諾」,包含使用大量一次性塑膠包裝的零售商、觀光業、食品業及包裝製造商要在 2025 年達到以下減塑目標:

  • 剔除不必要或有問題的塑膠包裝。
  • 達成可重複使用塑膠的商業模式,以替代一次性的塑膠使用。
  • 全面使用 100% 可重複利用、可回收或可堆肥的塑膠包裝。
  • 對所有使用中的塑膠包裝設定採用可回收塑膠比例的目標。

然而,艾倫麥克阿瑟基金會去(2022)年度的追蹤報告卻顯示,以目前企業落實的程度看來,2025 年幾乎不可能達成此目標。值得一提的是,重複使用的商業模式雖然每年都有成長,但是成長幅度並不高,企業以及政府相對投注更多資源在「回收」或「替代材質」。

這突顯大品牌空洞的自願性承諾,需要更強而有力的導正,大幅減少塑膠的生產和使用,並且應大力加速轉型往「重複使用包裝」的經濟模式。

-----廣告,請繼續往下閱讀-----

進行中的全球塑膠公約

好消息是,要阻止塑膠汙染持續惡化的呼聲也來到高峰。去年 3 月的聯合國環境大會(United Nations Environment Assembly,UNEA 5.2),各國家及地區代表均認同解決塑膠汙染的迫切性,決議確立公約。為了立法處理塑膠汙染問題,全球規劃透過「政府間談判委員會」(Intergovernment Negotiating Committee)商議條文細節,目標明(2024)年底前完成協商程序。

依照目前的規畫,從去年底到明年將進行五輪的談判協商,第一輪已經於去年 11 月於肯亞奈洛比落幕。

第一輪的會議重點有以下:

  • 各國家及地區均認同解決塑膠汙染的迫切性
  • 許多政府及企業都有共識此條約需具法律約束力,並涵蓋整個塑膠生命週期
  • 各國家及地區須制訂「國家/地區級行動計畫」

源頭減量,終結塑膠汙染時代

聯合國在 2017 年時宣布了塑膠汙染為全球危機(planetary crisis):塑膠汙染不可逆轉,不僅會導致生物多樣性喪失,對依賴海洋生態系統健康的人類生計造成毀滅性影響,科學證據也證實當前的塑膠汙染已超出了地球可負荷的極限,再加上塑膠汙染的跨區域特性強、生命週期對全球造成汙染並衝擊自然環境與人類健康。

-----廣告,請繼續往下閱讀-----

我們亟需導入能與問題規模相匹配的解決方案,全球塑膠公約必須以「預防放任塑膠無上限生產」及「零廢棄」為原則,限制塑膠的生產與使用,設定塑膠生產限制的歷史基線,作為不得再產生新原生塑膠的禁令,並且優先從源頭逐步淘汰一次性塑膠,以終結汙染世代。

  • 〈本文選自《科學月刊》2023 年 5 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3706 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。