現代人喜歡任何事都問問看 Google,甚至連生病了也會用 Google 查查症狀。因此當感冒的人多了,使用 Google 查詢「發燒」或「咳嗽」的民眾也跟著變多,讓特定關鍵字的搜尋熱門度,成了疫情變化的指標。2009 年在「自然(Nature)」期刊上發表了一篇以上述理論為基礎的評估系統,並且對照 2008 年真實爆發的流感病例,該系統的表現令人激賞,預測的數值和真實的病情呈現超高度的正相關(請參考表 1。該系統在評估 2008 年疫情的表現上,相關係數高達 0.85)[1]!
表 1:相關係數等級 [2]
正相關係數(介於1~0之間)
等級
≧0.8
超高度相關(excellent correlation)
0.8~0.6
高度相關(good correlation)
0.6~0.4
中度相關(moderate correlation)
<0.4
低度或無相關(poor correlation)
為什麼要用 Google 協助評估疫情?
圖/wikipedia,由U.S. Navy photo by Mass Communication Specialist 3rd Class Jake Berenguer,公有領域。
正式的疫情統計方式,是由醫院採集患者檢體,再送交實驗室檢驗,確診後再回報給疾管署,最後再由政府每週公佈上週的確診病例數。可以預料的是,這套系統雖然可靠,但作業時間曠時費日(如 PCR 等檢驗需數日的時間),面對發展迅速的流行病,難免會有慢半拍的疑慮。而 Google 利用群眾的行為模式進行評估,不但隨時都是最新的資訊(Google Trend 每分鐘更新一次),並且所有人都能使用,更重要的是省卻了曠時費日的檢驗、公文流程,在面對瞬息萬變的疫情時,提供了另一種角度的疫情參考。因此 Google 設立了專門的流感統計系統—— Google Flu Trend,用來協助各國預警可能襲來的全球大流感。
但 Google Flu Trend 的評估規模是如美國、澳洲等大國,台灣是個相對小型的國家,並且 Google Flu Trend 也沒有提供中文關鍵字的資訊,難道台灣不能用 google 來協助評估疾病了嗎?讓我們改用 Google 趨勢(Google Trend)的關鍵字搜尋熱門度,來分析看看今年的流感疫情!
用 Google 評估疫情會受到許多因素影響,如媒體大量報導時,因個人興趣而查詢特定關鍵字的民眾會變多,導致搜尋熱門度趨勢受到影響。因此群眾行為模式並不能完全取代現行的機制。所以本文著重於提供「不同面向的參考」。
參考文獻:
Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski & Larry Brilliant (2009) Detecting influenza epidemics using search engine query data. Nature, 457, 1012-1014
Andrea Freyer Dugas, Yu-Hsiang Hsieh, Scott R. Levin, Jesse M. Pines, Darren P. Mareiniss, Amir Mohareb, Charlotte A. Gaydos, Trish M. Perl, and Richard E. Rothman (2012) Google Flu Trends: Correlation With Emergency Department Influenza Rates and Crowding Metrics. Clinical Infectious Diseases, 54, 463-469
Isaac I Bogoch, Oliver J Brady, Moritz U G Kraemer, Matthew German, Marisa I Creatore, Manisha A Kulkarni, John S Brownstein, Sumiko R Mekaru, Simon I Hay, Emily Groot, Alexander Watts, Kamran Khan (2016) Anticipating the international spread of Zika virus from Brazil. The Lancet, 387, 335-336
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。