分享本文至 E-mail 信箱

學術引用格式

MLA (點一下全選)

APA (點一下全選)

EndNote(.enw)

【紀錄】M.I.C.╳科技大觀園:能源──從核能的那些骯髒事開始說起

文 / 羅佩琪

唰──地脫下外套,露出胸前閃爍著耀眼藍光的弧形反應爐[1],講者廖英凱還沒開口,就清楚揭示了今晚的演講主題:核能。

曾在《廢核大遊行》擔任公民審核四的講者,也曾主持網路社群《核能流言終結者》的對談,長期協助國內反核、擁核團體釐清核能議題中的科學論述,PanSci專欄作者廖英凱再次登陸PanSci M.I.C.[2],嘗試放下社會火熱的反核、擁核對立,以「科學」為立場,分享(其實是澄清?)核能議題中的那些骯髒事。

適逢林義雄先生的反核四禁食行動,這次的M.I.C.在講者一貫的風趣生動中,似乎也夾帶了一抹沉重。而我們也不得不去思考:面對敏感複雜、佈滿對立荊棘的社會議題,除了科學真理,還有什麼是科學人可以 / 應該做的呢?

(雖然老梗但也真切,或許「尊重」就是那把開啟對話的鑰匙吧!)

劃定守備範圍:今晚,我們談的是「核能議題中的科學」

2

「該不該要核四、核五六七八?」「假設我們不要核能,又該選擇什麼樣的能源?」面對能源議題的大哉問,廖英凱一開場,就明白指出須考量的面向是相當多元的:

● 經濟面:例如,哪一種發電比較便宜?
● 科學面:例如,哪一種發電比較安全?
● 社會政治面:例如,哪一種發電對蘭嶼人、對台灣人或對地球人比較好?

其中,「發電方式、發電產物的安全性」應該是自然科學最有能力處理的,也因此,今晚我們將從攸關核能安全、常被視為核能潛在風險的骯髒事們開始探討。

核能的骯髒事#01:核電廠核爆?
──科學家:「讓我們從鈾235濃度、連鎖反應、臨界質量談起。」

3

五月天的《入陣曲》網友Kuso的《連核爆》……在各種流行文化中,美麗(?)的蕈狀雲與核爆,似乎與核電廠畫上了等號。但,在現實世界,「核電廠核爆」真的會發生嗎?甚至,我們給定最極端的情況,例如:核電廠施工者是像X統沙拉油般的不肖商人,施工品質極差,在這樣嚴苛的條件下,核電廠是否可能核爆?[3]

要科學地回答這個問題,我們必須從「連鎖反應」的概念談起。

核電廠與核彈的能量來源,都來自鈾原子的核分裂:一顆中子打到一顆鈾原子,分裂成氪和鋇這兩個蠻重的原子及三顆中子;如果這三顆中子繼續打到三顆鈾原子,就會繼續產生九顆中子……這,就是傳說中的「連鎖反應」,利用三倍數的指數成長,讓能量短時間內快速膨脹。

你可以想見,製造核彈者會希望這個連鎖反應產生的能量大、效率高,因此會把核彈的質量加大,並提高核彈彈頭的濃度,以讓所有被分裂出來的中子,都能有效地碰到下一顆鈾原子,讓連鎖反應持續發生;更先進的做法是,在核彈外圍包覆金屬,讓中子反彈,產生更有效率的連鎖反應──由此可知,「質量」與「濃度」,正是能否達成連鎖反應的關鍵。

4

▲提升核分裂能量、效率的方法:加大質量(中),提高密度、加上金屬外殼(右)。

也因此,我們稱達到連鎖反應所需的質量為臨界質量;而不同濃度下,臨界質量亦會不同。以鈾235為例,當濃度是100%,只需要47.5公斤就可以達到連鎖反應;但,當濃度下降到10%,臨界質量將超過一公噸;至於核電廠使用的,濃度介於3~5%鈾235,臨界質量是:無窮大。

5 (2)

至此,我們可以肯定地回答「核電廠會核爆嗎」這個問題了:不可能。核電廠所使用的鈾235濃度過低,所需臨界質量是人類無法企及的無窮大;既然不可能達到連鎖反應,自然也無法產生核爆。(既然低濃度的鈾235無法產生連鎖反應,核電廠的能量從哪來?核電廠的核分裂怎麼發生?請看這份延伸閱讀。)

註:那福島核災的爆炸是怎麼回事?那不是核爆,是比核爆等級小得多的氫爆[3]。

核能的骯髒事#02:台灣的輻射值超標?
──科學家:「讓我們從輻射的組成談起。」

即使核電廠不會核爆,我們依然要面對已經存在的核廢料、核能輻射以及福島事故的意外的問題,這正是核能與其他發電方式最大的差異:核能發電的產物是有輻射的。奠基於對輻射的警覺與擔憂,許多環保團體、倡議組織近期也自發性發起「測量生活周遭的輻射值」行動:

6

上圖即是一例,2014年某場研討會中,與會者在立法院測量到每小時0.12μSv(微西弗);相對於此數值,知名反核人士劉黎兒女士曾撰文宣導「超過0.07μSv就是超標」,指稱全台測量到的輻射值普遍超標三至五倍以上。難道,這就是台灣核能輻射危機的醜陋真相?

試圖解答這樣問題,我們可以從「輻射組成」來一步步驗證上述的說法。日常生活中我們會接觸到的輻射來源其實相當多樣:(數值單位:mSv/yr 毫西弗/年)[5]

7

  • 宇宙射線(0.26)、氡氣(0.435)、地表體外曝露(0.64)、地表體內曝露(0.28):都屬於背景輻射。
  • 醫療輻射(0.81):包括X光、斷層掃描等,是我們一生接受輻射的最大宗來源。
  • 其他人造輻射(0.01):過去人類在地球上投放的兩千餘顆核彈所產生的放射性落塵、職業曝露如放射治療師/核電廠員工會接觸到的輻射、核能及雜項設施如核廢料處置場的輻射。

由於醫療輻射僅見於醫療處所,背景輻射如宇宙射線則無所不在,WHO、ICRP及我國的原能會在設定輻射相關建議、規定時,多以「其他人造輻射」為規範項目,並以每人每年1mSv為上限。

帶著輻射組成的背景知識,我們重新檢視輻射量測的意義:假設我們跟蔡康永一樣,在遊行時拿著一支輻射偵測器,我們會量到什麼呢?

街頭不是醫院,不會有醫療輻射,氡氣要計算吸入人體內的影響值,跟體內曝露一樣無法量測,我們能偵測的數值其實僅剩宇宙射線、體外曝露及其他人造輻射三部分。根據上述調查,三者合計為0.91mSv/yr,約莫是0.104μSv/hr,這個數值與全球平均0.097μSv/hr[6]相距不遠。(更具體的形容:這大概是「吃一根香蕉獲取的輻射量」)

不論台灣或全球,以輻射偵測器隨處量到的數值,顯然都大於0.07μSv;那,為什麼還會有劉黎兒女士「超過0.07μSv就是超標」的論述呢?我們試著重現劉女士的推導過程:

  • ICRP說每年超過1mSv超標:1mSv/yr = 0.11μSv/hr
    ➝正確。
  • 劉女士依8比2的體內、體外曝露拆分:體外曝露約佔0.02μSv/hr。
    ➝喔歐,出錯了!ICRP的1mSv是規範其他人造輻射,體內/外曝露都屬於背景輻射,兩者是沒有交集的。
  • 0.02μSv/hr再加上台灣沖積平原地帶的自然值0.05μSv/hr = 0.07μSv/hr,故超過0.07μSv/hr即為超標。
    ➝喔歐,出錯了!錯誤的上一步,推導出錯誤的結論。

對原始文獻的解讀偏誤,造成與大自然現狀相悖的結論。至於,台灣輻射值的現狀究竟如何?較允當的評斷及量測方式又為何?想了解更多,建議閱讀講者廖英凱在泛科學發表的專文做更深入的了解。

核能的骯髒事#03:核電廠逃命圈?
──科學家:「讓我們從LNT、線性無閾值模型談起。」

除了輻射偵測,核能議題中另一項引起眾多關注與非議的,正是逃命圈的距離標準。

原能會目前核定的緊急應變計畫區範圍為八公里,雖然亦有是否增設為十六公里的討論[7],但無論如何,皆遠低於日本福島核災時的二十公里撤離圈……是台灣人命比較不值錢嗎?明明事關人命,撤離圈難道不是越大越好、越大越安全?

要審慎地回答這個問題,我們必須一步步追溯逃命圈法規制定時,應考量的科學基礎。流行病學統計發現[8]:當照射到100mSv以上的輻射,每再增加100mSv的輻射,罹癌的機率會增加0.55%。緊接著我們會問,那,照射到100mSv以下呢?由於目前尚無100mSv以下具統計意義的實驗數據,有三種常用的模型,作為輻射量與罹癌機率關係的可能詮釋:

8

【模型一】線性無閾值模型 Linear No Threshold(黃線)

這個模型認為:100mSv以下的規律會與100mSv以上相同,呈「每增加1mSv輻射、罹癌率增加0.55%」的線性關係。從字面拆解,「閾」是門檻的意思,「線性無閾值」是線性、沒有門檻;更白話的說,人類只要照射到輻射,不論劑量多低,都一定會增加致癌的機率。(重申:即使100mSv以下我們是沒有實驗數據可以佐證的)

【模型二】線性閾值模型Linear Threshold(藍線)

相反地,線性閾值(a.k.a.有門檻)模型認為,既然100mSv以下沒有實驗數據佐證,那顯然地,當人類被0~100mSv的輻射照射時,是不會增加任何致癌率的;一直要累積到100mSv,才會有0.55%的線性關係。

【模型三】毒物反應模型Hormesis Theory Effects(綠線)

這個有點反骨的模型則認為,在0~100mSv、這樣低劑量的輻射照射下,反而是會「降低」致癌率的。類似於現實世界中,台灣某些住在輻射鋼筋屋中的人、伊朗高原這個高背景輻射的居民,他們罹癌率反而比較低。[9][10][11]

補充:當然,這樣的推論有其限制,是否罹癌的原因很多,或許純粹只是因為這群人的社經地位較高、生活品質較好,致使其罹癌率較低。而原能會針對輻射屋居民的流行病學調查也發現,輻射屋居民在甲狀腺、乳房與婦科病等疾病明顯高於一般大眾,且對健康狀況的不確定性所產生耽憂的負面影響,更是難以估量。[12]

輻射值0~100mSv間,[致癌率以0.55%增加] vs [致癌率=0] vs [致癌率反而下降] ── 仔細比較三種模型,我們會發現,模型一(LNT模型)是最保守的,任何輻射劑量都會增加致癌率。

好,帶著這樣的認知,現在讓我們再次審視福島核災的二十公里逃命圈。

根據Ten Hoeve等人的研究[13],依最保守的LNT模型推算,日本政府二十公里逃命圈、共十六萬人的撤離決定,總計讓245人免於罹患癌症;這無疑地是好事。然而,我們同時必須理解,在這十六萬人的撤離過程中,卻有570人因心理不適、延誤治療、孤獨自殺等原因而死亡。

「假如你是核災時的日本政府,你會希望災民們留在原地、三十年後死於癌症……還是冒高一倍的立即死亡風險,依然撤離二十公里範圍內的居民?」這個兩難抉擇或許過於煽情,但也凸顯出:單以距離長短來判定逃命圈的適當性是不夠的,逃命圈並不能以「越大,就越安全」的思維論之

非核家園的想像:台灣的自然資源、再生能源

核爆、輻射量測、逃命圈,雖然民間對核能骯髒事的解讀有些許誤解,我們依然必須承認:核能輻射確實是棘手難解的問題,核廢料的處理也必須以「遠離人類、遠離生物圈」為原則。

那,如果我們往核能的反方向望去……在「非核家園」的世界中,台灣究竟握有多少自然資源的籌碼,能讓我們發展再生能源?

9

其實,依據2008年開始的《國科會能源國家型科技計畫》,台灣再生能源整體的潛力上限,是應付尖峰時期用電量25GW(GW=百萬瓩)仍綽綽有餘的31.19GW(編按:25GW是今年四月的數據,今年七月尖峰時期則已高達35GW了);亦即,如果未來我們能把台灣所有有潛力的自然資源都完全開發,別說核四,核一二三、所有火力發電廠都可以被取代。

怎麼做到的?正是憑藉著台灣的壯麗山川、豐隆物產。

陸、海、空齊備,再生能源遍地開花

從能源的「陸」軍看起:台灣本島多山,使水力發電得以發展,利用高低差產生位能,轉化成動能推動發電機產生電力。而在新竹至彰化沿海、墾丁一帶擁有較高的風能,這些地區也正是風力發電機陸續建置的區域。又,在小油坑、大屯山、宜蘭清水等溫泉區,我們得天獨厚地可以發展地熱發電,將冷水打到地底,並用地底的熱加溫,過程產生的能量即能轉化為電能;1980年代落成的宜蘭清水地熱發電廠雖在1993年因高故障率、低發電效率而停止運轉,但預計今年也將重新啟動,為台灣貢獻12MW(MW=百萬瓦)、約莫兩萬六千四百戶的電力。[14]

「海」軍則有兩大勢力,台灣西南海域蘊藏有可燃冰,可燃冰是一種甲烷水合物,亦即海中可開採的天然氣;東部海域則有黑潮,可以帶動海底架設的螺旋槳進行發電。

至於常被視為能源明日之星的「空」軍:太陽能,則分布在太陽能能量較高的嘉南平原及恆春,前者正好坐落於嘉義布袋至高雄佳冬,台灣古代曬鹽場的所在位置(可見咱們的祖先就已經知道太陽能發展的最佳場域了啊……);而四季如春的恆春,也正是因為太陽夠辣、太陽能量夠穩定,才成為比基尼辣妹雲集的春吶場地。

依照台灣所擁有的陸、海、空自然資源,我們可以標幟出台灣的再生能源地圖:

10 11

呼應前段所述,當這些再生能源完全開發,總發電量將是可以完全支撐起台灣用電量的31.19GW,我們可以成為一個只依賴再生能源、就能生存的國家。

但,再生能源完全開發的美好世界……真的會降臨嗎?

「接下來,我要殘酷地戳破大家對再生能源的美好想像。」

才剛為在場觀眾建構美好的、非核家園的未來樣貌,廖英凱話鋒一轉,將大家從想像拉回現實。真實世界中,2014年4月份再生能源實際的發電量約為2.193GW,僅為完全開發的31.19GW的十五分之一:

12

當然,現在2.193GW,不代表未來沒有機會走到31.19GW;但是,這中間的差異,除了政府是否投注足夠資源、是否用心發展再生能源外,或許,還有一些(與核能輻射一樣)從根本地、棘手難解的問題。

【水力】環境危害(案例:萬里水力電廠開發案)

水力電廠的開發,代表需要阻斷一條河流來建置水壩與水庫,輕則改變河流的流量、流速,重則改變河流中的生態系(直白的想:魚顯然不可能跳過水庫的高牆……必須變更棲息處所、進行遷徙)。想進一步了解水力電廠開發對環境的危害,花蓮萬里水力電廠目前正在進行第二階段環評,《地球公民基金會》的花東辦公室投注了許多心力與研究在這個議題上,值得大家一同關注。

【風力】季節效率差異、低頻噪音(案例:苑裡風機開發案)

根據經濟部能源局、工研院的千架海陸風力機計畫,2030年有望建置1050架風機、供應約4.2GW,比核四的2.7GW還大的發電量,顯見風機的潛力。然而,受限於台灣的地理位置與地形,夏天風小冬日風大,容量因數[15]相差3-6倍,但偏偏,夏天卻是吹冷氣、用電量最高的尖峰時期。

13

風力發電的另一個問題是「噪音」。關注社會運動的朋友可能聽過的《苑裡反瘋車》行動,正是因為英華威風力發電集團在苗栗苑裡進行風機架設,而巨大風機所產生的低頻噪音波長長,繞射效果好,隔絕的困難度很高,也因此造成相當大的噪音公害。

註:風機有多巨大?具體地說,它是進擊的巨人中超大型巨人的一倍大!(嚇)

【地熱/黑潮】自然區開發、管路結垢與海水侵蝕

地熱發電多存於偏遠的森林山區,亦即,地熱電廠建置時我們勢必開發到我們最需要保護的自然區;而進行地熱發電、我們把水打到地底下再抽起時,管路中將溶有許多地底礦物,造成水管結垢──這個看似簡單的問題,卻是過去幾十年的地熱發電進展中,就連發展最快的美國、菲律賓也難以解決的。

14

與地熱發電碰到的問題雷同,分布於東部海域的黑潮發電在設置海底裝置時也會遇到防水、侵蝕問題,再加上東部海底地形崎嶇,施工難度甚高,電力從海上傳輸到岸上時又會碰到颱風侵擾。綜觀全世界,洋流發電尚未有成功商轉的案例。

【可燃冰】國際情勢問題

西南海域蘊含了豐富的可燃冰資源,但,也埋藏了最多的國際海域紛爭。一年前的廣大興案仍歷歷在目,西南海域涉及中國、菲律賓等國的複雜海域主權問題,讓可燃冰短期內可能淪為看的到、吃不到的自然資源。

15-16

【太陽能】晝夜/季節效率差異、製程汙染(案例:日月光K7廠)

太陽能在先進的高科技產業頗受重用,例如國際太空站就是使用太陽能。然而太陽能在地球的應用則存在了根本的限制:太陽會下山,而下山後我們還是得用電。晝夜發電效率的差異如下圖所示。

17

發電效率的巨大差異不只存在於晝夜間,也在季節間。與風力發電相反,夏天太陽大、冬天太陽小,太陽能似乎正好適合應付夏天的尖峰用電量:

18

然而(筆者OS:聽到這兩個字,就知道廖英凱又要來摧毀我們的想像了……),如果仔細研究上圖的縱軸,一樣是容量因數,風力發電的數值是0~100%,但在太陽能上限卻僅25%。簡易的解讀這相差四倍的級別:一天中有一半是黑夜,發電效率先打對折,再者,清晨、黃昏的發電效率也是低落的,折算下來,太陽能的發電效率最高目前僅達23.26%。

太陽能的另一個問題,again,又是環境汙染。太陽光電、太陽能電池的本質是半導體,雖然在此無法敘述半導體的整體製程,但至少我們可以利用近期的新聞做聯想:去年底爆發的日月光K7廠事件,正是因為製造半導體過程中排放大量汙水,造成嚴重的環境汙染;而在製造太陽能的主要製造國中國,許多太陽能電池的產地也爆發了大規模的汙染事件

「其實我們的科技,已經足夠先進來克服半導體製程的汙染……」帶著些許無奈,廖英凱說:「但科技無法解決的,是不良商人無止盡的貪婪。」

我們必須無奈地承認,這才是真實世界的樣貌

帶著對再生能源開發限制的了解,讓我們再次面對這個問題:台灣的再生能源,真的有機會從目前2.193GW發電量,走到「完全開發」的31.19GW嗎?除了風力季節差異、地熱結垢、太陽晚上會下山……等難解的根本性開發限制,所謂的完全開發,又將附帶多少我們不樂見的環境汙染、生態破壞與居民抗爭呢?

水力發電的案例或許可作為上述現象的註解。2008年《國科會能源國家型科技計畫》其實也預估了2025年的再生能源發電量,針對潛力上限5.04GW的水力發電,2025年的發電量預估卻與2014年是相同的1GW。雖然無奈,但我們似乎必須承認:再生能源的「完全開發」在各種自然、人為的現實限制下,的確存在了無法跨越的難解鴻溝。

19

當然,以上討論都奠基在「預估」上。基於對國科會、政府預估數據的質疑,台灣再生能源推動的關鍵組織《綠色公民行動聯盟》也曾在核四真實成本與能源方案報告中提出2025年發電量、電量需求的兩個版本預估:版本一,與能源國家型科技計畫的預估數據相近,以2010年的電量需求成長48%為預測基準;而相較下較樂觀的版本二,則以節能省電推行順利為前提,預估電量需求將呈零成長,維持2010年的水平:

20

綜觀能源國家型科技計畫、綠盟的預估版本,截至2025年為止,再生能源的比重將落在20%,以及一個極為理想的69%間──也就是說,不管悲觀或樂觀,在2025年以前的這十年間,我們是不可能單獨依賴再生能源生存的。

所以,剩下的差額(不管是80%或31%),該怎麼辦?

不得不的選擇:火力發電

延續非核家園的中心思想,排除掉核能,當再生能源仍不敷使用,我們的選項僅剩火力發電一途。而不論是台灣、或是廢核路上的典範德國,火力的確也都是難以割捨的發電來源。

21-22

23

上排的兩張圖,分別是台灣早上六點、晚上六點各發電廠的發電量,除去核能,保持一天恆定電力供應的仍是火力發電;下排則是德國2013年7月第一週的電力供應圖,每日規律波動的黃色區塊正是白天活躍、晚上歸零的太陽能(註:我們常聽到的「德國太陽能佔電力供應的一半」就是指白天的這個部分),最下方的紅色、藍色分別是核能與水力,而穩定佔據發電主力的,依然是咖啡色的火力發電。

回到我們先前提的差額電量來源問題:不管是悲觀的80%或樂觀的31%,這些再生能源無法負荷的部分,如果不使用核能,完全使用火力替代,又會是什麼樣的光景呢?按照台中火力發電廠的發電量換算,這31%~80%的電力約莫需要二~五座的火力發電廠。這聽起來似乎值得一試?如果未來十年我們有一個明確的政策目標,兩年蓋一座火力發電廠,十年我們就會有五座,來實現非核家園的夢想。

然而(Oh No…又是這個粉碎夢想的起手式……),透過火力發電來實現非核家園,是否也會帶來其他問題?這會是一個值得的投資嗎?

火力發電的美麗與哀愁

顯然,要解答這個問題,我們需要更了解火力發電。就從台灣的驕傲,也是全世界最大的火力發電廠:台中火力發電廠看起吧!

24-25

左圖是我們熟悉的台中火力發電廠正面外觀,轉180度、繞到圍牆後的世界,右圖是電廠內部的實際樣貌:黑色堆積如山的正是火力發電廠的燃燒原料:煤炭。這可以解答為什麼火力發電廠大多設置在海邊,因為只有船能運算這麼大量的煤炭;而擁有廣大內陸的國家如美國,就必須把火力發電廠蓋在鐵路旁,方便煤炭運送。

回到我們關心的核心問題:使用火力究竟會有什麼問題?除了空氣汙染造成火力發電廠附近居民較高的支氣管病變比例[16][17][18],火力發電最嚴重的產物依然是溫室效應,及其所連帶造成的氣候暖化。

26

▲二氧化碳濃度(藍線)與地球溫度(紅線)的變化趨勢圖。

除了北極熊可能會沒有地方住,氣候暖化與我們人類何干?舉一個與人類比較切身相關的例子。印度與孟加拉邊界的無人島嶼South Talpatti(或稱New Moore)長久存在兩國領土糾紛,然而就在2010年,這個島嶼被發現沉沒了,兩國因此激烈地指責是對方動用武力將此島炸沉(OS:我得不到的,你也別想要……?)。最後,經印度加爾各答學者Sugata Hazra分析衛星圖片,向BBC發布新聞稿,才指稱此島是因全球暖化,海平面上升淹沒的。除此之外,描述極端氣候的《明天過後》、前美國副總統高爾的紀錄片《不願面對的真相》,也都不斷提醒我們,溫室氣體、全球暖化可能潛藏的恐怖危機。

火力發電也有這麼多問題,看似走投無路的我們,到底該怎麼辦?這個全世界都在憂慮的問題,奸巧又厲害的商人比爾蓋茲提出了自己的見解。

蓋茲方程式:Innovating to zero

「這是我近年來學到最重要的一條公式。」廖英凱慎重的強調。

27

這條公式是由比爾蓋茲在2010年的TED演講提出,他估算人類未來會製造出來的二氧化碳量,將等於[人數]、[每人會使用的服務量]、[每單位服務需要的能源]、[生產每單位能源所製造的二氧化碳]的乘積。相同的分子、分母消去後,兩邊相等,這條公式的確成立。

仔細探究這四項變數:

  • P(↑):在可預期的未來,全球人數必然會繼續上升。
  • S(↑):每人可使用的服務也會上升,例如娛樂服務,從智障型手機到智慧型手機、從貪食蛇到itune store,以及醫療服務的日新月異。
  • E(↓):單位服務使用的能源是下降的,例如,從燈泡,到白熾燈泡、省電燈泡,再到LED,技術的進步正讓服務需消耗的能量下降,用電效率提高。
  • C(?):這將是左右這條公式的關鍵。

若以降低二氧化碳為目標,我們需要將C,每單位能源所產生的二氧化碳降到最低;而目前,其實存在一些發電方式是可以將這個變數降到零的,例如:剛才所提的再生能源、核分裂,以及科學家們心中的美好夢想:核融合。

根據這條公式,一個很棒的理念誕生:如果我們可以在能源產生的二氧化碳量努力,降低到零,理論上,我們可以將不會再產生任何二氧化碳。又,人類世界中必然還是有一些產業必須製造出二氧化碳,例如肥料製造、耗燃油的高空運輸,此時,我們就可以將二氧化碳的額度較無後顧之憂地留給他們。

尊重不同價值觀,看清「能源是有限的選擇題」

回顧上述介紹的台灣自然資源與再生能源,以及填補發電量差額所必須選擇的火力發電或核能發電,我們會哀傷的發現:面對未來,我們擁有的選擇並不多。能源的議題,至少在台灣,並不是一個開放式的問答題,而是一個非常、非常有限的選擇題。

既然選擇這麼有限、但每種能源又都有人反,該怎麼辦?戲謔的網友說:那不如請皮卡丘、雷神索爾用閃電來拚經濟好了:

28

「不論反對的理由你是否認同,或你認為有更好的選擇,我都必須鄭重呼籲:請尊重這群與你意見不同的人。」

一反淘氣詼諧的演講風格,廖英凱鄭重嚴肅地提醒在場MIC的夥伴:玩笑歸玩笑,但未來當我們遇到苗栗苑裡反風機、花蓮萬里反水庫、或是明天要開始為核能無限期絕食的林義雄先生時(編按:本場MIC恰好是2014/4/20,林先生絕食前一天),請千萬、千萬不要用戲謔的方式面對他們,請給予他們絕對的尊重──因為,他們是真正在用自己的生命在反對,在捍衛自己的價值觀的。

面對核能議題,除了互相尊重,廖英凱也推薦了另一個開啟對話空間的方法:自己來做預估吧!或許你不認同上述國科會、綠盟的能源預估,你對台灣能源的未來有自己的獨特想像,目前坊間其實有一些工具,是可以讓你進行個人化能源預測的,例如資料視覺化設計師李慕約製作的《發電成本計算機》。在這個計算機上,你可以自行設定你期望的未來GDP、人口成長率、用電量,並指定你希望有幾座火力、核能、風力電廠,搭配出屬於你的模擬國家中,專屬的能源配置。

總結

從核電廠核爆、輻射量測、逃命圈等核能骯髒事(?)的科學面釐清,到台灣的自然資源、再生能源的選項與限制,以及這樣的限制下使用火力將遇到的阻擾、比爾蓋茲對二氧化碳Down to Zero的想像……這場MIC的超時程度堪稱史上之冠,但,卻也只是核能議題中非常、非常少的一小部分。

帶著科學人的爛漫,廖英凱再次引用比爾蓋茲的話,作為結尾:

The barrier to change is not too little caring; it is too much complexity.
改變世界的阻礙,不是人類的冷漠,而是因為這個世界實在太複雜。

~Bill Gates  2007

螢幕截圖 2014-07-06 13.41.01

畢竟是爭議不斷的社會議題,本次M.I.C.的Q&A時段提問異常踴躍,有的直白尖銳、有的充滿憂懼,有的PanSci夥伴也試圖提出有建設性的問題:

Q:DIY的輻射量測,在什麼樣測量情況下會是有效的?
A:以演講中提到蔡康永用的輻射偵測器Air Counter_S來說,僅能量測Gamma射線,誤差值為±20%,實測上又容易受微波、溫度影響。以這樣的實際效果來說,可能只有在大量輻射外洩(例:核災真的發生時),測到足夠恐怖的數值、提醒我們逃難時,才能有具體實效了。

Q:是否有模型在計算核災發生後,輻射的擴散速度?
A:請參考中興大學環工系莊秉潔老師的FB

Q:可以簡介一下「頁岩油」嗎?是否可能取代石油?
A:(本題由也在現場的地科資深媒體人潘昌志代打回答簡單的說,過去我們採集石油的地點會有特定的封閉儲油條件,多在孔隙較大的地層;但因技術的進步,目前我們也可以在孔隙較小的地方採集榨油。但無論如何,頁岩油同樣會碰到排放二氧化碳的問題。

Q:恕我直白的問,以您的專業判斷,核四的風險是否可被接受?
A:(回答前,廖英凱先止血強調:「或許聽起來有點規避,但這是我真實的想法」)台灣目前並沒有一個合適的方式評斷各種發電方式的風險;能源的選擇是「兩害相權取其輕」,但怎麼判斷發電方式「有害」?依著不同的價值觀,每個人會有不同的判斷。

例如:蘭嶼居民會反對核廢料置放於蘭嶼,因為那是他的家園;但同時,也會有環保人士認為,需要在意北極熊的存續更優於人類的生存……北極熊、蘭嶼人、台灣人、地球人,誰比較重要?該用哪一種維度來思考能源議題是沒有正解的,端看你的價值選擇。


後記

本次M.I.C.在PanSci臉書上的即時討論熱絡程度並不亞於現場,甚至,多了一絲煙硝味。一張標註為「科學大腸花英凱大帝開講,談核能的骯髒事」的現場照片貼文,意外引發大批網友們的撻伐及討論,為「核能其實不骯髒」發聲護航。

作為在現場全程聆聽演講的聽眾,回家後看到PanSci臉書上的討論串其實是訝異的,除了因本次演講其實是釐清民眾對「骯髒的核能」做科學面釐清,另一方面,也對於以一張照片、一句註解來揣測演講內容的現象感到驚詫。但,轉念一想,或許這也正凸顯出當今社會對核能議題的重視、敏感及其難解的本質;在拾起反對 / 支持立場的盾牌前,先一步放下名為尊重與傾聽的城門吊橋──這,或許是我們都更該學習的吧!

29

註:

[1] 感謝道具復刻師馬可多 精心打造弧形反應爐。

[2] 廖英凱第一次擔任M.I.C.講者的紀錄文:M.I.C. IV之「未來」

[3] 講者強調:這部分的討論排除了「被真正的核彈打到」的情形。

[4] 福島核災氫爆的延伸閱讀:福島核災該是廢核的理由嗎?Fukushima Nuclear Disaster

[5] 資料出處:輻射防護簡訊34–財團法人輻射防護協會 (1998)。該調查的時間係1980至1995年,缺乏至今約二十年的資料。由於自然背景輻射不會有太大的變化,有較大進步幅度的醫學技術帶來的醫療輻射,其今日的數據可能與此份調查有較大差距;但講者廖英凱也強調,以上僅係他的個人推測。

[6] 數據引自台灣地區天然背景輻射介紹

[7] 「核能電廠緊急應變計畫區內民眾防護措施分析及規劃檢討修正」完成報告核子事故緊急應變計畫區範圍檢討報告

[8] ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4)

[9] Chen, W. L., et al. “Effects of cobalt-60 exposure on health of Taiwan residents suggest new approach needed in radiation protection." Dose-Response 5.1 (2007): 63-75.

[10] Ghiassi-Nejad, M., et al. “Very high background radiation areas of Ramsar, Iran: preliminary biological studies." Health Physics 82.1 (2002): 87-93.

[11] Borzoueisileh, Sajad, et al. “The assessment of cytotoxic T cell and natural killer cells activity in residents of high and ordinary background radiation areas of Ramsar-Iran." Journal of medical physics/Association of Medical Physicists of India 38.1 (2013): 30.

[12] 「輻射屋居民流行病學調查及研究」委託研究計畫期末報告

[13]  Ten Hoeve, John E., and Mark Z. Jacobson. “Worldwide health effects of the Fukushima Daiichi nuclear accident." Energy & Environmental Science 5.9 (2012): 8743-8757.

[14] 在國外還有一些滿成功的地熱發電實例,在自己的家後面挖約莫100公尺深的井,即可應用地熱提供家裡的暖氣、熱水等,詳見:Heat From The Earth: How To Heat With Near-surface Geothermal Energy.

[15] 容量因數的定義

[16] Nel, Andre. “Air pollution-related illness: effects of particles." Science 308.5723 (2005): 804-806.

[17] Coal Ash-The toxic threat to our health and environment

[18] 媽祖請您要保祐:彰工火力發電廠說明會與會雜感

 

【關於 M. I. C.】

M. I. C.(Micro Idea Collider,M. I. C.)微型點子對撞機是 PanSci 定期舉辦的小規模科學聚會,約一個月一場,為便於交流討論,人數設定於三十人上下,活動的主要形式是找兩位來自不同領域的講者,針對同一主題,各自在 14 分鐘內與大家分享相關科學知識或有趣的想法,並讓所有人都能參與討論,加速對撞激盪出好點子。請務必認知:參加者被(推入火坑)邀請成為之後場次講者的機率非常的高!

本場演講由科技部「科普資源整合運用推廣計畫」支持,PanSci泛科學與國家高速網路與計算中心共同舉辦。歡迎大家到科技大觀園閱讀更多科學內容。

關於作者

廖英凱

非典型的不務正業者,對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心靈史學。