0

2
0

文字

分享

0
2
0

不會褪色的藍色羽毛

小斑
・2013/12/04 ・1602字 ・閱讀時間約 3 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

大部分人想到羽毛的顏色可能會想到由有機化合物組成的色素,但除了會褪色的色素以外,科學家已經發現在鳥類的羽毛還有蝴蝶甲蟲的殼上,有奈米結構層,因為不同波長的光干涉和繞射的情況不同,而顯現出特定的顏色,因為是物理結構,顏色可以保存很久。[1][2]

thin-film interference其中有個原因是薄層干涉(thin-film interference),在日常生活中的泡泡表面閃亮的顏色也是因為這個原因。看右邊的圖,由於打到第一層的光(B)和打到第二層的光(A)走的距離不同,只有一些特定波長λ的光,才能在這樣的薄層間距d下,在特定的角度θ下,產生建設性干涉(C),加成一個明顯的波(上)。波長或角度不對甚至會互相抵銷(下)。因此特定的間距可以顯現出特定的顏色,物理結構就可以造成我們看到的顏色不同。

 

 

blue birds

但若鳥類的羽毛上都是一層層排列整齊的晶體,會像是穿了一堆亮片。Richard Prum教授的團隊觀察到鳥類的藍色羽毛,是由β角蛋白(β-Keratin)與空氣氣泡交錯,構成一些大範圍沒有完整重複性但小範圍高度整齊排列的非結晶型奈米結構,顯現出特定的顏色(A,B)。Richard Prum教授的團隊就特別用小角度X光繞射(E,F),研究幾種鳥類藍色羽毛的奈米結構(C,D)。[3]他發現主要有兩種不同的型態:管道型和球型,如右圖。

接下來他就很好奇,究竟鳥類要如何控制長出一樣顏色的羽毛呢?(顏色差太多大概就會被認為非我族類,沒鳥要找牠交配了)Richard Prum發現鳥類藍色的羽毛中這兩種奈米結構分別與物理上觀察到的相分離(phase separation)中自組裝(self-assemble)的現象很相近,管道型很像合金冷卻後的旋節分解(spinodal decomposition, SD),球型則比較像是啤酒裡的二氧化碳從啤酒中分離,形成圓形的氣泡(nucleation & growth, N&G)。Prum認為,透過相分離,可以達到kinetic arrest,在動力學上非常穩定,就把結構鎖定,不會再變了

-----廣告,請繼續往下閱讀-----

什麼是相分離?

phase separation就像剛剛說的啤酒,本來二氧化碳溶在水裡待得好好的,後來變成氣態跑出來。根據熱力學,物質偏好比較穩定的狀態存在,隨著溫度跟組成成分的不同,一堆混合物的穩定狀態很可能是均勻混合或是不同相分離(e.g. 油和水),造成最後穩定狀態是局部的相分離則是動力學上條件的結果(繼續反應下去的速度極小可忽略)。

同樣都是相分離,為什麼結構一個像是很多條蟲(SD),一個有很多小球(N&G)?如右上圖所示,T=溫度,Φ是容積比,黑色線以上是均勻混合,黑色線以下會局部相分離。根據混合物比例不同,相分離時會產生不一樣的結構:SD和N&G。看到這裡,你千萬別以為鳥類在長羽毛細胞的時候,還得先發高燒再冷卻下來。

再看右下的圖,隨著聚合反應發生,在同樣的溫度下,就會從均勻混合變成相分離,也就是圖中淺黃色的部分。因此他推估,透過產生β角蛋白的速度與量,控制聚合反應,就可以控制羽毛中的最終結構,而展現出不同的藍色。

-----廣告,請繼續往下閱讀-----

目前Prum的實驗室也成功重製,模仿上述那種球型奈米結構,做出來的顏色很像。希望以後的衣服、烤漆就不會被曬到褪色囉!

參考資料:


[1] M. Srinivasarao, Chemical Reviews, 1999, 99, 1935–1961.

[2] P. Vukusic and J. R. Sambles, Nature, 2003, 424, 852–85

-----廣告,請繼續往下閱讀-----
文章難易度
小斑
16 篇文章 ・ 1 位粉絲
PanSci實習編輯。 一顆在各個學科間漂流的腦袋~

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
【成語科學】雨過天青:天空為什麼是藍色的?傍晚的橘紅色天空又是怎麼形成的?
張之傑_96
・2023/10/06 ・1183字 ・閱讀時間約 2 分鐘

下過雨後,天空藍得透明。這個自然現象,衍生出成語雨過天青,比喻情況由壞轉好。雨過天晴也有同樣的意思,不過仍以雨過天青較為正式。閒話少說,讓我們造兩個句吧。

這事挽救及時,現已雨過天青。

雨過天青,您的事可以放心了。

下過雨後,天空藍得透明。圖/pixabay

這個成語還有個故事呢。有一種瓷器,稱為雨過天青,起源於五代‧後周柴世宗。某日臣子請示,皇家瓷器要燒成什麼顏色?柴世宗隨手批示:「雨過天青雲破處,這般顏色作將來。」工匠經過多次實驗,終於燒製出來,這就是有名的「柴窯」。由於沒有作品傳世,柴窯的真面目已無從查考。

談到這裡,該談談這個成語的意涵了。大雨過後,天空為什麼藍得透明?這是因為空氣中的灰塵隨著雨下降下,空氣較為潔淨的關係。喜歡打破沙鍋問到底的小朋友或許還會問:為什麼空氣潔淨、天就較藍?

這要從天空為什麼呈藍色說起。空氣的成份,主要是氮氣和氧氣。晴天的時候,射到地球上的陽光碰到空氣中的氮分子或氧分子,會引起散射作用。藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。

-----廣告,請繼續往下閱讀-----
藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。圖/pixabay

這個道理看起來好像很簡單,但是人類明白這個道理是 19 世紀末的事。1873 年,英國物理學家瑞利是第一位看天看出名堂的人。他的散射理論——瑞利散射,破解了天色的秘密。

在陽光的七種色光中,紅、橙、黃光的波長較長,藍、靛、紫光的波長較短。空氣中的氧分子、氮分子,大小恰好可以散射波長較短的藍光,藍光散了一天,天空當然呈藍色的。

到了傍晚,夕陽西下,陽光打斜裡射過來,較接近地面,而地面的空氣含有較多的水氣和灰塵,粒子比氧分子、氮分子大得多,較容易散射波長較長的紅光、橙光或黃光,艷麗的晚霞就是這樣散射出來的。

陽光打斜裡射過來,而地面的空氣含有較多的水氣和灰塵,較容易散射波長較長的紅光、橙光或黃光。圖/pixabay

如果天上懸浮著小水滴,也就是雲,那又是另一種景象。小水滴比灰塵大得多,各種波長的色光都能被它散射,結果雲就成為白色的。如果雲層較厚較密,陽光穿不過去,就變成了灰色或黑色。白雲蒼狗,不過是陽光玩的把戲而已!

-----廣告,請繼續往下閱讀-----

當雲聚成雨滴的時候,顆粒就更大了,大得具有稜鏡的作用。倘若一邊已出太陽,一邊還在下雨,陽光穿過雨滴,就會形成彩虹。噴泉和瀑布上也可以出現彩虹,原理是一樣的。

-----廣告,請繼續往下閱讀-----
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

2
0

文字

分享

0
2
0
不會褪色的藍色羽毛
小斑
・2013/12/04 ・1602字 ・閱讀時間約 3 分鐘 ・SR值 546 ・八年級

大部分人想到羽毛的顏色可能會想到由有機化合物組成的色素,但除了會褪色的色素以外,科學家已經發現在鳥類的羽毛還有蝴蝶甲蟲的殼上,有奈米結構層,因為不同波長的光干涉和繞射的情況不同,而顯現出特定的顏色,因為是物理結構,顏色可以保存很久。[1][2]

thin-film interference其中有個原因是薄層干涉(thin-film interference),在日常生活中的泡泡表面閃亮的顏色也是因為這個原因。看右邊的圖,由於打到第一層的光(B)和打到第二層的光(A)走的距離不同,只有一些特定波長λ的光,才能在這樣的薄層間距d下,在特定的角度θ下,產生建設性干涉(C),加成一個明顯的波(上)。波長或角度不對甚至會互相抵銷(下)。因此特定的間距可以顯現出特定的顏色,物理結構就可以造成我們看到的顏色不同。

 

 

blue birds

但若鳥類的羽毛上都是一層層排列整齊的晶體,會像是穿了一堆亮片。Richard Prum教授的團隊觀察到鳥類的藍色羽毛,是由β角蛋白(β-Keratin)與空氣氣泡交錯,構成一些大範圍沒有完整重複性但小範圍高度整齊排列的非結晶型奈米結構,顯現出特定的顏色(A,B)。Richard Prum教授的團隊就特別用小角度X光繞射(E,F),研究幾種鳥類藍色羽毛的奈米結構(C,D)。[3]他發現主要有兩種不同的型態:管道型和球型,如右圖。

接下來他就很好奇,究竟鳥類要如何控制長出一樣顏色的羽毛呢?(顏色差太多大概就會被認為非我族類,沒鳥要找牠交配了)Richard Prum發現鳥類藍色的羽毛中這兩種奈米結構分別與物理上觀察到的相分離(phase separation)中自組裝(self-assemble)的現象很相近,管道型很像合金冷卻後的旋節分解(spinodal decomposition, SD),球型則比較像是啤酒裡的二氧化碳從啤酒中分離,形成圓形的氣泡(nucleation & growth, N&G)。Prum認為,透過相分離,可以達到kinetic arrest,在動力學上非常穩定,就把結構鎖定,不會再變了

-----廣告,請繼續往下閱讀-----

什麼是相分離?

phase separation就像剛剛說的啤酒,本來二氧化碳溶在水裡待得好好的,後來變成氣態跑出來。根據熱力學,物質偏好比較穩定的狀態存在,隨著溫度跟組成成分的不同,一堆混合物的穩定狀態很可能是均勻混合或是不同相分離(e.g. 油和水),造成最後穩定狀態是局部的相分離則是動力學上條件的結果(繼續反應下去的速度極小可忽略)。

同樣都是相分離,為什麼結構一個像是很多條蟲(SD),一個有很多小球(N&G)?如右上圖所示,T=溫度,Φ是容積比,黑色線以上是均勻混合,黑色線以下會局部相分離。根據混合物比例不同,相分離時會產生不一樣的結構:SD和N&G。看到這裡,你千萬別以為鳥類在長羽毛細胞的時候,還得先發高燒再冷卻下來。

再看右下的圖,隨著聚合反應發生,在同樣的溫度下,就會從均勻混合變成相分離,也就是圖中淺黃色的部分。因此他推估,透過產生β角蛋白的速度與量,控制聚合反應,就可以控制羽毛中的最終結構,而展現出不同的藍色。

-----廣告,請繼續往下閱讀-----

目前Prum的實驗室也成功重製,模仿上述那種球型奈米結構,做出來的顏色很像。希望以後的衣服、烤漆就不會被曬到褪色囉!

參考資料:


[1] M. Srinivasarao, Chemical Reviews, 1999, 99, 1935–1961.

[2] P. Vukusic and J. R. Sambles, Nature, 2003, 424, 852–85

-----廣告,請繼續往下閱讀-----
文章難易度
小斑
16 篇文章 ・ 1 位粉絲
PanSci實習編輯。 一顆在各個學科間漂流的腦袋~

0

0
0

文字

分享

0
0
0
【成語科學】青出於藍:用藍草提煉出的藍染染料——靛青
張之傑_96
・2023/10/04 ・1065字 ・閱讀時間約 2 分鐘

戰國時大哲學家荀子寫過一篇〈勸學〉,鼓勵大家好好學習。

文章中有這樣一段話:「青,取之於藍而青於藍;冰,水為之而寒於水。」意思是說,靛青是從藍草中提煉出來的,但顏色比藍草還要青;冰是水結凍而成的,但溫度比水還要低。

成語「青出於藍」就是從這段話演變出來的,用來比喻弟子勝過老師,或後輩優於前輩。談到這裡,讓我們造兩個句吧。

他的繪畫得自母親傳授,但已青出於藍。

名師出高徒,這些學生早已青出於藍了。

接下去要談談這個成語的科學意涵了。首先要說明的是:「青」這個字,除了有綠的意思,也有藍的意思;譬如「青天」,指藍天;青瓷,指藍色的瓷器;靛青,指一種藍色的染料,用來「藍染」,將白布染成藍色。

-----廣告,請繼續往下閱讀-----
譬如「青天」,指藍天。圖/pixabay

靛青,一般稱作靛藍。用來提取靛藍的植物主要有 4 種:爵床科的馬藍,豆科的木藍,蓼科植物蓼藍和十字花科的菘藍。台灣一般將藍草稱作大菁,其中最常用的是馬藍。

提取藍靛,首先要將馬藍的新鮮葉子浸泡在水中,讓葉子腐爛,溶解出藍靛。然後撈出腐爛的葉子,加入適量的石灰,攪拌,使藍靛和石灰起化學作用,待沈澱成不溶性的泥狀物,取出過濾,就可以得到藍靛。

泥狀物的靛藍,不溶於水,無法直接染色,必需先將其「還原」成暗綠色染液,這個過程稱為「建藍」。建藍的工序很複雜,限於篇幅,就不多說了。當要染的布自染缸中取出,染料一接觸空氣,就會進行「氧化」作用,再度「還原」成為不溶性的靛藍。

染布的時候,要反覆地在染缸中浸泡,取出擰乾、晾曬,讓染料與空氣中的氧起氧化作用,就會從暗綠色轉變成藍色。染的步驟重複愈多次,色調就會愈深。染好了用水漂洗,洗到水變清為止,然後以醋定色,晾乾後就大功告成了。

-----廣告,請繼續往下閱讀-----

藍染的時候,如果按照事先設計好的方式,把布紮起來,被紮緊的地方染色較淺,這樣就可以染出自己設計的圖案,這是藍染最迷人的地方。

藍染可以染出自己設計的圖案,這是藍染最迷人的地方。圖/pixabay

自從有了化學染料以後,費時、費工的藍染漸漸退出歷史舞台。然而藍染的藝術性以及個性化,使得這一流傳幾千年的工藝仍綿延不絕。如今三峽等地仍有藍染作坊,如三峽歷史文物館旁的藍染展示中心,還可供人 DIY 呢。

-----廣告,請繼續往下閱讀-----
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。