Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

全球暖化使得亞洲河流氾濫

陸子鈞
・2011/06/23 ・564字 ・閱讀時間約 1 分鐘 ・SR值 560 ・八年級

雖然喜瑪拉雅及其他中亞高山上的冰河被預期會因為全球暖化而減少,但新的研究指出,這對亞洲河流流量的影響,比過去認為的輕微。

美國國家冰雪資料中心的氣象學家Richard Armstrong發現,Intergovernmental Panel on Climate Change (IPCC) 對亞洲供水的預測,有明顯的誤差。研究人員計算融雪對五條河流的重要性,這五條河流為:印度的Indus、巴基斯坦的Ganges、孟加拉的Brahmaputra及中國的黃河。結果顯示,融雪對Indus最重要,比平地降雨多貢獻了1.5倍的供水。至於Brahmaputra,來自融雪的供水只有平地降雨的四分之一。此外,在Indus和Ganges,冰河只佔了融雪量的40%左右,剩下來的來自於季節性降雪,而對其他三條河,甚至更低。

水文學家Walter Immerzeel認為這項研究非常的重要,因為亞洲的河流的水有三個來源:降雨、融雪及冰河溶解。前兩個來源受當今的氣候控制,而冰河則是幾世紀以前形成並留下來的,如果冰河縮小,對河水的供應也會減少,直到冰河完全溶解,或是小到一個穩定的體積。

氣候變遷會對河流造成兩個影響,一個是來自冰河的供水完全竭止,另一個則是會改變天氣的模式,包括雨量及降雪。將這些因子一併放入五種不同的氣候模型去預測,研究團隊指出,變化的幅度從Brahmaputra上游的水源減少19.6%,到黃河增加9.5%,可能導因於冬季降雨的增加。這表示,和季風相比,冰河溶解對河流的影響非常的微小。

-----廣告,請繼續往下閱讀-----

資料來源:NatureNews: Global warming’s impact on Asia’s rivers overblown [10 June 2010]

-----廣告,請繼續往下閱讀-----
文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
匈奴西側邊疆,女主與她們的手下?
寒波_96
・2023/07/05 ・5509字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

匈奴帝國是歐亞草原的第一個帝國,主要疆域位於蒙古,世界史上有一席之地。匈奴人缺乏自身的文字記載,後人只能參考旁觀者,主要是漢朝人的歷史紀錄。所幸近來考古學、遺傳學的進展,大幅增進我們對匈奴的認識,也帶來新的啟示。

由遺骸直接取得古代 DNA 分析遺傳訊息,此前得知「匈奴人」的血脈源流相當多元,2023 年問世的一篇論文,調查匈奴帝國西部邊疆的墓葬,發現當地地位最高的都是女生,血緣絕大部分算是「東方」;而地位較低的男生們,遺傳上更加多元。

匈奴帝國全盛時期的疆域。雖然古早遊牧帝國的領土範圍,僅供參考。圖/wiki 百科

匈奴帝國的西部邊疆

匈奴帝國沒有明確的國界,不過當然有個勢力範圍。這項研究調查的地點位於現今的蒙古國西部,地理上算是阿爾泰山的南部,新疆的準噶爾盆地的東北方。這兒在匈奴時期,可謂匈奴勢力的最西端。

兩處大墓葬群距離約 50 公里,各有很多個墓。一些墓中有不少高貴的陪葬品,推測長眠者的地位較高;還有更多墓的派頭普通,墓主生前地位似乎較低。

-----廣告,請繼續往下閱讀-----

一處墓葬群 Takhiltyn Khotgor,簡稱 TAK,年代介於公元前 40 年到公元 50 年。有兩小群 THL-82 和 THL-64 被完整挖掘,都以一位女性的華麗墓葬為主,周圍環繞幾個衛星墓葬。另外 THL-25 目前只有挖掘衛星墓葬。這兒以前報告過 1 個,加上這回 7 個,總共 8 個古代基因組。

另一處墓葬群 Shombuuzyn Belchir,簡稱 SBB,年代介於公元前 50 年到公元 210 年,這回貢獻 10 個古代基因組。

遺址地點,這項研究關注的 TAK、SBB 遺址位於匈奴勢力範圍的最西端。圖/參考資料1

身份高貴的女士們

匈奴帝國的年代約為公元前 200 年到公元 100 年,因此這回調查的樣本包括中期到後期,是匈奴已經興起一段時間後的狀況。研究對象們都只有代號,讀者假如有興趣,也能試著替他們取名字,比較有親切感。

完整挖掘的 THL-82 墓群的成年女生「TAK001」,陪葬在該區域最豐富。她長眠於裝飾精美的木製棺材,旁邊擺著六匹馬、中國風格的青銅馬戰車配件、一個青銅壺等陪葬品。

-----廣告,請繼續往下閱讀-----

THL-64 墓群另一位狀況類似的女生「TAK002」長眠於木製棺材,旁邊擺著一匹馬、四隻羊,以及代表太陽及月亮的金盤。日、月是匈奴的象徵之一, 匈奴價值充斥。

澎湃的陪葬品以外,考古學家認為,我們想來平凡的木頭棺材,其實最能彰顯她們匈奴精英之尊貴地位。因為附近地區缺乏樹木,墓葬一般採用石材;木製棺材必需長途進口木柴方能製作,或許有數百公里之遙。更不用說,弓箭是匈奴人的命脈,而木頭是生產弓箭的寶貴原料。

由墓葬況狀判斷,這兩位女生當年是該地區身份很高的人,而周圍的附屬墓葬可能是她們的手下。有意思的是,與她們埋在一起的其他人,大家都沒有血親關係。

由於缺乏匈奴女主形象,請來滿都海鎮場面。成吉思汗以後,滿都海是蒙古影響力最大的統治者之一。圖/IMDB《Mandoukhai the Wise 智者滿都海》劇照

寫到這兒不能逃避,有必要解釋一下何謂匈奴的「血緣」,古遺傳學家講的「多元」或東方、西方是什麼意思?

-----廣告,請繼續往下閱讀-----

多元血緣之匈奴帝國,哪些DNA融入蒙古?

至今已經累積超過一萬個古代基因組,大部分位於歐洲、中東,不過歐亞大陸北部、中部也有一批,交叉對照可以判斷,歷代蒙古居民的遺傳組成與變化。

匈奴帝國在兩千多年前誕生,比這更早以前,蒙古地區的人口十分有限,可以粗略劃分出三大遺傳族群。

偏東邊的 Slab Grave,以蒙古鐵器時代早期的樣本為代表(也類似所謂的 Ancient Northeast Asian,簡稱 ANA 祖源)。北邊的 Khövsgöl,以貝加爾湖附近青銅時代晚期的樣本為代表。拆解更細的話,Khövsgöl 其實也有源於草原西部的小部分血緣,不過兩者在這項研究都被視為「東方」。

靠西邊的阿爾泰地區,以青銅時代中期、晚期的樣本為代表,這支血脈大部分能追溯到草原西部較早的移民,算是匈奴較早的「西方」成分。這些祖源應該是匈奴帝國興起前,蒙古地區的人群基礎。

-----廣告,請繼續往下閱讀-----
蒙古地區,早於匈奴、匈奴帝國形成後的血脈流動狀況。極為簡化,不過能展示大概的架構。圖/參考資料4

匈奴時期,又有更多方向的血脈加入草原大聯盟。東南方向的漢朝人,用此前發表的「Han_2000BP」為代表,無疑算作「東方」。

「西方」有多個源頭。西北方向的 Sagly/Uyuk,以阿爾泰山鐵器時代的 Chandman 樣本為代表(和東方的斯基泰人,例如「巴澤雷克文化」類似,還具備小部分 BMAC 血緣),不過地理上其實沒有太西。

還有西南方向的綠洲地帶「巴克特里亞-馬爾吉阿納(Bactria–Margiana Archaeological Complex,簡稱 BMAC)」,以及再度由草原西部遠道而來,血緣類似薩馬提亞人(Sarmatians)的新移民。

匈奴作為歐亞大陸中心的大帝國,融入各地血脈並不意外。奇妙的是,這項研究只探索一處很小的地區,同屬一個社群的幾個墓葬,竟然涵蓋大部分的血緣變化。

-----廣告,請繼續往下閱讀-----

少少幾人,大家血緣都不一樣

陪葬品最華麗的 TAK001 有馬有車,姑且稱呼她為「馬車女士」。她配備約 9.3% 的少量西方血緣,大部分則是 Khövsgöl 東方血緣。葬在她附近的兩位男生「TAK008」和「TAK009」約 86.8% 西方血緣,三人間都沒有血緣關係。

充斥匈奴精神的 TAK002 姑且稱為「日月女士」。她幾乎完全配備東方血緣,卻與馬車女士不同。日月女士有一半為 Slab Grave,另一半則是漢朝血緣。她附近兩位男生「TAK003」的西方成分很高,「TAK004」則是 Slab Grave 東方血緣,三人間都沒有血緣關係。

另一處目前只挖掘衛星墓葬的 THL-25,分析兩人。男生「TAK006」完全為東方血緣,和日月女士一樣是 Slab Grave 加漢朝組合,不過比例不同。

「TAK005」是蘿莉,她是這群墓葬中唯一陪葬寒酸的女性,或許是年紀太小。她完全為 Sagly/Uyuk 西方血緣,另一位成年男生 TAK003 也有 70%。再度提醒讀者,盡管視作西方,此一追溯到阿爾泰地區的血脈,實際上並沒有多西邊,距離這回調查的遺址也不太遠。

-----廣告,請繼續往下閱讀-----

總之,TAK 墓葬中人,每個人的血緣組成都不太一樣。男生們的血緣可謂變化多端,什麼都有。地位最高的馬車女士、日月女士皆以東方血緣為主,雖然兩位的「東方」完全不一樣。

TAK 遺址的古代基因組樣本之遺傳組成。Gonur1_BA 出土於中亞,現今的土庫曼 Gonur Tepe 遺址, 作為 BMAC 血緣的代表。圖/參考資料1

高貴女士的姻親網絡

50 公里遠處的 SBB 墓葬群,遺傳主要有 Slab Grave 東方、Sagly/Uyuk 西方兩款祖源,不同人的比例不同。看起來地位最高的墓葬 SBB002、SBB003、SBB007、SBB008 四位都是女生。

男生「SBB010」的陪葬品有鐵製的縫衣針。可見在匈奴文化中,縫衣針並非專屬於女生的陪葬品。

成年女生「SBB007」陪葬算這兒最豪華的,長眠於裝飾精美的木製棺材,擺著騎馬用的裝備、鍍金鐵帶扣、漢朝的彩繪漆杯。顯然匈奴女生不只社會地位高,也會騎馬(她以前因此被判斷為男生)。

-----廣告,請繼續往下閱讀-----

為表示尊崇,姑且稱她為「騎馬女士」。她擁有大量 Slab Grave,少量漢朝和 Sagly/Uyuk 血緣。

個人層次上,「SBB005」最有意思。她是一位蘿莉,父母為遺傳上的近親,大概是表兄弟姐妹等級的二度血緣關係(不過取樣分析中沒有直接見到她的父母),也是這回分析中唯一的近親繁殖寶寶。

這位蘿莉和騎馬女士是二度親戚關係,遺傳組成也類似騎馬女士。蘿莉也與「SBB001」是二度親戚關係,但是 SBB001 和騎馬女士兩位並非血緣上的親戚,所以他們可謂騎馬女士為首的同一社群中,埋葬在一塊的姻親。

SBB 遺址的古代基因組樣本之遺傳組成。Gonur1_BA 出土於中亞,現今的土庫曼 Gonur Tepe 遺址, 作為 BMAC 血緣的代表。圖/參考資料1

匈奴大聯盟,眾多女主經營的統治網絡?

這回的分析對象僅管沒幾個人,眾人的血緣卻千變萬化,乍看有些雜亂。從中能得知哪些啟發?論文強調的觀點是:匈奴西部的邊疆地帶,東方血緣的女性扮演重要角色。

匈奴人的血緣非常多元,可謂歐亞大陸的熔爐,沒有所謂的匈奴 DNA;可是掌握權力與資源的,似乎更集中在特定族群。然而,Khövsgöl(匈奴北部)、Slab Grave(匈奴東部)、漢朝(匈奴外頭的東南部)血緣僅管都可以歸類為「東方」,淵源卻明顯有別。

從已知極為有限的樣本看來,配備這些血脈的女生,都有機會在匈奴社會中身居高位。加上其他匈奴邊疆的考古調查,此狀況似乎更為常見。也許這是匈奴的統治集團,在各地建構權力網絡的方式:源自東方的貴族女生,各自經營各地的群體。

由漢朝人的記錄看來,匈奴好像是鬆散的部落聯盟,但是匈奴帝國具體如何運作,我們幾乎沒有概念。這將是有意思的探索方向,也令人興起一些大膽的猜想。

如果對蒙古帝國的女性參政有興趣,傑克.魏澤福的《成吉思汗的女兒們》值得一讀。有些人看到匈奴女主的研究,就想起這本書。

與日月同在的文明帝國

換個角度思考也很有意思。依照漢文記載,匈奴人在荒郊野外居無定所,文化低落,生活原始又暴力;漢朝人假如被野蠻人擄掠,或是隨著和親進入匈奴,簡直就是從天堂淪落到地獄!

可是如今知道,歷來應該也有些漢朝人口用腳投票,自願投奔匈奴,想來匈奴生活並沒有那麼慘。至少我們能肯定, 被編戶齊民鎖在土地上,當韭菜索求無度的那些漢朝人,日子超級淒慘。

這回取樣的地點位於匈奴西部的邊疆,距離漢朝本土頗有距離。不過分析的 18 人中,五位或多或少具有漢朝血緣,三位還是地位崇高的成年女性。

倘若再考慮性別與政治,或許會有更不一樣的想像。住在漢朝的女性出生再好、個人資質再優秀,一輩子都沒機會擔任行政工作職位,但是如果活在匈奴……

有一半漢朝血緣的日月女士(粒線體單倍型為 A11。不確定她是第一代移民的女兒,或父母搭配剛好提供一半),生前是一方疆土的管理者,死後高規格的墓葬,見證她畢生的功績受到認可。伴她長眠,象徵匈奴精神的日、月金盤,對她有什麼特殊意義嗎?

有一位漢朝官員陳湯曾言:「明犯強漢者,雖遠必誅」,可謂反辱華的先驅。但是如今我們也知道這個世界上,不只一種「文明」。

延伸閱讀

參考資料

  1. Lee, J., Miller, B. K., Bayarsaikhan, J., Johannesson, E., Ventresca Miller, A., Warinner, C., & Jeong, C. (2023). Genetic population structure of the Xiongnu Empire at imperial and local scales. Science Advances, 9(15)
  2. Ancient DNA reveals the multiethnic structure of Mongolia’s first nomadic empire
  3. Politically savvy princesses wove together a vast ancient empire
  4. Jeong, C., Wang, K., Wilkin, S., Taylor, W. T. T., Miller, B. K., Bemmann, J. H., … & Warinner, C. (2020). A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell, 183(4), 890-904.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----

0

2
3

文字

分享

0
2
3
極端氣候的問題就在眼前,我們可能面臨什麼樣的未來?——《圖解全球碳年鑑》
商業周刊
・2022/10/04 ・5452字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

沒有比現在更急迫需要預測未來。上千名氣候科學家和經濟學家共同建立並測試嚴謹的電腦模型,來估計地球在一、兩個世代後的樣貌。

政府間氣候變化專門委員會(IPCC),由世界各地的志工科學家組成,他們評估目前關於氣候變遷的科學知識——過去、現在和未來的風險與可能性——從而找出共識。

他們發表一系列報告,為 2050 年及其後的世界,做出 5 個可能的結果,這些情況是根據複雜的運算,測量溫室氣體排放、土地使用和空氣汙染對氣候的影響。

做出 5 個可能的結果,這些情況是根據複雜的運算,測量溫室氣體排放、土地使用和空氣汙染對氣候的影響。圖/Pixabay
圖/商業週刊

經濟成長、人口以及溫室氣體排放的未來軌跡,預期將使地球的平均溫度上升。情況的名稱是根據共享社經路徑(Shared Socioeconomic Pathways, SSP), 依照 1 到 5 編號,每個編號有個比過去更負面的結果。

-----廣告,請繼續往下閱讀-----

5 個未來會面對的暖化問題

5 種情況的暖化程度,在以下幾個方面存在顯著差異:

  • 氣候的激烈程度
  • 海平面上升
  • 熱浪
  • 降雪和降冰的減少
  • 未來的行動和政策

這些情況說明問題如何隨時間加劇,以及改變目前的做法對未來可能的巨大影響。

IPCC 過去的估計已經證實太過樂觀,因此最近 IPCC 的報告預測,全球地表溫度將提早 10 年升溫超過 1.5° C,儘管如此,自從出版那份報告以來所收集的資料,顯示近期的暖化程度要比過去所做的大膽估計更加嚴重。

二氧化碳排放量。圖/商業週刊
情況升高攝氏 /華氏說明
1. 極低排放量(SSP1-1.9)1.4° C /2.5° F2050 年前後,全球二氧化碳排放減到淨零,符合巴黎公約(Paris Agreement)中,維持全球暖化(最多)高於工業前溫度1.5° C,而後穩定在1.4° C 直到2100 年。永續作法被即刻採行,改變經濟成長和投資,人們感受的氣候變遷效應,相較其他情況顯著較輕微,速度也較慢。
2. 低排放量(SSP 1-2.6)1.8° C /3.2° F全球二氧化碳排放大幅降低,但不足以在2050 年以前達到淨零排放。2100年結束時,升溫穩定保持在大約1.8° C。
3. 中排放量(SSP2-4.5)2.7° C /4.9° F邁向實踐永續的進展緩慢,與歷史趨勢相近。二氧化碳排放量維持在目前水準,本世紀結束前達不到淨零。2100 年前溫度上升2.7° C。
4. 高排放量(SSP3-7.0)3.6° C /6.5° F排放量和溫度穩定上升,大約是目前的兩倍,各國趨向彼此競爭,要求更多糧食供給的保障,且提高對糧食供給的警覺。2100 年以前平均溫度已經上升3.6° C。
5. 極高排放量(SSP 5-8.5)4.4° C /7.9° F2050 年以前二氧化碳的排放將加倍,能源消耗增加以及過度使用化石燃料加速經濟成長,但是……2100 年以前全球平均溫度將升高4.4° C。
表/商業週刊
IPCC 假設的情況。圖/商業週刊

了解 IPCC 勾勒出未來的 5 種情況

想像集體行動的後果,是前進的必要的一步,政府間氣候變化專門委員會(IPCC)的 5 種情況,清楚勾勒未來的樣貌。

-----廣告,請繼續往下閱讀-----

他們的報告顯示,人類具備科學的理解、技術的能量和金融手段,將碳排放量限制在 1.5° C,但也清楚說明勇敢行動和政治意志極為重要。

溫度上升 0.5° C,差別就很大

情況 1——正負 1.5° C

這是唯一符合《巴黎公約》,維持全球溫度比工業化前溫度高 1.5° C 目標的情況。

在這情況中,極端氣候比較常見,但世界避免了氣候變遷的最糟衝擊。依然會有健康風險以及氣候改變的風險,但嚴重度會比其他情況好很多。不過,將升溫限制在 1.5° C,將需要能源、土地、基礎建設、交通運輸、工業系統等,作出前所未見的轉變。

-----廣告,請繼續往下閱讀-----

將升溫限制在 1.5° C,將需要能源、土地、基礎建設、交通運輸、工業系統等,做出前所未見的轉變。

情況 2——正負 2° C

在低碳排放的情況,世界在 2030 年後不久就會違反 1.5° C 的公約,但還是設法達到巴黎公約中,2100 年以前將溫度上升維持在比工業化前水準高 2°C 以內。

全球二氧化碳和非二氧化碳溫室氣體的排放,如同在「情況 1」中被大幅削減,但不如「情況 1」快速,2050 年之後才達到淨零排放。如同「情況 1」,也需要透過造林、碳捕捉等方法,移除大氣的二氧化碳。

溫度上升 0.5 度或許看似差別不大,但是 IPCC 的報告清楚指出,每增加 0.5 度,對人類和自然系統的負面影響將顯著提高。

-----廣告,請繼續往下閱讀-----

舉例來說,極度高溫的天氣事件,如熱浪、火燒、洪水和乾旱,將會愈來愈激烈且頻繁,有時會同時發生,加上海平面上升和海水酸鹼度提高,不僅使人類等物種失去居住和棲息的地方,也會因為作物產出下降和漁獲量減少,而導致糧食不足。IPCC 估計,這個情況會比「情況 1」多出高達數億人受到氣候相關風險的負面影響。

關注的區域情況1情況2差異
全球暖化全球意味地表溫度相對工業化前的水準上升1.5° C2° C0.5° C 以上
嚴重的熱浪每5 年全球人口至少一次暴露在嚴重熱浪中14%37%糟2.6 倍以上
海平面上升2100 年以前,全球人口每年都有海平面上升的風險6,900 萬7,900 萬多1,000 萬
海冰平面北極海夏季無冰的頻繁度每100 年至少一次每10 年至少一次糟10 倍
失去生物多樣性脊椎動物失去至少一半地理範圍的脊椎動物4%8%糟2 倍
生物多樣性昆蟲):失去至少一半地理範圍的昆蟲6%18%糟3 倍
生態系統轉變受生態系統轉變影響的全球陸地區域7%13%糟1.9 倍
失去珊瑚礁與目前相比,形成礁的珊瑚減少70-90%99%糟1.2 倍
農作物產出下降暴露在作物產出下降的全球人口數3,500 萬3.62 億糟10.3 倍
表/商業週刊

情況 3——政治和經濟的力量沒辦法短期內做出決定

這是假設政治和經濟的力量,使得難以在短期內採取明快的大動作。

由於累積的二氧化碳排放量與全球地表溫度上升之間有接近線性的關係,因此升溫 1.5° C 的上限有可能在 2030 年代初就被超越,距離本年鑑出版不到 10 年。

-----廣告,請繼續往下閱讀-----

在這情況中,溫室氣體排放到 2050 年都沒有降低,預期本世紀末的升溫將大約 2.7° C。上一次氣溫高於工業化前的水準 2.5° C,估計是在 3 百多萬年前。

暖化會呈現地區性差異,平均而言陸地的暖化將比海洋嚴重,北半球緯度愈高的暖化會比南半球嚴重,北極對暖化的敏感度高於南極,自從工業化年代以來,北極的暖化速度比世界其他地方快了 2 倍。

降雨量會增加。在所有全球暖化超過 1.5° C 的情況中,預期降雨量將會增加,特別是陸地。全球地表平均溫度每上升 1°C,中數降雨量將增加 1% 至 3%(全球和年皆然)。

儘管整體的降雨量增加,但會因緯度而有地區性差異。高緯度和潮濕的熱帶地區,降雨量會增加,但是乾旱地區,包括部分的亞熱帶如地中海、南非、部分的澳洲和南美洲,降雨量會減少。

-----廣告,請繼續往下閱讀-----

高緯度和潮濕的熱帶地區,

降雨量會增加,

但是乾旱地區,降雨量會減少。

凡是升溫超過 1.5° C 的情形,到本世紀結束前,9 月將更有可能沒有北極海冰,當暖化到達 2° C 時,這個可能性幾乎是確定發生。圖/Pixabay

北極海冰會融化。凡是升溫超過 1.5° C 的情形,到本世紀結束前,9 月將更有可能沒有北極海冰,當暖化到達 2° C 時,這個可能性幾乎是確定發生。全球地表溫度上升,將使冰河和大冰原的面積更大幅度縮小,導致全球海平面中數(global mean sea levels,GMSL)上升,在前面 3 種情況中,預期在整個 21 世紀將加速,海洋在這些情況下也會變得更酸,這是因為排放量增加使海洋吸收更多碳的緣故。有些系統將會永遠地被改變,持續的全球暖化將可能永久造成:

  • 海平面上升
  • 大冰原喪失
  • 永凍土的碳排出

情況 4——只顧國家利益,沒有同心協力

這個情況是,隨著全球氣候變遷惡化,國際的協調將受挫。各國沒有同心協力來解決問題,反而只顧國家利益,而以關於能源與糧食保障為主。

由於高度仰賴化石燃料來解決燃眉之急,導致溫室氣體排放穩定成長。到 2100 年前,二氧化碳排出幾近加倍,每年超過 800 億公噸,空氣汙染控制不力,加上非二氧化碳的排出量持續增加,導致地球暖化惡化。

-----廣告,請繼續往下閱讀-----

溫度遽升。由於各國達不到氣候誓約,21 世紀的溫度可能上升 2° C,不到 10 年可能跨越 1.5° C 的門檻。

降雨和乾旱的區域擴大。在全球暖化超過 2° C 的情況(情況 4 和情況 5),全球平均降雨量將比 1995-2014 年間增加 2.6%。

降雨和乾旱的區域擴大。在全球暖化超過 2° C 的情況(情況 4 和情況 5),全球平均降雨量將比 1995-2014 年間增加 2.6%。圖/Pixabay

海洋改變。到本世紀末,全球海面溫度上升 2.2° C,上升的海洋溫度可能影響大西洋經向翻轉環流(Atlantic Meridional Overturning Circulation,AMOC),這是最大的洋流系統,如果 AMOC 停止將造成廣泛影響,例如季風轉變和歐洲與北美州的降雨減少,AMOC 可能永久停止。海洋溫度上升導致 GMSL 上升,主要是因為熱擴散,凡是升溫跨越 2° C標記的情況,就會提高南極大冰原崩解的可能,也造成 GMSL 在 2100 年前後上升至少 1 公尺,有些預測認為會超過 2 公尺。

如果 AMOC 停止將造成廣泛影響,例如季風轉變和歐洲與北美州的降雨減少,AMOC 可能永久停止。

情況 5——二氧化碳的年排放加倍

面對氣候緊急事件惡化下,化石燃料的開發和能源使用勢必更積極,導致溫室氣體排放大幅增加。2050 年以前,二氧化碳的年排放加倍,在本世紀前超過 1,200 億公噸。

再生能源技術的進步加上人們的接受度上升,使這情況不太可能發生。但是碳循環回饋可能影響大氣濃度,從而製造地球反應的循環而導致這種情況,此外基於全球地表溫度升溫在 10 年內預期將跨越 1.5° C,而短期的暖化現象比估計的還要嚴重,因此即使可能性較低也不容忽視。

在這情況中,溫度上升 1.5° C 被認為在近期內很可能發生,大約是 2027 年前後。幾十年內升溫可能來到 2° C,本世紀末之前無法想像的升溫 4.4° C 可能發生。人類從未曾生活在如此氣候狀況下。

這個情況與其他不同的,在於假設強度的空汙控制,以及預測中長期除了甲烷以外「臭氧前兆」的下降,預測甲烷將上升到 2070 年。

跟其他情況相同的是,較大程度的暖化,預期會擴大區域性暖化趨勢的差異。例如相較 1995 至 2014 年的溫度範圍,部分亞馬遜或其他熱帶陸地將升溫 8° C,其他熱帶陸地區域可能升溫 6° C。

降雨量急遽上升,在暖化程度較大的情況下,預期高低降雨量的差異將擴大,冰原將消失,海平面和溫度將上升,世界失去格陵蘭和南極最大冰原,將導致海平面上升與冰河消失。由於冰原的成長緩慢但融化快速,失去任何面積可能無法逆轉。

海洋吸收愈來愈多熱,變得愈來愈暖,於是水往外擴。海平面上升近 1 公尺可能影響居住在海岸區、島嶼以及容易遭到洪水肆虐的近 10 億人生計。

海平面上升近 1 公尺可能影響居住在海岸區、島嶼以及容易遭到洪水肆虐的近 10 億人生計。圖/Pixabay

海平面上升近 1 公尺

可能影響居住在海岸區、島嶼

以及容易遭到洪水肆虐的近 10 億人生計。

我們沒有丟掉任何東西,

只是把我們的問題變成別人的問題。

⸺賽門.西奈克(Simon Sinek),暢銷作家

上網搜尋,種一棵樹

安裝一個簡單的應用程式,

就可以在你每次上網搜尋時種一棵樹。

——本文摘自《圖解全球碳年鑑:一本揭露所有關於碳的真相,並即時改變之書》,2022 年 9 月,商業周刊,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----