0

4
0

文字

分享

0
4
0

【記錄】M.I.C.XII之「認真」:「這不科學啊!」-一起認真來聊動漫作品到底怎樣才科學!

PanSci_96
・2013/07/24 ・4251字 ・閱讀時間約 8 分鐘 ・SR值 545 ・八年級

-----廣告,請繼續往下閱讀-----

文/Sunny

無敵鐵金剛或初號機這種「超巨大機器人」的駕駛員在全力奔跑時可能會暈機?「超人力霸王」在執行任務時變大和縮小符合物理法則嗎?最近超夯的「進擊的巨人」在演化上有可能嗎?魯夫在空島和艾涅爾對戰時,必須把橡膠的導電度考慮進去??

這些動漫和科幻電影中看似再普通不過的情節,用現今的科學理論來檢視,究竟會產生怎樣的火花呢?

7月16日晚上,在TEDxTaipei,一群動漫宅聚集在一起,和兩位宅度爆表,分別在大學開設「宅科學」的教授,以及知名個人電玩網站站長,兩位講者進行兩場精彩有趣,笑聲不斷,但又十足認真的「動漫中的科學」以及「科學與人文」議題,好奇嗎?讓我們來看看這晚的活動內容吧!!

-----廣告,請繼續往下閱讀-----

第一位的重量級講者,是傻呼嚕同盟的許經夌教授(大家應該比較熟悉他的暱稱–ZERO)。

ZERO教授一開始就以「被科學小飛俠中高學歷反派博士-辛格萊爵士所製造的企圖征服世界的機械鐵獸吸引」,因而誤入歧途投身物理學界,讓一開場就瀰漫著令人愉快的宅味。

接著,ZERO教授從傻呼嚕同盟協助翻譯的《空想科學讀本》中有趣的問題開始介紹,例如其中一個讓所有人眼睛發亮的問題就是「巨大機器人的駕駛員,會不會暈車」呢?

教授從機器人的身高、全力奔跑時身體的擺動狀況,利用公式解釋了駕駛無敵鐵金剛的柯國隆在機器人內會遭到怎樣的撞擊(還把影片找出來的教授實在是太專業了!!),並認真討論機器人該以怎樣的姿勢移動對駕駛人的衝擊最小,教授還找出EVA福音戰士的影片,解釋初號機那種重心擺低的奇特跑法對碇真嗣的影響比較小,所以,要駕駛巨大機器人,還真不是件容易的事啊!(所以,「ROBOTICS;NOTES」裡男主角駕駛笨拙自製機器人的方式可以視為「比較符合現今物理學」囉?)

-----廣告,請繼續往下閱讀-----

和巨大機器人相關的問題不止這個。接下來,教授帶我們討論巨大化後的的身高、體重比對實戰會造成怎樣的影響。

根據伽利略在17世紀對密度的解釋,面積是長度的平方,而體積是長度的立方,因此最近超夯的《進擊的巨人》,若單純考慮一般人類身高放大後,體積等比例放大的情況,光體重就可以把放大的當事人壓至骨折-所以,「巨人到底是什麼構成的呢?讓我們耐心等待諫山老師為粉絲們解迷吧!」。

根據這個理論,多拉A夢的放大縮小燈,超人力霸王放大後和怪獸戰鬥,也都是不符合體積/體重比的。-ZERO教授,如果我們童年也有《空想科學讀本》這種有趣的課外讀物,我也想當物理學家啦!!

所以,教授接著解釋,18公尺長的無敵鐵金剛,總重量是20噸,雖然不至於重到無法行動,但若仔細計算鐵金剛的密度,唉呀呀,和軟木塞差不多,連台灣的砂石車都有40噸重了,這樣鐵金剛就不能「無敵」了呀!

-----廣告,請繼續往下閱讀-----

接下來,ZERO教授帶領我們進入電磁學的範圍。在解釋過特斯拉線圈的基本原理之後,考慮到電壓、距離,以及接受電擊的生物體導電度,魯夫就算是超低導電度的橡膠人,在艾涅爾10憶伏特的電壓下,魯夫應該還是烤焦了,而皮卡丘的10萬伏特,在超過對手3.3公分後威力會急速下降……-相信國中電學如果這麼上,根本不會有學生打瞌睡!!至於段考考「要讓身為橡膠人的魯夫身體通電,愛艾涅爾最低限度必須施放多少伏特的電壓?」這類問題,學生一定會認真計算,不會隨便猜猜的~

ZERO教授毫無冷場的前半場演講,就在還有數張投影片來不及放,時間就到了的情況下結束,大家都還想知道,ZERO教授還有哪些動漫梗和科學有關呀~


接下來,今日的第二位講者,是知名個人電玩網站NostalgiaMemory :Those Which Remain部落格的主人RainReader(梁世佑),曾任教過國中、高中 、五專與多所大學,現任教於東海大學歷史系。身為個人電玩網站經營者,RainReader想傳達的卻是人文歷史和科學間的關係,這是場精彩有深度的演講,RainReader要和聽眾們分享的是「天花病毒究竟該不該保存下來?」

一開始,RainReader就先放了前陣子對婆婆媽媽們進行瘋狂洗腦的清朝浪漫愛情偶像劇【步步驚心】、【後宮甄嬛傳】等的劇照,要來解釋「科學與歷史人文」的關係。

-----廣告,請繼續往下閱讀-----

咦?甄嬛和科學有什麼關係?(難道是滴血認親那一段?)

RainReader先賣個關子,接下來的主題,來到了2011年,聯合國世界衛生組織進行了一項相當重要的表決,「是否要徹底消滅某種重大疾病的病毒」,這個曾經高達1/3死亡率,發病後即使存活,痊癒者身上也會留下可怕印記,全身佈滿近乎毀容的膿傷疤痕,是的,這就是天花

在全球施打牛痘疫苗,天花漸漸在地球上絕跡,而世界衛生組織也在1980年5月8日宣布,天花已經在地球上滅絕,除了在美國喬治亞州亞特蘭大市的疾病控制與預防中心(Centers for Disease Control,CDC)和俄羅斯的國立病毒學與微生物學研究中心(State Research Center of Virology and Biotechnology in Siberia, VECTOR)這兩個實驗室還保存著天花病毒外,世界上其他地方應該沒有天花病毒存在了。

那麼,這兩個機構內保存的天花,應該保留下來,還是銷毀,以免將來有一天,因為基因突變或利用基因工程改造,讓天花成為新一代的生化武器呢?

-----廣告,請繼續往下閱讀-----

科學界持正反兩面意見的都有。

支持銷毀天花病毒的論點是,天花有害無益,既然目前天花的基因已經解碼完畢,若真有須要也可以在實驗室中重新製造,而且牛痘疫苗並不需要以天花病毒做為原料製造,那麼,消滅掉就可以一勞永逸,不必再擔心這種恐怖病毒成為新的殺人疾病。

支持保留天花的,除了「保留樣本,在將來可能用上」的科學研究需求之外,有趣的是,科學家導入了宗教的立場:「人類沒有權力消滅另一個物種,就算是只有害處的病毒,人類就有權力將其消滅嗎?」

所以,目前美國和俄羅斯仍保有全世界唯二的天花病毒樣本,而且,即便接下來世界衛生組織要求兩國消滅病毒,這兩處實驗室照辦的可能性仍然不高。

-----廣告,請繼續往下閱讀-----

回到歷史和人文的部分。歷史上得過天花的名人不在少數,林肯、莫札特、貝多芬、史達林,根具傳聞都曾得過天花。當然,還包括中國歷史上的某些皇帝。正史上對於得過天花的皇帝會特別著墨,因為天花痊癒後終身不會再得,所以小時候得過天花的王子阿哥,可以合理的認為「能活的比較久」,對於政權的穩定,有重要的意義。

對!回到甄嬛和步步驚心,這兩部戲劇重要的共通點–男主角,長壽的康熙皇帝,根據史書記載,是得過天花的!!(所以四爺才不可能長的像吳奇隆!根本就會是個大麻子!)這樣的話,穿越時空回到清朝的若曦還會愛上四爺嗎?甄嬛和麻子皇帝的互動,也無法吸引觀眾的~

(更正:四爺是雍正,是康熙的兒子)

科學和人文,其實息息相關,無法脫離,而2014年,世界衛生組織將再度表決,是否要消滅天花。

-----廣告,請繼續往下閱讀-----

意猶未盡的歷史故事結束後,大家最期待的Q&A時間登場。由於兩位講者的內容太精彩,回想熱烈,讓我們來看看有哪些有趣的問題:

Q:大腦意識與電腦結合的世界有可能嗎?例如刀劍神域中SAO的技術有可能達成嗎?

A:這要考慮到的意識的本質為何,現今的科學界認為意識是由腦產生,以目前的理論來看,將意識複製到電腦中是做不到。

但若不複製意識,僅利用虛擬實境的方式,做出SAO的世界,理論上是有可能的(不過,要像桐人那樣一直開後宮,就算SAO實現了,一般人也做不到啦!!)。不過,人體因為有腦殼隔開人腦和機械,要達成直接在腦中產生視覺、聽覺等五官刺激,初期勢必得殖入晶片之類的電子產品,這時候的障礙,會是心理層面上的了(所以,刀劍神域之後的加速世界,真的有可能在未來達成啊!只要大家願意在中樞神經殖入晶片的話…)

(時空旅行相關問題集合)
Q:動畫「命運石之門」中,利用微波將人的記憶傳送到過去。請問將人腦中資訊提出有可能嗎?此外,時光機有可能做到嗎?

A:把腦中資訊提出是可能的,但提來的資訊和原本的相似度多高,就不一定了。就像人類想飛在天空,但根據物理學做出來的是作品飛機,不是能自在飛行的鳥至於時光機,學術期刊仍在討論,但仍在極端環境中,例如黑洞附近。因此真實情況的可能性仍在進行討論研究中。

至於時光機相關討論中,最大的問題就是「因果論」。目前是以「多重宇宙」或「平行世界」的方式來解釋,但假設某人真的做出時光機,讓人回到了過去,還改變了過去,那麼某人不可能再回去「原本的未來」,而會在另一個平行世界裡,也就無法證實時光機是否真的執行功能囉~

(其他有趣問題)
Q:我們會迴避或避開某些有缺陷的人,可能具有演化的意義,例如可繁殖出健康的後代,但道德會讓我們不要這樣,因此道德是否讓我們對抗本能?

A:從演化角度來看道德起源,是肯定互助的。也就是說,道德的好處較高。此外,某些觀察嬰幼兒的研究發現,某些我們覺得「良善」的行為,在沒有受過任何教導的孩子身上也會出現,因此,道德說不定也是本能的一部份。

Q:復仇者聯盟和正義聯盟那個比較有可能存在在世界上?

A:相當難討論,因為跨作品,所以合在一起討論很難評論(教授還反問大家「超人和超級賽亞人誰厲害??…」),因為強度設定在不同作品無法確認。不過,以有錢就可以的角度來看,所以蝙蝠俠最可行~

Q:動漫作品是否有扣「空想科學」的影響,讓作者們的設定做的更完整?

A:從銷售量來看,因為空想科學賣的好,因此動漫作者可能會注意到這一點,但不一定會因此加強設定。例如進擊巨人的設定,並不是巨人的身體結構,而是能否提供情報,給讀者更多的樂趣,更加用心的討論,所以,不一定喔~

想知道多動漫和科學間的關係嗎?那麼,別錯過PanSci 2013 六月選書《空想科學讀本 6.5》

至於,羨慕能聽到這麼有趣演講的你,別再遲疑了,直接報名8月份的M.I.C活動吧!!

*本次活動感謝TEDxTaipei支持的活動場地,以及遠流出版的好書。


【關於 M. I. C.】 M. I. C.(Micro Idea Collider,M. I. C.)微型點子對撞機是 PanSci 定期舉辦的小規模科學聚會,約一個月一場,為便於交流討論,人數設定於三十人上下,活動的主要形式是找兩位來自不同領域的講者,針對同一主題,各自在 14 分鐘內與大家分享相關科學知識或有趣的想法,並讓所有人都能參與討論,加速對撞激盪出好點子。請務必認知:參加者被(推入火坑)邀請成為之後場次講者的機率非常的高!

文章難易度
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
1

文字

分享

0
3
1
快速通道與無盡地界:科幻作品裡的黑洞——《超次元.聖戰.多重宇宙》
2046出版
・2024/02/08 ・4430字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

星際捷徑

一個無底深淵怎能成為星際飛行的捷徑呢?原來按照愛因斯坦的理論,黑洞是一個時空曲率趨於無限大——也就是說,時空本身已「閉合」起來的區域。但往後的計算顯示,若收縮的星體質量足夠大的話,時空在閉合到某一程度之後,會有重新開敞的可能,而被吸入的物體,將可以重現於宇宙之中。只是,這個「宇宙」已不再是我們原先出發的宇宙,而是另一個宇宙、另一個時空(姑毋論這是甚麼意思)。按照這一推論,黑洞的存在,可能形成一條時空的甬道(稱為「愛因斯坦-羅森橋接」),將兩個本來互不相干的宇宙連接起來。

這種匪夷所思的推論固然可以成為極佳的科幻素材,但對於克服在我們這個宇宙中的星際距離,則似乎幫助不大。然而,一些科學家指出,愛因斯坦所謂的另一個宇宙,很可能只是這一宇宙之內的別的區域。如果是的話,太空船便可由太空的某處飛進一個黑洞之內,然後在遠處的一個「白洞」(white hole)那兒走出來,其間無須經歷遙遠的星際距離。把黑洞和白洞連結起來的時空甬道,人們形象地稱之為「蛆洞」、「蛀洞」或「蟲洞」(wormhole)。

科幻作品裡常以穿越蟲洞作為星際旅行的快速通道。圖/envato

「蛆洞」是否標誌著未來星際旅行的「捷徑」呢?不少科幻創作正以此為題材。其中最著名的,是《星艦奇航記》第三輯《太空站深空 9 號》(Deep Space Nine, 1993-1999),在劇集裡,人類發現了一個遠古外星文明遺留下來的「蛆洞」,於是在旁邊建起了一個龐大的星際補給站,成為了星際航運的聚散地,而眾多精彩的故事便在這個太空站內展開。

我方才說「最著名」,其實只限於《星艦》迷而言。對於普羅大眾,對於「蛆洞」作為星際航行手段的認識,大多數來自二○一四年的電影《星際效應》(Interstellar,港譯:《星際啟示錄》),其間人類不但透過蛆洞去到宇宙深處尋找「地球 2.0」(因為地球環境已大幅崩壞),男主角更穿越時空回到過去,目睹多年前與年幼女兒生離死別的一幕。電影中既有大膽的科學想像,也有感人的父女之情,打動了不少觀眾。大家可能有所不知的是,導演基斯杜化.諾蘭(Christopher Nolan, 1970-)邀請了知名的黑洞物理學基普.索恩(Kip Thorne, 1940-)作顧問,所以其中所展示的壯觀黑洞景象,可不是憑空杜撰而是有科學根據的呢!

-----廣告,請繼續往下閱讀-----
星際效應裡的黑洞景象。圖/wikimedia

那麼蛆洞是否就是人類進行星際探險的寄託所在呢?

然而事情並非這麼簡單。我們不要忘記,黑洞的周圍是一個十分強大的引力場,而且越接近黑洞,引力的強度越大,以至任何物體在靠近它時,較為接近黑洞的一端所感受到的引力,與較為遠離黑洞的一端所感受到的,將有很大的差別。這種引力的差別形成了一股強大之極的「潮汐張力」(tidal strain),足以把最堅固的太空船(不要說在內的船員)也撕得粉碎。

潮汐張力的危險不獨限於黑洞,方才提及的中子星,其附近亦有很強的潮汐力。 拉瑞.尼文(Larry Niven, 1938-,港譯:拉利.尼雲)於一九六六年所寫的短篇〈中子星〉(Neutron Star),正以這一危險作為故事的題材。

尤有甚者,即使太空船能抵受極大的潮汐力,在黑洞的中央是一個時空曲率趨於無限,因此引力也趨於無限的時空「奇點」(singularity)。太空船未從白洞重現於正常的時空,必已在「奇點」之上撞得粉碎,星際旅程於是變了死亡旅程。

然而,往後的研究顯示,以上的描述只適用於一個靜止的、沒有旋轉的黑洞,亦即「史瓦西解」所描述的黑洞。可是在宇宙的眾多天體中,絕大部分都具有自轉。按此推論,一般黑洞也應具有旋轉運動才是。要照顧到黑洞自旋的「場方程解」,可比單是描述靜止黑洞的史瓦西解複雜得多。直至一九六三年,透過了紐西蘭數學家羅伊・卡爾(Roy Kerr, 1934-)的突破性工作,人類才首次得以窺探一個旋轉黑洞周圍的時空幾何特性。

-----廣告,請繼續往下閱讀-----
圖/envato

旋轉的黑洞

科學家對「卡爾解」(The Kerr solution)的研究越深入,發現令人驚異的時空特性也越多。其中一點最重要的是:黑洞中的奇點不是一個點,而是一個環狀的區域。即只要我們避免從赤道的平面進入黑洞,理論上我們可以毋須遇上無限大的時空曲率,便可穿越黑洞而從它的「另一端」走出來。

不用說,旋轉黑洞(也就是說,自然界中大部分的黑洞)立即成為科幻小說作家的最新寵兒。

一九七五年,喬.哈德曼(Joe Haldeman,1943-)在他的得獎作品《永無休止的戰爭》(The Forever War, 1974)之中,正利用了快速旋轉的黑洞(在書中稱為「塌陷體」——collapsar)作用星際飛行——以及星際戰爭得以體現的途徑。

由於黑洞在宇宙中的分佈未必最方便於人類的星際探險計劃,一位科學作家阿德里安.倍里(Adrian Berry,1937-2016)更突發奇想,在他那充滿想像的科普著作《鐵的太陽》(The Iron Sun, 1977)之中,提出了由人工製造黑洞以作為星際轉運站的大膽構思。

-----廣告,請繼續往下閱讀-----

要特別提出的一點是,飛越旋轉黑洞雖可避免在奇點上撞得粉碎,卻並不表示太空船及船上的人無須抵受極強大的潮汐力。如何能確保船及船員在黑洞之旅中安然無恙,是大部分作家都只有輕輕略過的一項難題。

此外,按照理論顯示,即使太空船能安然穿越黑洞,出來後所處的宇宙,將不是我們原先出發的那個宇宙;而就算是同一個宇宙,也很可能處於遙遠的過去或未來的某一刻。要使這種旅程成為可靠的星際飛行手段,科幻作家唯有假設人類未來對黑洞的認識甚至駕馭,必已達到一個我們今天無法想像的水平。

然而,除了作為星際飛行途徑,黑洞本身也是一個怪異得可以的地方,因此也是一個很好的科幻素材。黑洞周圍最奇妙的一個時空特徵,就是任何事物——包括光線——都會「一進不返」的一道分界線,科學家稱之為「事件穹界」(event horizon)。這個穹界(實則是一個立體的界面),正是由當年史瓦西計算出來的「史瓦西半徑」(Schwarzschild radius)所決定。例如太陽的穹界半徑是三公里,也就是說,假若一天太陽能收縮成一個半徑小於三公里的天體,它將成為一個黑洞而在宇宙中消失。「穹界」的意思就是時空到了這一界面便有如到了盡頭,凝頓不變了。

圖/envato

簡單地說,穹界半徑就是物體在落入黑洞時的速度已達於光速,而相對論性的「時間延長效應」(time dilation effect)則達到無限大。對太空船上的人來說,穿越界面的時間只是極短的頃刻,但對於一個遠離黑洞的觀測者,他所看到的卻是:太空船越接近界面,船上的時間變得越慢。

-----廣告,請繼續往下閱讀-----

而在太空船抵達界面時,時間已完全停頓下來。換句話說,相對於外界的人而言,太空船穿越界面將需要無限長的時間!

無限延長的痛苦

了解到這一點,我們便可領略波爾.安德遜(Poul Anderson, 1926-2001)的短篇〈凱利〉(Kyrie, 1968)背後的意念。故事描述一艘太空船不慎掉進一個黑洞,船上的人自是全部罹難。但對於另一艘船上擁有心靈感應能力的一個外星人來說,情況卻有所不同。理由是她有一個同樣擁有心靈感應能力的妹妹在船上,而遇難前兩人一直保持心靈溝通。由於黑洞的特性令遇難的一剎(太空船穿越穹界的一剎)等於外間的永恆,所以這個生還的外星人,畢生仍可在腦海中聽到她妹妹遇難時的慘叫聲。

安德遜這個故事寫於一九六八年,可說是以黑洞為創作題材的一個最早嘗試。

短篇〈凱利〉便是利用黑洞的特性——遇難的一剎等於外間的永恆——使生還者感受無盡的痛苦。圖/envato

太空船在穹界因時間停頓而變得靜止不動這一情況在阿爾迪斯一九七六年寫的《夜裡的黑暗靈魂》(The Dark Soul of the Night)中,亦有頗為形象的描寫。恆星的引力崩塌,在羅伯特.史弗堡(Robert Silverberg)的《前往黑暗之星》(To the Dark Star, 1968)之中卻帶來另一種(雖然是假想的)危險。故事中的主人翁透過遙感裝置「親身」體驗一顆恆星引力塌陷的過程,卻發覺時空的扭曲原來可以使人的精神陷於瘋狂甚至崩潰的境地。

-----廣告,請繼續往下閱讀-----

以穹界的時間延長效應為題材的長篇小說,首推弗雷德里克.波爾(Frederik Pohl, 1919-2013)的得獎作品《通道》(Gateway, 1977),故事描述人類在小行星帶發現了由一族科技極高超的外星人遺留下來的探星基地。基地內有很多完全自動導航的太空船,人類可以乘坐這些太空船穿越「時空甬道」抵達其他的基地,並在這些基地帶回很多珍貴的,因此也可以令發現者致富的超級科技發明。

故事的男主角正是追尋這些寶藏的冒險者之一。他和愛人和好友共乘一艘外星人的太空船出發尋寶,卻不慎誤闖一顆黑洞的範圍。後來他雖逃脫,愛人和好友卻掉進黑洞之中。但由於黑洞穹界的時間延長效應,對於男主角來說,他的愛人和好友永遠也在受著死亡那一刻的痛苦,而他也不歇地受著內疚與自責的煎熬。

故事的內容由男主角接受心理治療時逐步帶出。而特別之處,在於進行心理治療的醫生不是一個人,而是一副擁有接近人類智慧的電腦。全書雖是一幕幕的人機對話,描寫卻是細膩真摯、深刻感人,實在是一部令人難以忘懷的佳作。

圖/envato

由於這篇小說的成功,波氏繼後還寫了兩本續集:《藍色事件穹界以外》(Beyond the Blue Event Horizon, 1980)及《希徹會晤》(Heechee Rendezvous, 1984)。而且兩本都能保持很高的水準。

-----廣告,請繼續往下閱讀-----

時間延長效應並非一定帶來悲劇。在先前提及的《永無休止的戰爭》的結尾,女主角正是以近光速飛行(而不是飛近黑洞)的時間延長效應,等候她的愛侶遠征歸來,為全書帶來了令人驚喜而又感人的大團圓結局。

七○年代末的黑洞熱潮,令迪士尼(Walt Disney)的第一部科幻電影製作亦以此為題材。在一九七九年攝製的電影《黑洞》(The Black Hole)之中,太空船「帕魯明諾號」在一次意外中迷航,卻無意中發現了失蹤已久的「天鵝號」太空船。由於「天鵝號」環繞著一個黑洞運行,船上的人因時間延長效應而衰老得很慢。這艘船的船長是一個憤世疾俗的怪人,他的失蹤其實是故意遠離塵世。最後,他情願把船撞向黑洞也不願重返文明。

比起史提芬.史匹堡(Steven Spielberg, 1946-)的科幻電影,這部《黑洞》雖然投資浩大,拍來卻是平淡乏味,成績頗為令人失望。除了電影外,科幻作家艾倫.迪安.霍斯特(Alan Dean Foster, 1946-)亦根據劇本寫成的一本同名的小說。

這張圖片的 alt 屬性值為空,它的檔案名稱為 ___72dpi.jpeg

——本文摘自《超次元.聖戰.多重宇宙》,2023 年 11 月,二○四六出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
1

文字

分享

0
2
1
變身沙贊靠閃電夠力嗎?會是能源解方還是一場災難?《沙贊! 》中的神力閃電之謎
Rock Sun
・2023/05/30 ・4134字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

「沙贊!」然後一道閃電就會打下來,擊中一位青少年,瞬間變成一位穿著紅衣+披風、渾身肌肉的(中二)成年人,這就是 DC 宇宙中,超級英雄沙贊的變身過程。

很有趣的是,大家可以回想一下,最近這 10 幾年來席捲世界的漫威和 DC 英雄,絕大部分執行英雄行動前都是進行「著裝」,例如鋼鐵人、蝙蝠俠、美國隊長……等,但是沙贊不一樣,儘管不複雜,但他需要一套特別的手續來改變他自己的身體,已獲得他身為超級英雄的力量,這點跟日本的超人力霸王比較類似。

根據 DC 宇宙的設定,賦予沙贊力量、讓他變身的閃電都來自神界的奧林帕斯山,只要他大喊一聲,閃電就會隨傳隨到,而因為一切是神力的關係,理論上他接收力量的位置無關緊要,也非常的安全。

真不愧是奧林帕斯山啊!如果我們能夠在比利(電影中變身成沙贊的少年)的頭上裝一個收集閃電能量的器材,那費城一定變成全美國能源最豐沛的城市。

-----廣告,請繼續往下閱讀-----
我們說的是站中間那個穿紅色緊身衣的大男人。 圖/IMDb

但是要進行超級英雄活動,普通的閃電能量夠嗎?這道奧林帕斯山的閃電會不會是一道超越人類認知的超級閃電呢?

還有儘管沙贊不會受影響,但如果有人不小心在變身時不小心碰觸他或在他附近,會發生什麼事呢?

這真的值得一起來探討~

先定立標準:閃電能提供多少能量?

閃電是大自然中最純粹的能量展現之一,經過大氣學家的觀測和預估,一道閃電電壓大概是 3 億伏特,帶有 10 億焦耳的能量,這差不多是燃燒 30 公升左右的汽油。

-----廣告,請繼續往下閱讀-----

聽起來非常的厲害,那我們利用閃電來獲得能源會不會是個好方法?

其實從 1980 年代開始科學家就有這種想法,但是他們發現這其實很不切實際,主要原因有幾個:閃電很難預測、傳導到地面上能量又會大減、效率很不穩定……但那是大自然的閃電,讓沙贊變身的可是充滿神力的閃電耶!不只能夠提供沙贊穩定且高能的能量來源,還可以藉由跟蹤比利知道閃電的位置和時間。

我們只要把比利抓起來請出來,跟他預約時間大喊沙贊,就可以發電了~

圖/GIPHY

現在的問題是……這道閃電有多少能量呢?

要知道一道神奇閃電帶有多少能量其實有點困難,因為一旦比利變身之後,他似乎沒有時間限制,不像超人力霸人那樣有 3 分鐘的活動上限,後者會比較好估算是因為你可以設想這 3 分鐘內超人力霸王做了哪些事情,在逐一拆解。

-----廣告,請繼續往下閱讀-----

所以筆者覺得最能夠執行的方式,是羅列出電影中沙贊一次變身基本上會做到的事情,這樣結果應該就足夠是神力閃電的基本盤。

從電影《沙贊!眾神之怒》中,筆者列出幾個沙贊在超級英雄狀態時做的事,包括:

  1. 以音速飛行 10 分鐘
  2. 把一隻體型巨大的飛龍打飛 10 公尺
  3. 把一台車移動 200 公尺
  4. 從手中放出好幾道像特斯拉線圈的能量閃電

這樣感覺差不多了吧……等等~還有一件很重要的事,就是這道閃電同時還把一名 17 歲的青年變成一名看起來 30 歲的成年人,這瞬間成長所需的誇張能量應該也要算進閃電的功勞裡,所以這個列表還要加進另一項:

  1. 讓 17 歲的青年成長成 30 歲男性的所需熱量
長大成這樣~ 圖/IMDb

那我們接下來可以逐一估算了。

-----廣告,請繼續往下閱讀-----
  • 那首先就來計算成長所需的熱量吧!

要讓人成長的能量,其實也是熱量,也就是大家耳熟能詳的卡洛里,1 千大卡的熱量差不多是 4184 焦耳的能量。

根據衛服部提供的資料,一名成年人每日所需的熱量依他的活動量和體重來決定,那沙贊毫無疑問絕對是重度活動量那一類的,體重的話少年比利看起來介於 60~70 公斤之間,而飾演沙贊的演員柴克萊威曾說為了演戲需要增重到超過 90 公斤,雖然隨著體重增加每日所需熱量也會不同,但為了簡單估算,我們姑且用 80 公斤算到底吧~

圖/衛福部

比利瞬間成長為超人般壯碩所需能量= 40 大卡 x 80 公斤 x 365 天 x (30-17) 年 x 4184 J= 6.35x 1010 焦耳 = 635 億焦耳

這數字怎麼已經有點大了……但在吐槽之前,我們先把其他的所需能量都估算完吧~

-----廣告,請繼續往下閱讀-----
  • 以音速飛行 10 分鐘

這裡我們借用四分之一英里估算法,這是個可以從物體重量(通常是車子)和行駛四分之一英里所需的時間來求得功率的簡單方式。

沙贊體重 90 公斤,而他在音速下完成 1/4 英里所需的時間為 1.2 秒,根據線上工具估算,這名英雄相當於擁有 22,876 馬力,轉化為瓦特差不多是 1700 萬瓦特,如果沙贊要飛行 10 分鐘,他就會需要大約 100 億焦耳的能量

  • 把一隻體型巨大的飛龍打飛 50 公尺

這個計算方式並不困難,就是簡單的做功運算,但是筆者遇到了很嚴重的問題:電影中的飛龍-拉頓到底多重呢?

經過一番搜尋,網路上對於一條中世紀奇幻飛龍到底有多重幾乎是沒有定論,看起來好像沒有人有認真算過,所以筆者打算自己來操刀,解決這個世紀大謎題 (?)。

-----廣告,請繼續往下閱讀-----

有看過《空想科學讀本》的人對筆者使用的方法一定不陌生,就是把模型浸到水裡面,估算體積之後放大,再考慮密度來求得飛龍的體重。

所以筆者到了地下街的玩具店,買了一條看起來最像電影中奇幻飛龍體型的模型玩具(其實是動漫《轉生成為史萊姆》的公仔,似乎是主角後期的樣子吧?筆者沒有看不清楚~),將它放進水盆裡面裝水,做好水位標記之後取出模型,水位下降之後從水盆的面積和下降高度求得玩具龍的體積大概是 0.000283 立方公尺,這時我們需要玩具龍的身長和電影中的拉頓身長來做等比放大,玩具龍身體差不多是 25 公分,而從電影中拉頓站在棒球場內野的畫面來做估算,它的身長大約是 25 公尺,身長差 100 倍,所以體積會變 100 的 3 次方也就是 100 萬倍,所以說拉頓的體積大概是 283 立方公尺。

筆者買到的龍模型,雖然它是站立的,但平放在地上看起來跟電影中的龍差不多。圖/作者提供

這時我們需要拉頓身體的密度來求得體重,如果拉頓是生物的話,它的身體密度應該也要接近水(每立方公尺 1000 公斤),例如人體的密度就差不多是每立方公尺 1062 公斤,但是電影中拉頓身體看起來有點像是由木頭構成的,而世界上最堅硬的木頭是澳洲鐵木樹(Australian buloke)密度是 1085 kg/m3,再加上龍的奇幻性質,我想把拉頓的身體密度定為 1100 kg/m3 應該是還可以接受的吧?

如果用這個方式估算,電影中看守花園的飛龍拉頓,體重大概會是 311 公噸,我們套入物理課本中看過的做功計算公式,可以知道沙贊把一條龍打飛 50 公尺所需要的能量,大概會是 7775 萬焦耳

-----廣告,請繼續往下閱讀-----
電影中飛龍的劇照。圖/Twitter
  • 把一台車移動 200 公尺

相較前面兩個,這計算相對簡單一點,我們一樣用上面的作功公式來求需要能量,而我們需要的就是車子的重量。根據統計,美國一般路上的車子平均重量為 1800 公斤,如果要在 3 秒鐘內移動 200 公尺,就相當於需要 4 百萬焦耳

  • 從手中放出好幾道能量閃電

沙贊從手上放出閃電,看起來就像是電弧的一種,而電弧是因為有強大的電場或高壓電存在,使的原本不導電的物質電漿化得以使電流通過的現象,而說到能夠最穩定產生電弧的狀況,筆者第一個想到的是在現實中會看到的特斯拉線圈。

特斯拉線圈是一種由知名物理學家特斯拉發明的強大變壓器,這種變壓器使用共振原理運作,主要用來生產超高電壓但低電流、高頻率的交流電力,因為特斯拉線圈可產生絢麗的電弧效果,所以很常在一些科學博物館或展示中看到,而世界上最強大的特斯拉線圈: Electrum 的能量使用率為 130,000 瓦特,假設沙贊能夠用同等功率放出電弧長達 10 秒鐘,就會需要 130 萬焦耳的能量。

Electrum 特斯拉線圈。圖/wikipedia

這下子我們需要的數字都有了!

這道神奇閃電所附帶的能量大約是:

635 億(變成大人)+100 億(音速飛行 10 分鐘)+7775 萬(打飛一條龍)+400 萬(移動一台車)+130 萬(放出閃電)= 735 億 8305 萬焦耳

 而正常世界一道閃電的能量大約是 10 億焦耳,也就是說~這道神奇閃電差不多是等於 74 道現實中閃電的能量。

好厲害啊!真不愧是奧林帕斯的眾神,能夠這麼精準的傳遞如此巨大的電能量根本就是神蹟…..也確實是神蹟沒錯~

但是如果一個不小心承接這道能量的人不是沙贊的話,會發生什麼事呢?

一般人被普通的閃電擊中就已經不是鬧著玩的了!

直接被閃電擊中的人會成為電流的一部分,一部分電流會沿著皮膚表面移動,另一部分會穿過身體的心血管或神經系統,前者會對皮膚造成灼傷,後者則有可能造成呼吸停止或心臟驟停,但我們還是能找到一些歷史上從雷擊中生還的故事,因為有沒有辦法在雷擊中活下來是跟就醫和電流通過體內的時間而定……運氣好的話,你不會死的。

但是在沙贊的神奇閃電面前,這一切都成為笑話。

這道 735 億焦耳的閃電能量相當於 2 顆歷史上最強大非核子炸彈:炸彈之母(GBU-43/B 大型空爆炸彈)爆炸所釋放出的能量,所以如果今天好死不死沒有打在比利身上,而是擊中地面的話,後果一定不堪設想,周遭的親友絕對是灰飛煙滅,費城可能會變成廢墟,之前說的收集能量可能完全行不通,因為應該沒多少設備儀器能夠承受如此巨大的威力。

反倒是比利啊~你是不是在承接沙贊能力時同時被改造了,被2顆炸彈之母轟炸都沒事,真是太神啦!還有就是一定要站好喔~

全世界只有這位男人能承受的力量。圖/IMDb
Rock Sun
64 篇文章 ・ 894 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

0

7
1

文字

分享

0
7
1
破解猴痘病毒感染機制及風險,天花疫苗也可以抵禦!
研之有物│中央研究院_96
・2023/04/11 ・5505字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/林承勳
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

又一「國際關注公共衛生緊急事件」

2022 年的猴痘病毒大概是除了新型冠狀病毒以外,最被社會關注的病毒之一,在這波的全球感染趨勢下,臺灣疾病管制署 2022 年 10 月 9 日公布,國內出現第 4 例猴痘境外移入確定病例。我們該繼續擔心猴痘病毒嗎?中央研究院研之有物團隊專訪院內分子生物研究所張雯研究員,請她解析痘病毒進入宿主細胞的機制,以及猴痘病毒的感染風險。

2022 年的猴痘疫情是繼 2020 年新冠肺炎疫情之後的「國際關注公共衛生緊急事件」。圖/iStock

根據世界衛生組織(World Health Organization, WHO)統計,自 2022 年 5 月英國出現首例猴痘(Monkeypox,或稱 Mpox)個案之後,迄 10 月為止,全球已通報超過 7 萬確診病例​​。[註1]

WHO 也在 7 月 23 日正式宣布,猴痘是繼 2020 年新冠肺炎疫情之後,又一「國際關注公共衛生緊急事件」(Public Health Emergency of International Concern,PHEIC),呼籲各國應該對此波病毒傳染加以重視。

-----廣告,請繼續往下閱讀-----

猴痘病毒是什麼?這類型的痘病毒如何感染人類?讓我們接著看下去吧!

  • 註1:為避免汙名化,2022 年 11 月 WHO 開始鼓勵使用「Mpox」作為「Monkeypox」的同義詞。

自 2022 年起,全球頻繁出現人傳人

猴痘病毒在分類學上,屬於痘病毒科 (Poxviridae),正痘病毒屬(Orthopoxvirus)。該病毒於 1958 年首次從實驗用猴的皮膚病灶中被分離,故命名為「猴痘」病毒。雖然它可以感染猴子,但是寄主範圍廣泛,尚包括齧齒動物如甘比亞袋鼠與其他靈長類動物。

猴痘病毒的真正野外宿主尚未有定論,可能為小型哺乳類。猴痘病毒透過這些中間宿主傳播給人類,屬於人畜共通傳染病。

病毒由野生動物傳播給人類的方式,通常透過直接接觸,像是碰觸到受病毒感染動物的血液、體液或黏膜;食用受感染動物也有感染風險。

-----廣告,請繼續往下閱讀-----

在過去,猴痘的傳播幾乎都侷限在非洲大陸,直到 2003 年美國爆出 40~50 例之感染案例。經追查後發現,感染源頭為走私進口之非洲寵物鼠,將病毒傳染給當地土撥鼠及人類。值得一提的是,此次感染人類之猴痘病毒株毒性較弱,無人死亡,整個疫情在半年內就平息了,而且鮮少出現人傳人的案例。

在非洲流行的猴痘病毒可分為中非和西非兩個分支,中非分支比西非分支病毒更容易傳播,且致死率更高,可達 10%。然而,因為疫情僅限於非洲,即使致死率高也鮮少受到國際關注。

自 2022 年 5 月以來,造成全球頻繁出現人傳人的猴痘病毒,經定序確認屬於西非分支,致死率約為 1%。此次疫情人與人之間的傳播多半是經由密切接觸,像是身體接觸時沾染到感染者分泌物、黏膜,或是皮膚水泡破裂流出的體液等等。另外也有機會經由口鼻噴出的飛沫,或是日常用品如衣物表面傳播病毒。

傳統上,感染猴痘後會出現發燒、畏寒、頭痛、淋巴腺腫大等典型症狀,並在發病後起疹子,自患部蔓延至身體其他部位,繼而發展成水泡、膿疱等。

-----廣告,請繼續往下閱讀-----

不過,美國疾病管制與預防中心指出,2022 年疫情的病患多半由於性接觸造成傳染,因此出現較不典型的症狀,像是疹子最早出現在生殖器或肛門周圍,且不一定會擴散至身體其他部位,發燒等症狀也比較不明顯,因此不易辨別、常常誤診成其他傳染病。目前臺灣衛生福利部疾病管制署,已把猴痘列為第二類法定傳染病,不敢輕忽大意。

感染猴痘的可能症狀。圖/研之有物(資料來源|iStock

天花疫苗也可以抵禦猴痘

說到猴痘病毒,便不得不提到同樣是正痘病毒屬,且惡名昭彰的近親:天花病毒(Variola Virus)。感染天花病毒產生的症狀跟猴痘類似,但更為嚴重。歷史上幾次天花大流行,至少帶走三億人的性命。不過在十八世紀,愛德華,金納(Edward Jenner)醫師倡導以牛痘病毒(Vaccinia Virus)製成的天花疫苗,已經於二十世紀成功的將天花病毒趕盡殺絕,目前僅有美、俄兩國的中央疾管機構仍保存些許天花病毒。

天花疫情之所以能被完全清除於人類社會,一個很重要的原因是因為其沒有人類以外的其他宿主。

天花病毒只會在人類之間散佈;當疫苗逐漸普及,民眾逐漸獲得抵抗力之後,天花病毒就無法生存。至於近期快速散播的猴痘病毒則不同,由於寄主範圍較廣,可感染多種野生嚙齒及靈長類等動物,導致猴痘病毒較不易完全根除。

針對此一波猴痘疫情,張雯指出,雖然病毒基因組上已經出現多個鹼基的變異,但不必然產生功能性影響。此外,因為痘病毒表面有多種相似度高之抗原,接種天花疫苗產生之免疫細胞仍具有可辨認猴痘病毒之能力,產生具有中和活性之抗體來保護個體。目前的第三代天花疫苗對猴痘仍具有相當的防禦能力,民眾毋需過於恐慌。

-----廣告,請繼續往下閱讀-----

為什麼用牛痘病毒製作的天花疫苗可以抵禦猴痘病毒?

原因在於牛痘、猴痘與天花病毒親緣關係接近,不僅病毒表面有同源性高的蛋白質用以進入寄主細胞,三者入侵細胞的機制也類似。長期研究牛痘病毒進入細胞機制的張雯認為,目前的研究成果可以協助科學家了解猴痘病毒的生活史。

關鍵在於表面鞘膜蛋白

對於痘病毒進入細胞的機制,以牛痘病毒當作模式物種研究的張雯指出,有感染力的痘病毒具有兩種形式,成熟病毒(Mature Virus,MV)及細胞外病毒(Extracellular Virus,EV)。兩者均帶鞘膜,但 95% 以上細胞內產生的病毒為成熟病毒。

成熟病毒藉由鞘膜上的四種鞘膜蛋白質,分別是:H3、D8、A26 及 A27,以附著在細胞表面的醣胺聚醣(Glycosaminoglycans)。接著病毒會聚集於細胞表面脂質筏(Lipid rafts)與細胞受體蛋白質 Intergrin β1 以及 CD98 結合,誘導宿主細胞內的訊息活化,產生細胞肌動蛋白質的聚合作用(Actin polymerization),促成液飲作用 ( Fluid phase endocytosis ) 將病毒吞入細胞內。

-----廣告,請繼續往下閱讀-----
牛痘病毒有兩種感染顆粒,一種是成熟病毒(Mature Virus,MV),數量佔 95% 以上;另一種是細胞外病毒(Extracellular Virus,EV),數量只佔 5% 以下。圖/研之有物(資料來源|張雯)
牛痘病毒的成熟病毒顆粒進入宿主細胞的機制。
圖/研之有物(資料來源|張雯)

牛痘成熟病毒被液飲作用產生的囊泡所包裹進入細胞質,接下來囊泡內環境會逐漸酸化,而酸性會誘導病毒鞘膜蛋白質 A26 結構改變,使得病毒融合蛋白質活化,促使病毒鞘膜與囊泡膜融合,脫去鞘膜的病毒內核進入細胞質內,開始新一波的基因複製及病毒組裝。

大部分 DNA 病毒是進入到細胞核,因為合成 DNA 所需之核苷酸原料在宿主的細胞核裡面;但痘病毒卻不是,反而在細胞質裡進行它的生活史。

張雯指出,痘病毒具它自身專用之 RNA 及 DNA 聚合酶,連基因轉錄及基因複製的過程都不假手宿主細胞之聚合酶。

牛痘病毒的感染顆粒進入宿主細胞的動態影像,紅色為成熟病毒顆粒(MV)、綠色為細胞外病毒顆粒(EV)。註:可開啟「循環播放」功能方便觀看。資料來源/張雯

從單層到雙層膜

牛痘病毒進到宿主細胞後,早期反應基因(Early gene)會立刻開始表現,產生早期病毒蛋白質,包括中期轉錄因子和 DNA 聚合酶以 DNA 複製;病毒會接續產生其他中後期的蛋白質,並且修飾內質網,把遺傳物質與蛋白質組裝成新的成熟病毒顆粒,完成牛痘病毒的生活史。

細胞產生之 MV 是非常穩定的病毒狀態,製造出來後會留在細胞質內,待細胞死亡破裂才會釋出。然而,少部分的 MV 會被運輸到寄主細胞的高基氏體進行「加工」,多包兩層高基氏體的膜,形成三層膜的病毒顆粒(Wrapped Virus,WV),並藉著細胞的微管移動到細胞邊緣。

-----廣告,請繼續往下閱讀-----

接著,三層膜的 WV 病毒會透過「內向外」的細胞膜融合,脫去最外層的膜,剩下兩層膜之 EV 便裸露在寄主細胞膜的「外面」,伺機尋找下一個細胞。EV 與 MV 不同,在環境中極不穩定,也因其鞘膜特性的不同,兩層膜的 EV 較脆弱,一旦附著在細胞表面後,其第一層外膜產生撕裂,露出第二層膜,不需經由胞飲過程及酸性環境的催化,此時 EV 可以直接與細胞表面之細胞膜進行膜融合,完成感染過程。

A26 蛋白質影響感染途徑

「成熟病毒 MV 藉胞飲作用後的酸性環境觸發病毒膜與囊泡膜融合,跟 EV 病毒在中性條件下直接與細胞膜融合,這兩種模式最大的差異,就取決於病毒表面是否有 A26 鞘膜蛋白質。」

張雯指出,A26 的作用就是抑制病毒膜融合的進行,而 A26 鞘膜蛋白質只存在 MV 表面,卻不在 EV 表面。A26 蛋白質組裝在病毒顆粒上,抑制膜融合,以維持 MV 病毒的穩定。 直到病毒感染細胞後,它的抑制功能會在囊泡形成的酸性環境下被解除,膜融合才得以順利進行,將病毒內核送入細胞質中。

不只是牛痘,天花跟 2022 年流行的猴痘病毒表面都有 A26 鞘膜蛋白,藉由解開鞘膜蛋白質如何調控病毒入侵細胞的機制,或許可以在未來變成圍堵猴痘病毒的籌碼。

-----廣告,請繼續往下閱讀-----

表面抗原蛋白多,不必擔心免疫逃脫

目前已報導的猴痘病毒有多達 50 處基因突變,而突變帶來的效果還有待進一步研究,但張雯卻不那麼擔心會有免疫逃脫的狀況出現。張雯指出,已經有實驗證明天花疫苗可以預防猴痘病毒,不論是先前提到一層膜或兩層膜的痘病毒狀態,被疫苗激活的人體免疫細胞都有能力辨認。

「新冠肺炎只有一個棘蛋白當作抗原,要是一出現突變就很麻煩;但猴痘病毒不一樣。」張雯解釋說,猴痘病毒表面的鞘膜蛋白例如 H3、D8、A27、L1 及 B5 都具有多樣的抗原區域,可刺激強大的免疫反應,產生各式各樣中和抗體。當中和抗體辨認的病毒抗原目標大且多時,病毒就很容易被發現、殲滅,即使少許突變也無法讓病毒逃脫其餘中和抗體的辨識。

因此,張雯表示,對付猴痘病毒用現有的第三代天花疫苗就夠了!「其實不論哪一代天花疫苗,刺激免疫力的能力都夠好,差別主要在於疫苗本身的安全性。」張雯強調,因為天花在 1980 以後就已經滅絕,沒有必要實施接種。各國現有的天花疫苗庫存是為了少數高危險群工作者之防護,或是防範天花病毒作為生化武器之用途,存量不夠多,短時間內無法供應大量民眾施打,所以猴痘疫情才會在爆發初期就引起恐慌。

如今猴痘病毒在特定群體中傳播只是暫時的表象,張雯指出,猴痘病毒傳播主要是靠接觸傳染,而且無關性別、性傾向或是否有發生性關係,只要有近距離的「肢體接觸」或污染物接觸都有可能沾到病毒而感染。各國有關當局應盡快鎖定確診個案的接觸者,以及接觸者的親朋好友們,讓他們優先施打疫苗,並追蹤成效。動作越快就越能有效圍堵疫情。

張雯解釋,新冠病毒僅有一個棘蛋白當作抗原,而猴痘病毒表面鞘膜蛋白有 H3、D8、A27、L1 及 B5 等多個蛋白質,可以提供中和抗體諸多可以辨認的抗原區域。圖/研之有物

阻斷病毒進入本土生態鏈是當務之急

過去各國科學家花費許多心思研究天花病毒,讓 WHO 存有足夠的天花相關資料,一舉成功用疫苗滅絕天花病毒。這也是至今人類醫療史上唯一成功滅絕病毒的案例。以此為基礎,想要防治相近的猴痘病毒並非難事。張雯也不認為短期內猴痘疫情會一發不可收拾。

回顧 2022 年,有很多個案是因從事性行為產生的密切接觸而被傳染,「當然固定性伴侶是可以減少病毒傳播的機會」張雯說。然而,過度簡化個案特徵與傳染途徑,再加上現任 WHO 秘書長譚德賽的發言,以及媒體大肆渲染下,容易誤導民眾以為猴痘是只會在男同性戀間傳播的性病。

「就跟當初 1980 年代的愛滋病一樣,一開始社會大眾以為只有同性戀社群才會被感染;猴痘也要多注意,不然也會污名化少數社群,帶給他們很大的傷害。」張雯再次強調,猴痘病毒會在人類全身流竄,不只侷限於性器官。

想要知道猴痘病毒在全球感染趨勢,張雯建議臺灣民眾可以追蹤有公信力的媒體跟網站,如 WHO 網站;由於美國猴痘病例約佔全球病例之半,美國疾病管制與預防中心也時常更新相關資訊。而臺灣目前只有 4 例境外移入,且都被快速攔截,應該還沒機會讓病毒散佈到其他人或動物身上造成本土感染,故暫時不用恐慌。

不過,由於猴痘病毒還會感染人以外的動物,為了預防未來出現本土感染,當前之務即是要注意並阻斷外來病毒進入當地寄主生物之生態鏈中。

延伸閱讀

  1. Ahmed, S. F., Sohail, M. S., Quadeer, A. A., & McKay, M. R. (2022). Vaccinia-virus-based vaccines are expected to elicit highly cross-reactive immunity to the 2022 Monkeypox virusViruses, 14(9), 1960. 
  2. Alakunle, E. F., & Okeke, M. I. (2022). Monkeypox virus: A neglected zoonotic pathogen spreads globallyNature Reviews Microbiology, 20(9), 507–508.
  3. Isidro, J., Borges, V., Pinto, M., Sobral, D., Santos, J. D., Nunes, A., . . . Gomes, J. P. (2022). Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of Monkeypox virusNature Medicine, 28(8), 1569-1572.
  4. Tomori, O., & Ogoina, D. (2022). Monkeypox: The consequences of neglecting a disease, anywhereScience, 377(6612), 1261–1263. 
  5. World Health Organization. (n.d.). Monkeypox. World Health Organization. Retrieved December 28, 2022, from https://www.who.int/news-room/fact-sheets/detail/monkeypox
  6. Fenner, F. (1993). Smallpox: Emergence, Global Spread, and Eradication.History and Philosophy of the Life Sciences, 15(3), 397–420. 
  7. Foster, S. O., Brink, E. W., Hutchins, D. L., Pifer, J. M., Lourie, B., Moser, C. R., . . . Foege, W. H. (1972). Human monkeypoxBulletin of the World Health Organization, 46(5), 569–576.
研之有物│中央研究院_96
296 篇文章 ・ 3404 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook