0

0
0

文字

分享

0
0
0

【紀錄】「哇!災!」:天龍國搖搖

陳妤寧
・2014/06/09 ・4238字 ・閱讀時間約 8 分鐘 ・SR值 547 ・八年級

__0426_original

文 / 陳妤寧

長期以來,大台北地區會發生強烈地震的耳語,不斷在民間流傳。今年2月12日的清晨,大台北地區因大屯山的地震而劇烈晃動,使得該議題再度獲得重視。大台北地區發生強震將有慘重災情,是危言聳聽嗎?在歷史上,大台北曾發生哪幾次重大的地震呢?假若大地震是難以避免的,人們該如何因應,才能把損害降到最低呢?今年度的第二場「哇!災!」邀請到中央氣象局地震測報中心的郭鎧紋主任、以及國家地震工程研究中心建物組鍾立來組長,分別向大家分享台北區域歷史上的地震記錄,以及從建築結構的角度而言如何加強耐震。

14017091991_cca85aff54_c

郭鎧紋:大台北地震史

幽默風趣的郭鎧紋主任擔任中央氣象局地震測報中心主任已經超過十年,每逢地震發生,國人便能在電視上看到他的詳盡解說。今天郭鎧紋主任一路從歷史文獻分析到日益發達的測震儀器,討論台北地區過去和未來可能遭遇的斷層活動、火山運動以及海嘯等災害。

從1897年到2014年的大台北地震榜

在1897年台灣裝設第一部測震儀器之前所發生的地震,地質學家僅能憑歷史文獻推估受災規模。例如1694年4月24日形成「康熙台北湖」的大地震,以及1867年12月18日引發高達8公尺大海嘯的基隆外海地震,前者即出自清朝官員郁永河的著作《裨海記遊》之記載。當時因土壤液化地層陷落,淡水河進入台北盆地,淹沒現今社子島、三重、蘆洲一帶,面積超過30平方公里,時間長達一百多年。而後者為同治六年的基隆外海大地震,基隆港內的海水急速往外海退去,甚至露出海床,基隆金山沿岸居民從700戶變成16戶,傷亡慘重。

在地震儀出現後,1909年4月15日的中和地區測出了規模 7.3 的大地震,釋放出的能量幾乎和九二一大地震相當。但這次地震為深度80公里的深源地震,因此損害較小,不過仍震斷了萬華龍山寺的石柱。有關振動方向和柱子載重能力的關係,鍾立來組長在後面的分享做了更為深入的解說。

上述三個的地震,震央都是在大台北附近;但1986年分別發生了規模 6.2 和 6.8 的兩場大地震,雖然震央在花蓮外海,仍然對台北造成災情。台北市復興南路裕台大樓傾斜、中和區華陽市場大部份一、二樓的支柱折斷,造成嚴重傷亡。鍾立來組長也一再強調低樓層對於承載整棟建築物重量的重要角色。

而1999年的九二一大地震、2003年的三三一大地震、以及2014年因大屯火山活動而在台北市士林區引起的規模4.2之有感地震,皆為近年來國人印象較為深刻的大地震。而2014年的地震因為是台灣較少發生的火山活動造成,格外引發關注。郭鎧紋主任表示大屯火山目前仍是活火山,5500年前曾經噴發,以地質學家的眼光來看其實是很近的時間。即使被稱為「休火山」,睡覺的火山仍然是活著的火山。

不過郭鎧紋主任也表示,氣象局和臺灣火山中心密切合作監測地震波的動態,目前的技術雖然無法「預測」地震,但可以利用利用電波跑的比地震波快的原理,為距離震央兩、三百公里遠的地方,爭取到十幾秒的「預警」時間。海嘯警報約可爭取到十幾分鐘,火山警報則可爭取到數天。郭鎧紋主任以菲律賓的皮納土波火山為例,從觀測、異常到噴發共歷經了「68天」,且預測噴發日和實際噴發日僅有一天的誤差。因此郭主任請大家回家安心睡覺,未來兩個月內他確定天龍人並不會一覺醒來就被火山灰活埋的。

14040292993_789afbbfaa_c

斷層之上/震波之爪──誰來搖我?

「山腳斷層」是目前北部地區最主要的活動斷層,經海底探測調查,山腳斷層從林口台地邊向東北一直延伸到海底,至少共有74公里長,如果整段一起錯動的話,可以引發規模 7.0 以上的地震。山腳斷層屬於第二類的活動斷層(註:過去1萬年內曾活動者,為第一類活動斷層;在過去10萬年至1萬年內曾活動者,為第二類活動斷層。),現在台北盆地已無造山運動,並且在張裂當中,因此就台北盆地內本身的斷層直接錯動風險來看,郭主任認為對各位天龍人暫無威脅,興建一零一大樓的計畫亦是安全的。

此外,若從版塊結構的角度來看,世界上其他各地的大地震是否有可能牽連到台灣呢?郭鎧紋主任說,由於菲律賓海版塊跟太平洋版塊中間隔著深達兩萬公尺的馬里亞納海溝,其他地方的地震和台灣是無法連動的。以2011年東日本大地震為例,餘震都集中在太平洋版塊跟北美版塊交界點,無法越過日本東京灣之後的菲律賓海版塊和歐亞大陸版塊,因此台灣完全未受影響。

談到近年來每年大小地震總數的變化,郭主任提到2011年海底監測站完工後,隔年測定到規模小於 1.0 的地震較過去多了十倍,代表地震測報中心能力大幅提昇。這些規模小於 1.0 雖然不被大家放在眼裡,不過可能提供重要的訊息在其中,例如火山的可能動向、地底下盲斷層的所在等等,可以對於提供警訊發揮貢獻。


鍾立來:建築防震補強

「為什麼建築物這麼重要呢?因為隨著都市化的擴張,大家很少待在曠野中,除非你剛好站在斷層破裂帶上囉!」國家地震工程研究中心鍾立來組長的專長為結構控制及地震工程,致力於耐震設計、評估及補強之研究與發展。他從生活中淺顯的例子和大家解釋建築結構中的重要角色,以及如何以經濟實際的作法、評估並補強現有建築中抗震不足的地方。

鍾立來組長首先提到,由於我們是住在具有重力的地球上,所以房子需要樑柱來承受重力。建築物的載重有兩種,一是靜載重 (dead load),用以承受本身的自重,如牆壁、隔牆、梁柱、樓板及屋頂等;二是活載重 (live load),承受的是建築物中各種家具、儲物、活動隔間和室內人員等可移動的重量。這些都屬於地心引力的「鉛直」力量,是一棟建築物每日每年都需要承載的重量。然而地震事件則屬「水平」力量,如果疏於考量這點,不夠力的柱子就可能彎折或傾塌。總而言之,建築結構面對地震時最大的關鍵,就在於柱子,其次才是大樑、小樑以及牆面。在台灣,為了爭取更寬闊的空間,有些房子會減少柱子的數量、或是擴大柱子間的距離,地震來臨時就可能發生危險。

14017110192_23273c3091_c

大震不倒、中震可修、小震不壞

要求房子「完全不會倒」並非實際的目標,考量地震的頻率和建造的成本,其實只要掌握「大震不倒、中震可修、小震不壞」的原則,就足以讓房子在大地震時不會完全倒塌、人員有足夠的餘裕得以逃生。

例如說,增加結構體的「剛性」就是一種抗震的方式。剛性表示材料或結構抵抗變形的能力,在建築設計上採取一種以柔克剛的哲學,把房子建成一個不易被扭曲變形的整體,使得建築在面臨地震的時候至多傾斜、位移,而不會倒塌或裂開。

其中方法有筏式基礎和 RC 牆。筏式基礎指所有的柱子地基結合為一體,房子在晃動時就像木筏一樣搖擺晃動,以減低建築體之間的結構互相「拉扯」、「撕裂」而倒塌的風險。RC 即鋼筋混凝土(reinforce concrete construction),為水泥及砂石粒加水攪拌而成,強度高且不易拆除,而其中的鋼筋數量、號數及綁紮是否確實,都會影響耐震強度。

此外,地基的重要性可謂不言而喻。鍾立來組長詳細解釋了土壤液化的原理,當土壤中的水份遇到地震的震動時,水壓增加而浮到原本承載建物的沙地之上,就會使得房子傾倒或是陷落。因此,如果房子的地基可以將地樁打到岩盤上,這樣縱使地表和岩盤之間發生土壤液化,岩盤也尚能支持地基。

鍾立來組長強調,即使在工法上採取了較為抗震的方式,但前提仍需採「小而美」原則。也就是樓層不能蓋太高、面積不能太大、單一建築優於整排連棟屋舍(後者例如校舍或街屋)。其實蓋房子原理就如同堆積木,震動時低矮型建物較不易倒塌。

傳統連棟屋舍的弱點與補強方式

回到「載重」的思考核心,一樓是整棟房子中受重最高、耐震能力最關鍵的角色,但對民間來說,一樓的商業價值高,經常把牆打掉來做店面,如此一來一樓的抗震力反而比其他樓層更弱。樓梯牆、完整牆面、開門的方向皆會影響房子的耐震能力,所以連棟房屋縱向的長面若開窗開門的多,也會減弱縱向的抗震力,這亦是許多長排型校舍設計上的問題。台灣古時城市常見的「街屋」,每戶店面相連,如果震波從同一面過來,一整排房屋連在一起搖晃重量更為增加,如果內部的牆和柱沒有適量的平均力量就容易倒塌。

鍾立來組長以甲仙地震的玉井國中和玉井商工為例,後者由於先行進行了耐震補強的工程,引此免於校舍損壞的命運。增強抗震強度的原理在於「降低建築物重量」或「增加補強構件」,考量經濟性和施工性,耐震補強通常以「增加補強構件」的方式進行,例如增加柱的尺寸、增設RC翼牆或剪力牆。

此外,鍾立來組長還補充了隔震、消能減振、骨架、懸吊線、支撐組等各種抗震原理,例如管線採用可彎曲的材質、並且預留足夠的變形長度,利用剛體運動減少建築物搖晃,以及利用消能設計來吸收能量。

從工程的角度來看待地震,鍾立來組長認為地震固然無法避免或預測,但是人可以從預防和預警的角度努力,例如郭鎧紋主任先前提到利用電波和地震波的時間差爭取十幾秒的預警時間,這段時間可以為我們生活中的許多機械設備提供緩衝時間,例如電梯可以停在最近的樓層避免有人被困在裡面無法逃生,高鐵可以提早進入煞車減速程序、減低因軌道變形而出軌的危險,核電廠也可以進入停機程序、爭取切換到緊急發電系統的反應時間。人定勝天這句話,如今也許該將「勝」轉換為「順應」的思維,天龍人以及所有地球人才能在這個美麗星球上「與災共生」。


6月26日晚上七點在台北的 Changee 還有一場「哇!災!」講座!將邀請國家災害防救科技中心的蘇文瑞組長、以及究心科技的莊國煜執行長,跟大家一起聊聊資通訊科技在防災領域中扮演的角色。想了解網路公民如何以資通系統為盾,以社群媒體為矛,進化為更強悍的防災小尖兵(嘎?),就別錯過這場「哇!災!」囉。報名詳情請密切關注 Pansci 泛科學的FB專頁公告。

14020769044_8737e630df_c

14020775924_b796833177_c

本活動由元智大學資訊社會學研究所主辦,感謝科技部補助之「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」計畫支持。

參考資料:

延伸閱讀:

文章難易度
陳妤寧
38 篇文章 ・ 0 位粉絲
熱愛將知識拆解為簡單易懂的文字,喜歡把一件事的正反觀點都挖出來思考,希望用社會科學的視角創造更宏觀的視野。

0

8
1

文字

分享

0
8
1
為什麼土耳其大地震的災情慘重?反思臺灣的防災意識——《科學月刊》
科學月刊_96
・2023/05/14 ・2726字 ・閱讀時間約 5 分鐘

  • 潘昌志/科普作家,著有《地震 100 問》、《海洋 100 問》。

Take Home Message

  • 土耳其位於被斷層包圍的歐亞地震帶,因此飽受地震威脅。
  • 年初在土耳其與敘利亞交界發生兩次大地震,因為地上建物多為古老、不耐震建築,導致災情嚴重。
  • 借鏡土耳其地震,臺灣的防災議題中除了討論傳統的防災建議,更要著重檢討老舊建物的補強問題。

今(2023)年 2 月 6 日,土耳其東南部與敘利亞交界處發生了兩次大地震,分別在當地上午 4 點 17 分(Mw = 7.8)和下午 1 點 24 分(Mw = 7.5)1。兩次強震與後續餘震造成相當慘重的傷亡,根據國際救援組織 Humanity First 截至 3 月 11 日的統計,已造成至少約 5 萬人死亡、13 萬人受傷,如此嚴重災害也引起國際社會關注。本文將介紹此次地震,並反思這次災害對臺灣地震防災的啟示。

地震發生的原因

土耳其位於歐亞地震帶上,附近的地體構造包括較大的歐亞板塊與非洲板塊,還有較小的阿拉伯板塊與安納托利亞板塊。

土耳其境內主要的斷層系統落在安納托利亞板塊與其他板塊的邊界,北側為與歐亞板塊相鄰的北安納托利亞斷層(North Anatolian Fault);東部的東安納托利亞斷層(East Anatolian Fault)則是安納托利亞板塊與阿拉伯板塊的交界,此交界再往東延伸便與比特利斯-札格洛斯褶皺逆衝帶(Bitlis–Zagros Fold and Thrust Belt)相鄰;南端則與死海轉形斷層(Dead Sea Transform)相連。

另外,地中海的塞普勒斯隱沒帶(Cyprus subduction zone)南方也是非洲板塊向北隱沒至安納托利亞板塊的交界,土耳其可說是被斷層包圍、充滿地震威脅的國度(圖一)。

圖一|土耳其附近板塊構造與本次地震震央示意圖。圖/科學月刊。

土耳其東南部與敘利亞交界處發生了兩次大地震,震央分別在圖上★的位置。

這兩次地震主要坐落在東安納托利亞斷層系統的破裂帶上,兩次地震規模相當,加上震央位置與斷層機制不同,以及餘震的空間各自獨立分布,一般會將兩次地震視為兩個不同破裂面上的事件。

但像這樣接連兩次的地震,有些單位或學者也會將規模較小的第二次事件視為餘震,就像是去(2022)年在臺灣的關山、池上接連發生的地震一樣,自然界中偶爾會看到兩次地震規模相近、又可能是同一斷層或相鄰斷層系統的地震事件案例。

歐亞地震帶上的地震好像都特別嚴重?

「歐亞地震帶」大致的分布範圍可以從印尼延伸到中國、印度、尼泊爾、中亞、土耳其、希臘,甚至遠到義大利。不過這裡的地震頻率不如環太平洋地震帶頻繁,所以人們對於歐亞地震帶上的強震較為陌生,或許還可能有此區地震總特別嚴重的印象。

不過災情之所以慘重,主要是由於歐亞地震帶涵蓋了希臘、羅馬、波斯、印度等蓬勃發展的古文明國度,這些國家的古老建築多半難以扺抗強烈震度。

即使現代工程技術已能扺抗強烈的振動,但這些地區的耐震補強更新不一定能趕在大地震來襲之前完成。過去如2009年義大利拉奎拉市(L’Aquila)地震、2015 年尼泊爾地震、2016 年義大利中部地震、2017 年伊朗-伊拉克邊界地震,致災原因皆為劇烈震度與當地建物的不耐震。

進一步探討今年土耳其的災情狀況,與 1999 年 921 集集地震的規模(Mw = 7.6)相比,這兩次地震的能量釋放已經相當接近,而地震的震源深度又分別只有 18 公里和 10 公里,MMI 震度達到 9 級2。淺源地震造成強烈震度,再加上當地的建物耐震能力較差,致使慘情慘重。從部分新聞提供災區照片,也可以看出低樓層結構軟弱、柱子不夠粗、缺乏抵抗剪力強度的老舊建物受到嚴重損壞。

掃描 QRcode,可見土耳其的港口城市伊斯肯德倫(Iskenderun)某建物地震前後對比圖。大面積的窗戶側缺乏強力的柱子支撐,加上樓層較高,遇上大地震其實很難撐住剪力的破壞。

「生命三角」有用?重點還是耐震問題

也因為樓房倒塌狀況相當慘重,人們生還機率渺茫,因此有部分報告也提及,在樓板瓦礫中發現了躲在家具間縫隙的「生命三角」空間而生還的例子,讓這個一般「不建議」的防災概念又再次被討論。然而,生命三角適用的「整片樓板震毀落下」的情況,根本原因是來自於建物的脆弱。

防災單位之所以建議「趴下、掩護、穩住」而非「生命三角」,乃是因為絕大多數地震對人身的威脅,遠大於生命三角所適用的情況。像這樣因缺乏耐震建物的狀況下,比起討論何種防災建議恰當,更重要的是檢討老舊建物的補強問題。

危老住宅、防災都更進展緩慢的問題不僅在臺灣可見,在土耳其更加嚴重。近年來,當地北方大城市如安卡拉、伊斯坦堡的房價已達到一年成長破 100% 以上的程度。再加上近幾次大地震後,土耳其的防災與建築專家也不斷倡儀政府應重視建物耐震議題,希望可以在下次大地震來臨前先做好準備。

然而大地震不會等人們慢慢重整旗鼓,我們也該藉此反思,即使 921 集集地震後建物法規的修訂與落實逐漸被正視,但國內仍有大量連耐震評估都未辦理的老舊建物,實為一大潛在威脅。

未來地震防災應該關注的重點

殺人的不是地震,而是建築。或許人們會認為,蓋好房子總要花大錢,但其實提升耐震並不是只有重蓋房屋一途,還可以利用耐震補強來落實(圖二)。近年內政部營建署與國家地震工程中心的「私有建築物耐震弱層補強」措施已提供民眾補助的方案和金額,然而強化房屋涉及房產的所有權人,必然需要透過如「區分所有權人會議」讓公寓大廈內的住戶取得一定共識才能實施。

因此真的要提升住宅的耐震安全,靠的不是政府或科學家,而是人們應有「居安思維」的意識,願意從認識地震來思考如何在地震頻繁的臺灣安全生活,將社區的基金用在修繕補強耐震上、將管理費撥一點用於防災演練或是設備添購。地震防災要有效深耕,不該只是準備地震包、演練趴下掩護穩住,而是要將防災視為一件重要的事,並作為日常的習慣。

圖二|住宅耐震補強的申請步驟。圖/科學月刊。

耐震補強的補助條件

  1. 耐震能力初步評估結果危險度總分大於 30 分者。
  2. 耐震能力詳細評估結果為須補強或重建者。
  3. 經依「災害後危險建築物緊急評估辦法」第六條規定緊急評估有危險之虞,並已於建築物主要出入口及損害區域適當位置,張貼危險標誌者。
  4. 經執行機關認定有補強必要者。

註解

  • 〔註 1〕Mw 是地震矩規模,為其中一種地震規模表示法。
  • 〔註 2〕MMI 震度 9 級對照到中央氣象局的震度分級約是 6~7 級的程度。
科學月刊_96
248 篇文章 ・ 3171 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
板塊與斷層並不相同,從土耳其敘利亞大地震了解大地之母
PanSci_96
・2023/03/12 ・2981字 ・閱讀時間約 6 分鐘

今年 2 月 6 日,土耳其大地震的影像,透過國際媒體、社群網路不斷轉發,讓世人再次感受到大自然的無情,也讓身處地震帶上的台灣,重燃關於地震的防災意識。

而同樣身處地震帶上的我們,對於地震又理解多少呢?

這次土耳其的地震規模有多大?

今年2月 6 號,土耳其當地時間凌晨四點,發生了地震矩規模(Mw) 7.8 的強震(美國地質調查局 USGS 的測定數據);震央位於土耳其南部與敘利亞接壤,有著 170 萬人口的加濟安泰普省,震源深度僅僅只有 17.9 公里,屬於極淺層地震。

不幸的是,大約 9 小時之後,距離震央東北方不到 100 公里的地方,再度發生規模 7.5 的地震,深度甚至只有 10 公里,最大震度甚至高達麥卡利震度的 X 度,相當於台灣的 7 級地震。

光是在土耳其境內,強震造成四萬一千多人死亡、十萬多人受傷,是土耳其百多年來死亡人數最多的地震。

土耳其為什麼會發生大地震?

為土耳其百多年來,死亡人數最多的地震。圖/維基百科

地球表面包含地殼和一小部分的地函質地剛硬的地方,被稱為「岩石圈」,它並不是完整的一塊,而是分裂許多個「板塊」。中洋脊新生的海洋地殼會推著兩側的板塊不斷向外擴,最終在海溝下沉回到地函,完成循環。

然而,這些板塊彼此運動的速度和方向並不一致,彼此之間會有碰撞、擠壓、摩擦、分離等等的相對運動,形成相互碰撞的「聚合型板塊邊界」、相互分離的「分離型板塊邊界」以及水平錯動的「轉形型板塊邊界」(Transformation Fault,臺灣中學課本常翻作「錯動型板塊邊界」)。

實際攤開地圖,土耳其大部分區域都位在高原上;但在腳底下,土耳其的土地正不偏不倚的落在四個板塊的交界處:北邊的歐亞板塊、南方有阿拉伯板塊、西南方是非洲板塊,大部分國土則位於安納托利亞板塊上。

這些板塊相互推擠,創造了土耳其豐富的高原地貌,也造就了頻繁的地震。

地震發生的原因不只是因為板塊碰撞

我們常以「板塊的碰撞」作為地震的原因,雖然板塊運動確實會伴隨地震發生,卻不能直接解釋地震發生的機制。

板塊新生及重回地函的地方,構成了板塊的交界,它可以是中洋脊、海溝,如果該二板塊交界處的兩側都是陸地,則可能擠壓形成山脈。

就像拿兩塊吐司互相擠壓,會變形的,不是只有接觸面而已,整塊吐司都會因為兩側施加的壓力,在各處形成變形、甚至破裂。而這個破裂面,就是斷層;斷層錯動的瞬間,就會引發地震。

因此,斷層不一定要位於板塊交界上,而是只要岩層有受力的地方,就有可能產生斷層,它可以位在板塊交界的「附近」,也可以是位在遠離板塊交界的地方。

當然,因板塊的相對運動容易讓應力累積在板塊交界處,在板塊交界附近的斷層數量也就比較多。

這次土耳其錯動的斷層是?

土耳其正落在四個板塊的交界處。圖/維基百科

前面提到,土耳其剛好就位於安納托利亞板塊、歐亞板塊阿拉伯板塊與非洲板塊的交界處。由於阿拉伯板塊長年向北運動,又受到北方歐亞板塊的阻擋,因此被迫轉向西北方推擠安納托利亞板塊,使得土耳其國土被逆時針擠出。

在四個板塊的相互推擠下,土耳其境內形成兩條較大的岩層破裂帶,一條是東南方的「東安納托利亞斷層系統(EAF)」,另一條則是橫貫整個國境北部「北安納托利亞斷層系統(NAF)」。

這次土耳其大地震的事發地「東安納托利亞斷層」,形成的主要原因正是阿拉伯板塊長年向西北推擠安納托利亞板塊所產生的應力,使得岩層沿著板塊邊界,以東北西南的方向破裂。除此之外,在這條斷層的北側也發展出好幾條東西方向延伸的破裂面,形成東安納托利亞斷層的分支,也是這次大地震第二次主震發生的位置。

根據美國地質調查所的紀錄,這些破裂面,已經超過一百年沒有明顯的地震發生,表示這附近的岩層,已經長期處在應力累積、沒有宣洩的狀態。在阿拉伯板塊持續向北推擠的形況下,岩層終究無法承受,並沿著「東安納托利亞斷層系統」的數條破裂面發生水平方向的錯動,造成了這次的地震。

根據歐洲的人造衛星影像結果,這次錯動的程度之驚人,第一次主震發生的地方,地層左右位移了六公尺,第二次主震更到達八公尺。

為何地震為何總是突然發生,
而不是緩慢的釋放應力?

現在最廣為人知的地震理論,是在 1906 年舊金山大地震時,美國的地質學家李德,觀察加州的畜牧農場的圍籬在地震後發生的錯位情形,並於 1911 年提出了「彈性回跳理論」;其認為斷層附近的岩層先是受到某種外力而發生變形,當斷層面的摩擦力最終無法抵抗外力時,岩層將沿著斷層面一口氣錯動、釋放累積的能量,就產生了地震。

有了這個理論,我們還能推測,已經存在的斷層因為本身就是岩層破裂的地方,結構較為脆弱,當岩層繼續受到外力擠壓變形,就容易再次沿著斷層方向錯動。就像是一片玻璃摔過之後,裡面產生微小的裂痕,雖然玻璃沒有碎掉,但可以預期,如果這塊玻璃再摔到一次,這些微小的裂痕可能就變成了破口,甚至徹底碎裂。

至於讓斷層附近的岩層變形的「外力」除了板塊運動外,地表的侵蝕作用、火山活動等,都是可能的原因。

火山活動亦為使岩層變形的外力之一。圖/Envato Elements

台灣為什麼有許多斷層?

回頭看,位於板塊交界帶上的台灣,在菲律賓海板塊與歐亞板塊的擠壓下,從北到南遍布了大大小小的斷層。根據經濟部地質調查所在 2021 年公佈的數據,台灣共有 36 條活動斷層。

至於板塊交界處則是在花東縱谷。菲律賓海板塊與歐亞板塊的邊界,從北方的琉球海溝劃過台灣的下方,向南延伸到馬尼拉海溝;在地表上,這條邊界一路從花蓮北端貫穿整個花東縱谷平原。

從一千五百萬年前開始,菲律賓海板塊就不斷地朝西北方向推擠,如今仍以每年 7~8 公分的速度,向著歐亞板塊邁進,海岸山脈也因此不斷衝向中央山脈。

我們可以將台灣岩盤的變形狀況想像成是推土機推雪:海岸山脈是推土機,中央山脈則是雪堆。當推土機推著雪堆向前行時,雪堆前、後和底部的變形最強烈。在海岸山脈的推擠下,變形量最高的地方集中在西部平原、花東縱谷以及中央山脈的底部。由於中央山脈底部岩層溫度過高,只會產生變形;而西部平原、花東縱谷則成為了斷層最密集、地震好發的地方。

和土耳其一樣身處地震帶的我們,除了讚嘆大自然的鬼斧神工之外,具備更健全的地震知識、學習如何與地震災害共處,並盡可能降低地震帶來的傷害,成了我們每個人的重要課題。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1209 篇文章 ・ 1915 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
走高山只為預測颱風,臺灣氣象學開拓者——近藤久次郎
PanSci_96
・2023/02/10 ・3388字 ・閱讀時間約 7 分鐘

  • 作者/廖子萱

蕞爾臺灣島,地跨熱帶與副熱帶季風氣候區、四面環海,縱貫的百岳更加深了氣候的複雜程度。

在這樣的地理條件下,即便當今借助氣象衛星進行天氣分析,預報仍偶見差之毫釐、失之千里。一百年前,人們對於山岳、海洋與其相生的自然現象往往常處於未知,而至今日手機隨手可得及時的氣象預報,在短短一百年間,臺灣氣象科學從無到有,蓬勃發展。這背後的功臣包括了中央氣象局、高山氣象站、地震觀測站,這些單位的前身與發展,皆與近藤久次郎有關。

圖1. 1897 年臺北測候所。圖/交通部中央氣象局〈台灣氣象憶往之ㄧ〉

近藤久次郎(Kondo Kyujiro ,1858 – 1926)是臺灣首任總督府測候所技手兼所長,也是臺北測候所所長(現中央氣象局)。 1896 至 1924 年在臺期間,近藤引領總督府測候所設立了七座地方測候所,並協調地方基層治理單位,建構氣象觀測方法和資料搜集的網絡。他更推動高山觀測方法,以進行颱風預測、推動高山與地震觀測系統的建置,為臺灣氣象科學翻開了嶄新的一頁。

臺灣近代氣象觀測的發展

臺灣近代氣象觀測發展可追溯於清朝,光緒年間的1883年,清廷聘請杜伯克博士(Dr. William Doberck)赴香港擔任首任天文司(天文台台長),並在沿海稅關和燈塔裝置觀測設備,進行氣象觀察。臺灣基隆、淡水、安平、打狗四港的稅關,以及漁翁島(澎湖)、南岬(鵝鑾鼻)也陸續在 1885 年前後,展開十餘年的氣象記錄。然而,1895 年清廷與日本簽訂馬關條約割讓臺灣,氣象觀測工作就此停擺,多數的觀測儀器與記錄更在政權交替期間散失。

日本統治臺灣之後,由於當時國際航海安全多仰賴氣象資料,在英法強權的施壓下,臺灣總督府於1896年發布第 97 號敕令,以「台灣總督府測候所官制」編制氣象觀測單位,而日本中央氣象台則選派本文主角,技手(技士)近藤久次郎來臺勘查、策劃氣象觀測站。同年,總督府也在民政局通信部海事課增設「氣象掛」一單位,統理全島氣象事務,如氣象觀測、天氣調查、颱風警報、地震檢測等工作。

1896 年四月至六月間,近藤久次郎與民政局通信部海事課課長遠藤可一翻山越嶺、走訪各地,行跡遠至鵝鑾鼻。根據兩人的調查基礎,臺灣總督府先後於臺北、臺中、臺南、恆春和澎湖設置測候所(後三為 1987 年設立),近藤也在日本中央氣象台台長中村精男(Nakamura Kiyoo)的任命下擔任臺北測候所所長,開始逐步搭建全島的氣象觀測網絡。

在各地氣候觀測所選址的條件上,近藤久次郎配合日本政府在農業、工業、航海與公共衛生等發展項目的資料需求,為詳實觀測各區域氣候根據相對距離由北至南畫設臺北、臺中、臺南、恆春測候所 。此外,還參考了夏季與秋季的颱風路徑設立澎湖測候所,用以觀察自香港與馬尼拉而來的颱風。

除了本島的氣象觀測,近藤還曾於1897年,帶著晴雨計、寒暖針遠赴火燒嶼(綠島)、紅頭嶼(蘭嶼)進行氣象觀測、測量山頂高度,策劃設立觀測站。而後隨著總督府逐步克服東部地區交通和電信的限制, 1900 年、1910 年臺東和花蓮測候所分別建設完成,時至 1924 年近藤久次郎卸任前,全臺共設有七座「一般測候所」。

十九世紀末的觀測所主要沿用清朝遺留的官廳或民房,屋頂簡單設有的風力與風向儀,室內則作為辦公之用。一般測候所以風力塔為主要的觀測設施、可測量風向、風速、風壓、日照和日射;辦公室外設置氣象觀測坪以測量氣溫、雨量、地面溫度等;測候所外另設有提供執勤人員進駐的官舍。

而在時間方面,位於政治中心的臺北觀測所實施 24 小時氣象觀測;其他測候則每四個小時實施觀測、每日六次,用於地區性天氣預報,並將資料匯報予臺北測候所以利發布臨時颱風警報、氣候月報和年報,進一步進行總體性的氣象分析。

擴大氣象觀測網路,發佈氣象預報歷史頁面

為了擴大氣象觀測網絡,總督府會同官廳、派出所、郵局等單位協助蒐集雨量和氣溫資料,並於 1896 年 7 月以「民通 151 號」公報始建立暴風警報通報流程,命令各官廳、海關、郵局、燈塔,將通信部海事課所轉發的暴風警報公布予地方民眾,九座燈塔更奉「總督府訓」兼任氣象觀測的任務,協助測量氣溫、氣壓、風、雲與雨量。

1897 年 9 月,近藤領導的臺北測候所開始發佈每日三次的氣象預報,並與琉球、九州南部測候所,以及徐家匯、香港、馬尼拉等地的氣象台交換氣象報告。 依循著新展開的天氣觀測模式,總督府府報開設「觀象」專欄,刊登臺北測候所撰寫的天氣預報(「本島氣象天氣豫報び天氣概況及暴風警報等」),開啟了臺灣天氣預報歷史性的一頁。直到1905年,全臺各地的雨量觀測網絡已達78處,涵蓋燈塔、支廳、派岀所、學校、郵局、農業試驗所、自來水廠等單位,各處配備簡易的氣溫觀測工具以協助記錄天候狀況。

很快地,日本在臺短短10年內,近藤久次郎已為氣象觀測網打下綿密的基礎。

不只是天氣預報,開啟高山觀測與地震研究先河

1900 年,近藤久次郎附議天文學者一戶直藏提出的新高山(今玉山北峰)報告(新高山ニ關スル研究報告),近藤提到:「新高山山頂是天然絕佳的天文觀測與氣象學研究位置」,他認為高山觀測有助於天文和氣象研究,可藉由研究大氣動力上升的過程進行天氣預測,尤其臺灣每逢夏季,颱風挾帶滂沱大雨常引發災情,若能在台灣百岳中設置幾處高山觀測所,定有助於颱風警戒和天候預設。

於是, 1911 年近藤久次郎與一戶直藏率先提出「新高山觀測所設置計畫」,向總督府倡議在玉山、阿里山興建高山觀測所和天文台,間接促成玉山觀測站(1943 年始建造)與阿里山觀測站(1932年建造)的設置。

近藤久次郎除了推動高山氣象、天文與航空研究,也曾與臺北測候所同仁積極推動與地震和火山相關的研究: 1896 年,臺北臨時測候所首次藉由人體感受進行地震觀測; 1897 年正式落成的臺北測候所,引進格雷-米爾恩型地震儀(Gray-Milne Seismograph); 1900 年,由被譽為日本地震之父的大森房吉所改良的大森式水平地震儀(Omori horizontal pendulum seismograph)以及強震儀(Strong motion seismograph)裝設於臺北測候所。

這些地震觀測儀也在 1906 年 3 月 17 日的「嘉義梅山地震」發揮了記錄地震波形與餘震數據的作用,獲得的數據使大森房吉找出梅山地震與斷層的關係,並將之命名為「梅仔坑斷層」(後更名梅山斷層)。而後,大森房吉還將研究與近藤所著的說明書刊登於報紙,傳遞地震成因與餘震的科學知識,緩解民間傳說帶來的社會不安。時至1907年,在近藤的協助推動下,全臺共有七所測候所兼做地震觀測,當時的紀錄,也成為現代地震研究珍貴的早期觀測資料。

1924 年,近藤久次郎因病去職返回日本,1926年因胃癌而逝世。 1896 至 1924 年,近藤來臺近將三十年,他在擔任總督府測候所與臺北測候所所長期間,建制氣候所與觀測網絡、編輯並彙整氣象資料;開啟暴風雨警報、颱風預測等重要的氣象預報機制;也協助推動高山氣候觀測、天文觀測與地震研究,著實是臺灣近代氣象科學研究的先河。

註解

  • 註 1:然而,由於當時日本與臺灣之間並無定期班船和通訊設備可供交通和信息的傳遞,使得測候所無法如期配備氣象觀測儀器並興建正式氣候站,故先以既有房舍作為臨時氣候所。而後各地氣候所材陸續興建並增添觀測設備:臺北測候所於 1897 年 12 月 19 日遷入臺北城內南門街三丁目;臺中測候所於 1901 年 5 月 20 日遷入臺中城內藍興堡台中街;台南測候所於 1898 年 3 月 1 日遷入台南城內太平境街第 216 號官有家敷地;恆春測候所於 1901 年 11 月 24 日遷入恆春縣前街四番地;澎湖測候所於 1898 年 3 月 1 日遷入澎湖島媽公城內西町。(資料來源:中央氣象局委由財團法人成大研究發展基金會、國立成功大學單位研究之《台灣氣象建築史料調查研究》, 2001 年 2 月出版。)
  • 註 2:資料參考徐明同〈台灣氣象業務簡史〉
PanSci_96
1209 篇文章 ・ 1915 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。