0

0
0

文字

分享

0
0
0

臺灣大學BioRoLa實驗室六足仿生機器人現身!

馥林文化_96
・2013/03/04 ・3261字 ・閱讀時間約 6 分鐘 ・SR值 522 ・七年級

-----廣告,請繼續往下閱讀-----

採訪/謝瑩霖‧協助取材/美商國家儀器股份有限公司

由臺灣大學BioRoLa實驗室製作的輪足複合機器人(Quattroped)與六足仿生機器人(miniRHex),以獨特的運動方式來適應各種地形,提供了不同於以往的觀點,讓大家對機器人有更多樣化的想像。本篇將為各位更詳細的介紹這兩臺頗具特色的機器人。

(左圖為臺大機械所林沛群老師。)

【以「仿生機器人」為主軸,取材自生物步態】

由臺灣大學機械所林沛群老師所帶領的仿生機器人實驗室(BioRoLa),主要研究領域是以「仿生機器人」為主軸,研究機器人足部運動系統。其中最主要的兩臺機器人為六足仿生機器人(miniRHex)與輪足複合機器人(Quattroped),皆是以特殊的足部結構為特色的機器人。

-----廣告,請繼續往下閱讀-----

林沛群老師說:「輪跟足之間有很大的差異,人在發展環境的過程中,若要使用輪必定要先將路剷平,所以輪是人創造出來的;但如果是生物體在自然且未開發的環境裡,經過時間的証實,演化出來最好用的還是足,這也是為什麼生物體幾乎是使用足來行走。而在日本機器人發展主要以人形為主,反倒是在美國機器人研究主要是輪型,而我是將研究的重點放在足部的運動。」

而輪足複合機器人(Quattroped)與六足仿生機器人(miniRHex)最主要的取材對象是「生物的步態」,林沛群老師根據生物在自然界中行走的模式與方法,製作出「仿生」機器人。以下將分別為大家介紹這兩臺機器人的獨特之處。

六足仿生機器人(miniRHex)

六足仿生機器人藉由其多種步態來行走,可行走於崎嶇不平的路面、跨越障礙、爬上樓梯及斜坡。這臺六足機器人的行走模式是參考在日常生活中,人們總是對敬而遠之的生物──蟑螂。林老師說:「我在美國時,與一位柏克萊UC-Berkeley專門研究蟑螂運動的教授Prof. Robert Full討論時發現,蟑螂看起來簡單,但實際上卻有很大的學問。牠們只須透過足部簡單的交互運動,就能前進以及越過障礙,這其中必定有值得我們學習的部分。」

目前機器人的步態包含前進及後退,在速度上又可分為一般行走、慢跑及高速奔跑,但更特別的是不需足部翻轉的蹬跳前進。而攀爬方面已可克服斜坡及樓梯,另外較為有趣的步態是利用機腹平坦部分來滑下樓梯,以及兩組足部反向運動的原地旋轉和足部瞬間出力的跳躍,現今林老師仍在努力於步態的開發,以提升機器人對於各種環境的適應性。

-----廣告,請繼續往下閱讀-----

六足仿生機器人工程三視圖。


▲六足仿生機器人。

輪足複合機器人(Quattroped)

林沛群老師實驗室的另一臺機器人──輪足複合機器人(Quattroped)是一臺不論在室內或室外都可自由運行的機器人,這臺複合式機器人的輪和足使用同一組動力來源,藉由「轉換機構」可將輪足切換成足部或是輪型兩種不同的移動模式。相對於前面提到的六足仿生機器人,可輪足變換的好處在於,平面時以輪的方式來移動,較為省力也可提升速度。

但由於輪、足兩者運動模式所需的軸心不同,於是必須透過「轉換機構」來切換軸心點。以輪移動模式時,輪圈與地面相接觸的點則落在軸心點的正下方固定距離處;但在足部移動模式中,由於足部運動一般為週期性的向前擺動,軸心點與地面相接觸點並未依循特定的規則,所以在足部的週期運動中,足部對地面的相對位置會呈現頻繁但不固定的變化。

-----廣告,請繼續往下閱讀-----

基於上述的原因,林老師與學生們設計了一個新式的轉換機構,此機構可以直接控制輪圈的外形以及輪心與關節的相對位置。由於輪圈本身是二維平面物體,為使輪模式能直接延伸轉換成足模式,最直接的方式就是在原本的旋轉自由度之外,再增加一個自由度,這個自由度可調整關節連接點和輪心在垂直方向上的相對位置,並在機體傾斜時可發揮校正的功能。由於這兩個自由度互相垂直,並不會產生干擾的問題。如此一來就能藉由切換的方式來產生「輪」和「足」兩種移動模式。

複合機器人輪的狀態。

這兩臺機器人在設計架構上非常相似,皆採用彎曲的足部以及扁平的機體,機身內部皆設置慣性量測系統,內含加速規及陀螺儀,行進時六足機器人,六個足部以三足為一組,分成兩組交替行走,在機構的控制上非常簡單,每一隻足由一顆馬達提供一個由後向前翻轉的自由度,利用最少的馬達數量來控制機器人。而在輪足機器人方面,則採用一隻足兩顆馬達,用意在於提高足部自由度。另外由於四足平衡不易,在崎嶇地時可採用三足不動一足動的方式前進,以保持機身平衡,除輪移動模式外,輪足機器人其餘行走時皆採由後往前翻轉的自由度。

【使用的軟體以及硬體】

仿生機器人實驗室的六足機器人所運用的硬體系統為Single board RIO,而輪足機器人則採用CombactRIO,兩者皆架構簡單、穩定、可長時間使用且可模組化,非常適合學術界進行各式原型機開發測試,因為大小、重量、效能以及學習時間均是重要的因素。

-----廣告,請繼續往下閱讀-----

而機器人要能夠動作,只有硬體結構是不行的。在研發這兩臺仿生機器人時,除了運用CompactRIO及Single board RIO系統,在軟體上便使用圖形化介面的LabVIEW。

至於為什麼選擇使用LabVIEW而非C語言為撰寫程式語言的軟體,林老師表示:「在國外我們大多使用的C語言來寫程式,運用工業電腦的架構來將一塊塊不同功能的電路板互相堆疊,造出一臺機器人,由於國外的機器人通常是整合電機、資工、機械三方共同研發,程式部分可交由熟悉C語言的資工系學生來寫。使用C語言有利也有弊,缺點就是程式量過大,可能一個機器人程式碼會多達幾百萬行;但不可否認的,使用C語言可使CPU使用量較低,讓機器人做出更多的行為動作。」

LabVIEW和CompactRIO與Single board RIO皆有良好的整合性,讓使用者在系統整合上能節省下大量時間與精力。在林沛群老師的仿生機器人實驗室裡,所有學生幾乎都是機械工程背景,對他們而言,採用可快速建立原型、穩定、容易上手、具良好整合性的機電系統,為機器人開發的關鍵因素。

林老師也說道:「經過審慎的評估後,LabVIEW和CompactRIO與Single boardRIO恰好符合我們的需求。由於研究所學生兩年就換一批,而LabVIEW 圖形化的程式介面,可使學生快速的學會如何撰寫程式,也較容易理解先前開發者所撰寫的程式,方便學生們進行交接。」但說到底,機器人是具備高複雜度的系統,要成功開發一臺可適切運作的機器人,仍需要整合機械、電子、和資訊等不同領域,並投入大量的時間和精力,才能順利完成。

-----廣告,請繼續往下閱讀-----

六足整體系統架構圖。

【未來目標】

這兩臺機器人在目前已經在重新組裝做更新,林老師透露,他希望六足的仿生機器人在未來可以跳躍並飛越兩個身長以上的距離。要做出這樣的行為,必須使機器人能夠瞬間出力,目前元件已經是使用在市面上可取得最合適的零件,但仍然無法做出期望達到的動作,因此還需要再想其他的方法來完成目標。

跳躍的步態比較特別,不像之前行走及翻越障礙物是從研究蟑螂所得來的,跳躍這部分林老師改為探討馬在跨欄時的步態,必須先將六隻足部經由數學軟體計算過後,再由電腦各自分開控制,與先前行走步態時分成兩組來控制有所不同。

而在輪足複合機器人部分,一個地形中可能同時含有崎嶇地與平地,於是當機器人遇到崎嶇地形時,就會切換為足移動模式,但遇到平地又想切換成省能的輪移動模式時,都必須停下來在原地進行長時間的切換,但如此一來耗費的時間自然就增加,而且原本流暢的移動就須強迫暫停。所以林老師希望「深入研究如何在移動的過程中進行輪足的變換」。期望未來可以像變型金剛一樣,一邊移動一邊變換形態,充分展現出大家對於未來機器人的期望及獨創性。

-----廣告,請繼續往下閱讀-----

截至目前為止,林老師的實驗室主要研究機器人的運動方式,未來可能朝向探測機器人或機器人載具來研究。現在需要機器人去探測的是還未開發(或仍在開發中)的地方,因此需要讓機器人學會更多的步態去適應。「目前臺灣的生物學者大部分都是研究生物的繁衍,較少研究步態」,林老師希望未來能跟動物學者一起整合進來參與這樣開發研究。

 

文章原文刊載於《ROBOCON》國際中文版 2013/3月號

文章難易度
馥林文化_96
54 篇文章 ・ 5 位粉絲
馥林文化是由泰電電業股份有限公司於2002年成立的出版部門,有鑒於21世紀將是數位、科技、人文融合互動的世代,馥林亦出版科技機械類雜誌及相關書籍。馥林文化出版書籍http://www.fullon.com.tw/

1

7
3

文字

分享

1
7
3
看見蟑螂就害怕?為什麼我們總特別怕牠?
PanSci_96
・2023/08/26 ・3929字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

***溫馨提醒,本文有小強畫面,請斟酌觀看***

唐伯虎點秋香讓小強成為蟑螂的代名詞。圖/經典放映

周星馳的唐伯虎點秋香上映後,讓小強成為蟑螂的代名詞,但你看到小強的瞬間,是順手將它解決,還是尖叫著逃跑呢?

台灣曾做過調查——不做調查也知道,蟑螂絕對是大家最討厭的害蟲第一名。美國甚至做過大規模調查,有超過四分之一的美國人表示自己最討厭的害蟲就是蟑螂,是第二名蜘蛛的兩倍之多!

所以,若要幫全人類找一個共同的敵人,蟑螂肯定算得上是一個。

但過去的日本節目中,卻發現北海道人竟然不怕蟑螂,難道他們都是勇者嗎?或是我們能從他們身上找到克服蟑螂恐懼的方法?

-----廣告,請繼續往下閱讀-----
北海道人好像沒看過蟑螂?!圖/Hituzi Chang

恐懼源自於未知?北海道人為什麼不怕蟑螂

你是不是光想到蟑螂的外表,就覺得全身起雞皮疙瘩?

面對蟑螂還能如此淡定,甚至能覺得牠們可愛的北海道人,別說你不敢相信,一群演化心理學家也是覺得匪夷所思,開始針對這些人做起了研究。

演化心理學就如字面上的意思,是將達爾文演化論套用到現代人的心理特質上,試圖以天擇的角度解釋許多無法解釋的人類心理現象。

例如近年來被診斷率越來越高的注意力不集中與過動症,也就是所謂的 ADHD,在演化心理學看來其實不是需要治療的「病」,而是環境變化太大導致的適應不良。想像一下,如果你是上萬年前生活在野外的人類,每天都必須在山林裡一邊躲避猛獸、一邊想辦法靠打獵與採集獲取食物。

-----廣告,請繼續往下閱讀-----

在這種環境下,眼觀四面、耳聽八方,且隨時保持能戰能跑的機動性,反而都是生存必須的特質,自然會成為演化過程中被保留下來的心理特質。隨著人類社會在近幾百年快速進步,我們不需要再去當高風險的獵人,但那些經年累月刻印在基因裡的特質還來不及被汰換掉,反而讓這些天生的獵人無法適應現代生活。

獵人的基因反倒讓人無法適應現代生活。圖/Giphy

同樣的道理,演化心理學認為人類對蟑螂的莫名恐懼,其實是來自於大腦主動識別並排斥潛在威脅的生存機制。在醫療資源匱乏的過去,隨便受個傷、生個病都有可能是致命的,人類只能戰戰兢兢,想辦法避開任何可能會傷害到自己的東西。這讓我們在無法辨別敵友時,會本能地戒備未知的東西。

即使從生態系的角度出發,同時兼具環境清道夫與許多動物主要食物來源的蟑螂,是維持自然平衡不可或缺的益蟲。但在無法感受到牠們好處的普通人眼裡,經常出沒於被我們視為髒亂、有害健康的垃圾與廚餘堆的蟑螂身上,只會被貼滿很髒,甚至是有害的負面標籤,當然不可能有好印象。

我猜這時有些觀眾心中閃過了「那又如何」、「我就討厭蟑螂啊」的念頭,但千萬別小看這份理所當然。雖說蟑螂因為生存與繁衍力強,被人類刻意撲殺這麼多年都還沒有要絕跡的意思,但其他昆蟲就沒那麼幸運了。由於人類對昆蟲,特別是只占大約10%的害蟲抱有負面觀感,使得這些小生物常在生態保育的討論中被冷落,甚至就這樣默默絕種,在地球生態系中留下無法彌補的缺口。久而久之,嘗到苦果的還是人類自己。

-----廣告,請繼續往下閱讀-----

話說回來,既然演化心理學表明恐懼來自於未知,那只要我們學到關於這些昆蟲的正確知識,就能扭轉刻板印象了,對吧!那麼看完泛科學,想必你就能擺脫對小強的恐懼!

只要學到正確知識,就能對蟑螂的恐懼了嗎?圖/Giphy

——雖然我很想這樣說,但很可惜,事情沒這麼簡單。還記得北海道人的訪問嗎?按照演化心理學,這些從來見過蟑螂本螂的北海道人,既然對蟑螂完全陌生,那麼應該不會有這麼正向的反應。就算不覺得被威脅,至少也該有點基本的戒備才是啊?

一篇發表於 2021 年的日本研究,正是想探討這個落差。研究團隊分析過往研究,發現「增加昆蟲相關知識」與「減輕恐懼」之間似乎沒有必然的關聯。而且,與出身郊區的人相比,從小生活在都市的人對於昆蟲竟然普遍有著較強、也較難改變的昆蟲嫌惡。

深入研究後,才發現,原來連怕不怕蟑螂這種事都得要看出身的。

-----廣告,請繼續往下閱讀-----

都市化—嫌惡假說

在針對13,000名日本人進行調查後,研究團隊提出了「都市化—嫌惡假說」。此假說以都市化為起點,拆解出兩條人類培養對昆蟲嫌惡感的路徑。

你不該出現在我家!由破壞安全感引發的厭惡

首先,由於都市化導致自然環境縮減,無法適應都市環境的昆蟲大量減少,相對的,像蟑螂、蒼蠅、蜘蛛等適應良好的昆蟲,數量不可避免地會增加,也更容易出現在室內環境裡。對我們來說,穩固的牆壁與天花板會帶來與外界隔絕的安全感。因此,當有不請自來、侵門踏戶的東西出現,除了對昆蟲本身的厭惡,我們對所處環境原有的信任也跟著崩塌了。

回想一下,上次在家裡或辦公室茶水間看到蟑螂,就算當下就把它消滅了,在接下來的一段時間內,是不是會到處疑神疑鬼,總覺得某些角落或通風管裡藏著一支蓄勢待發的蟑螂大軍,準備趁你不注意時再出來嚇你一跳?

對蟑螂的厭惡可能源自於牠破壞了你對環境的信任感。圖/Giphy

同樣的,就算不是在你家,而是外出用餐時在餐廳裡看見蟑螂,基於恨烏及屋的情感連結,你對於餐廳的信任感也跟著下降,甚至激動一點當場走人也有可能。但換個場景,假如你今天是在馬路上看見蟑螂,或許還是會覺得害怕、覺得噁心,但反應很可能不會像在家裡這麼大。

-----廣告,請繼續往下閱讀-----

這便是都市化—嫌惡假說第一條路徑強調的重點。在都市化程度高的環境裡「室內」跟「室外」的界線變得分明,因此當有不該存在的東西出現,我們的反應也會更強烈。

因為不熟,所以討厭?

至於都市化—嫌惡假說的第二條路徑,是延續演化心理學裡,人們對於不了解的事物會產生恐懼的觀點。但比起針對單一種昆蟲,都市化—嫌惡假說發現,都市化環境會普遍降低其居民接觸大自然的頻率。就算是出生於郊區環境的人,在都市生活久了也會喪失這股熟悉感,甚至開始對大自然出現排斥心理。

同樣的,今天即便你是個都市小孩,只要到郊外生活夠久,而且自發地去接觸自然環境,那份對昆蟲的恐懼便會在洪水療法下逐漸被減敏感。說不定某天你會跟北海道人一樣,開始欣賞蟑螂的可愛之處喔!

說不定某天你會跟北海道人一樣,開始欣賞蟑螂的可愛之處!圖/Hituzi Chang

從「害怕蟑螂」看見早期教育

除了解釋了我們對蟑螂的厭惡,都市化—嫌惡假說其實也點出了現代社會一個很重要的議題,那就是在現代科技的干擾下,我們接觸真實世界的頻率正在下降,無形中也失去不少珍貴的「經驗」。

-----廣告,請繼續往下閱讀-----

我們的大腦仰賴經驗法則才能運轉,想學習新技能、建立穩固的知識結構,都需要持續且頻繁地暴露在特定刺激下。讀書、背講義是一種刺激,與人社交締結關係是一種刺激,走出戶外接觸山林也是一種刺激,任何一種刺激少了,我們就會錯過發展相應能力的機會。

就好像最近幾年特別被重視的語言教育、科學教育、情感教育,甚至是平權與美感教育,其實都是在努力把握小孩子學習的黃金期,讓他們盡早接觸到足夠的相關刺激,打下扎實基礎。這在教育心理學叫做「早期暴露」(early exposure),這個理論反對只把重心放在學齡後與學校教育的傳統觀念,認為父母在學齡前給予孩子多元化刺激同樣重要。

不需要花大錢上才藝班,平時多帶孩子出門走走,或是準備不同的課外讀物與嗜好,都是很好的新奇刺激,不單能增進大腦發展,還可以培養認知彈性,讓他們在未來遇到未知事物時能保持好奇心、積極自發地去吸收新知,而非縮在固有觀念裡。

早期暴露對兒童發展學習尤為重要。圖/Pexels

這個乍看很冷門、沒什麼了不起的研究,其實衍生出來的意義可是與我們息息相關。就好像我們常說在家裡看到一隻蟑螂,代表看不見的地方還有十隻。怕不怕蟑螂事小,因為享受現代科技的便利而錯失與真實世界互動的經驗,才是最得不償失的。

-----廣告,請繼續往下閱讀-----

要在都市中增加對昆蟲的好感不容易,但也有像是中山女中蔡任圃老師,成功透過一系列的觀察、研究等課程活動,讓許多學生愛上了蟑螂這個小生物。那麼你呢,你覺得你還有機會跟小強達成和解嗎?

  1. 這還用說嗎?馬上當成寵物養起來!每天一起睡
  2. 先不要,我們彼此人蟑殊途不犯河水
  3. 絕對不可能,只要看到蟑螂,這個房子我就不要了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

6
2

文字

分享

2
6
2
牠如何長出一雙「隱形的翅膀」?——玻璃翼蝶的成長日誌
Curious曉白_96
・2021/10/28 ・3597字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

蝴蝶的美,源於牠們擁有的千變萬色的翅膀,這些色彩是門面,也是保護傘,鮮豔顯目派警戒掠食者別靠近!小心牠們有毒(即便有些蝶其實没毒 XD);擬態派能巧妙地偽裝成自然環境中的枯葉、樹木等騙過掠食者的眼睛,或是如猛禽眼睛樣貌的翅膀,嚇唬掠食者。多數蝴蝶們視顏色為性命,但對玻璃翼蝶來說……就是不給顏色瞧瞧,幾近透明如玻璃的翅膀,即使飛行也如穿上一層隱形罩袍,讓大家都難以察覺牠的存在。究竟,這個蝶界的「小透明」是如何成長?又何以成為科學家們研發新型抗反射材料的重要靈感?Let’s check it out !

玻璃翼蝶的成長日誌

玻璃翼蝶,又名寬紋黑脈綃蝶(學名:Greta oto,俗稱透翅蝶),屬於鳳蝶總科的蛺蝶科(Nymphalidae),主要分布在中南美洲的雨林及山區。牠們的卵殼型態非常多變,有些如珍珠般光滑透亮,有些點綴上小撮鱗毛,有些具有雕刻般的紋路。

玻璃翼蝶, 又名寬紋黑脈綃蝶 ,俗稱透翅蝶,為蛺蝶科寬紋黑脈綃蝶屬。圖/EOL

幼蟲時,牠們主要吃的是夜香樹屬的植物,這類植物含有具毒性的生物鹼,且能夠存儲於幼蟲體內,當有些鳥兒吃了他們,輕則拉肚子,重則中毒身亡。玻璃翼蝶向來與眾不同,即便同屬鱗翅目(Lepidoptera),他們卻不與其他蝶一般擁有鱗翅目的招牌特徵 —— 成蟲全身布滿鱗毛,取而代之的是光滑剔透如玻璃般的翅膀,而成蟲的牠們一樣喜愛吃「毒」口味的食物,例如菊科(含生物鹼 (pyrrolizidine alkaloids))、馬纓丹屬植物,讓掠食者們敬而遠之。

鱗翅目招牌特徵 —— 成蟲全身布滿鱗毛。圖/EOL
可從罌粟分離出生物鹼-嗎啡。圖/維基百科

隱形翅膀的誕生

玻璃翼蝶是如何生成如此獨特的翅膀呢?帕特爾(Nipam H. Patel)和他的同事們首度將玻璃翼蝶詳細的成長時間序公開於《實驗生物學期刊》(Journal of Experimental Biology),他們分別在其成蛹不同時間點(16, 30, 48, 60 hr)進行解剖,並觀察其生成翅膀型態的變化(如圖一)。

-----廣告,請繼續往下閱讀-----
  • 成蛹 16 小時

起初牠們與其他鱗翅目物種一樣,蛹翅由一層輕薄、勻稱的上皮組織組成,接著許多表皮細胞已分化為平行排列的感覺器官前細胞(Sensory Organ Precursor cells , 以下簡稱 SOP 細胞)。在翅膀生成前期,帕特爾等人發現翅膀透明區域與非透明區域相比,具有較低密度的 SOP 細胞,因此他們猜測,玻璃翼蝶翅膀上形成透明區域及非透明區域的關鍵點就在於 SOP 細胞密度的差異,導致兩個區域的 SOP 細胞日後受到不同的調節,進而影響成體翅膀上兩區域的鱗片密度和表面翼膜分布具有極端的差異。

  • 成蛹 30 小時

此時玻璃翼蝶身上的 SOP 細胞開始分化成為鱗狀細胞(scale cells)及似人類的神經膠質細胞的界面上皮細胞(socket cells),鱗狀細胞主要位於翅膀內部,而界面上皮細胞肌動主要負責連接每個鱗狀細胞,並位於翅膀較為表層的位置。此外,他們透過染色技術發現翅膀上開始出現由肌動蛋白組成的小圓柱狀增生鱗片,而這群增生鱗片甚至長到超出翅膀表面。這個階段的透明翼區域鱗片細胞型態跟不透明區域的未分化鱗片細胞一樣,像極了一個個被吹成橢圓狀的氣球。

  • 成蛹 48 小時

鱗狀細胞開始延展並擴散生長,這時候透明翼區和非透明翼區要開始分道揚鑣了!非透明翼區(尤其是翅膀周圍有顏色的分界線)有很粗的肌動蛋白束,鱗片細胞呈圓扁狀;而透明翼區的鱗狀細胞開始向上延伸,並產生兩種型態(短小倒三角狀及狹長鬃毛狀)的細胞交替分布於其中。

  • 成蛹 60 小時

透明翼區的短小倒三角鱗狀細胞們的兩個角角開始伸出「觸鬚」,形成兩個似觸角型的細胞並開始延伸生長,而長鬃毛鱗狀細胞的長度早已生長至一定長度,甚至還長到彎曲。非透明翼區的鱗狀細胞則會再長得更長、更寬、更平坦(葉狀),並在尖端處形成鋸齒狀。

-----廣告,請繼續往下閱讀-----
隨成蛹時間翅膀發育變化。 圖中洋紅色螢光為 SOP 細胞,綠螢光為肌動蛋白,粉紅色螢光為鱗狀細胞膜,成蛹 30 小時,透明翼區(Clear)與非透明翼區(Opaque)細胞分布密度差異大,成蛹 48 小時後兩區域細胞開始發展成截然不同的型態。 圖(一)/參考資料3

我們之所以能看到非透明物體具有色彩,是由於物體會吸收部分光線,並將其他光線反射入我們的眼睛。反射程度主要取決於生物組織和環境介質之間的折射率差異,差異越大,表面反射越高。以會呈現透明的水生生物為反例,因為其組織與周遭環境(水)的折射率相近,因此他們就能施展「隱身術」。但是呢!在陸地上,要隱身可難囉~因為陸地生物組織的折射率(n=~1.3-1.5)和空氣(n=1)的折射率差異很大,所以易產生極大的表面反射。

有色翅膀的蝴蝶擁有於一排排扁平、重疊的鱗片,每個鱗片都可以通過色素沉澱產生顏色,並與光於奈米結構層級上進行交互作用,產生所謂的「結構色(structural coloration)」,選擇性吸收特定波長的光,且使光發生散射、漫反射、衍射或干涉而產生各式炫麗色彩。相反地,像透明翼蝶與部分蛾類的翅膀之所以會呈現透明,讓光線穿透,並能夠從透明翅膀區域看見他們身後的物體,關鍵在於他們只含有一層幾丁質膜(chitin membrane,也稱甲殼質),這層膜並不會明顯地吸收或反射光線,因此光線能輕易透射這層膜。

仿生靈感:抗反射材料的誕生

然而,幾丁質膜的加持還不夠,因為幾丁質本身具高折射率(n=1.56),因此即便透明,還是會有反射光。為此,透明翼蝶的翅膀發展出一款新型態的「抗反射構造」,造就此構造的三大功臣:微小且垂直稀疏的鱗片、幾丁質組成的奈米柱、蠟質層。垂直的鱗片能順著光線移動,使光線更容易致穿透翅膀;奈米柱使翅膀顯得凹凸不平,不但能減少因相同角度反射所產生的眩光,還能使光線呈現漫反射的效果;可是,透過電子顯微鏡的觀察,科學家們發現透明翼蝶的透明翼區的漫反射率僅約 2 % (空氣與翅膀介面的比率),後來他們查出這是翅膀表面覆蓋蠟質層的功勞,蠟質層似緩衝膠,因為比空氣密度大,能緩衝光線穿透翅膀的速度,還能大幅減緩光線照射鱗片所產生的眩光,若去除透明翼區的奈米柱及蠟質層,則會使反射率提升 2.5 倍,使翅膀受光照而閃亮。

這項驚人的發現不只有帕特爾等人注意到,卡爾斯魯厄理工學院(Karlsruhe Institute of Technology)的研究團隊也曾於 2015 年在《自然通訊》(Nature Communications)期刊發表,玻璃翼蝶翅膀表面不規則的奈米結構能降低反射,並透過蝕刻沈積技術(etching techniques)製造了仿透明蝶翅的塗層,厚度僅 500 奈米,且具有防水及自潔功能。

-----廣告,請繼續往下閱讀-----

雖然目前研究處於測試階段,但在未來可望將這類新型塗層應用於防眩光的眼鏡鏡片、相機鏡頭、3C 產品的螢幕上,還能用於太陽能板以提升太陽能轉換效率,甚至軍事領域能發展出「隱形效果」的武器或裝備,這就是透明翼蝶帶來的重大效應。

卡爾斯魯厄理工學院研究團隊於 2015 年在《自然通訊》期刊中發表玻璃翼蝶翅膀表面不規則的奈米結構能降低反射。圖/參考資料4

結語

來自杜克大學的生物學家桑克‧強森(Sonke Johnsen)曾指出儘管許多具透明性質的物種都在身體結構上演化出奈米柱,但蠟質層倒是個令人費解的新發現,蝴蝶的幾丁質覆蓋層是個牢固的結構,為何還要加上蠟質層削弱其堅固度呢?因此他認為這個問題的解答或許會發掘出更多酷東西!不過一想到能在大太陽底下使用仿透明翼蝶的仿生手機,不再受惱人的反光所擾,這個對重度使用 3C 產品的捧由們已經是件很酷的事了!

仿生透明翼蝶產品,對人類來說,是一個保護眼睛、免於反光摧殘的一項發明。 圖/GIPHY

參考資料

  1. See through the Glasswing Butterfly’s Fascinating Wings
  2. New images clarify how glasswing butterflies make their wings transparent
  3. Developmental, cellular and biochemical basis of transparency in clearwing butterflies
  4. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly
  5. How glasswing butterflies grow their invisible wings
  6. 抗反射塗層 仿透明蝶翼
  7. 科技大觀園:抗反射表面塗層仿生透明蝶翅
  8. 求真百科:玻璃翼蝶
  9. 寬紋黑脈綃蝶:形態特徵,棲息環境,生活習性,分布範圍,繁殖方式,種群現狀,保護級別
  10. MPlus | 隱形的翅膀:玻璃蝴蝶的透明演化之謎
所有討論 2

2

15
4

文字

分享

2
15
4
【2021 年搞笑諾貝爾獎】10 項「廢到笑」獲獎研究出爐:性行為可以治鼻塞?揭露人貓之間的喵電感應?
PanSci_96
・2021/09/10 ・4903字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/y 編、A 編、C 編
  • 圖/U 編

你今天連結了嗎?萬眾矚目、要說泛科學只為了今天開張也不為過(太誇張),2021 搞笑諾貝爾獎堂堂登場了!

今年的主題是「人與人的連結」,許多獎項也與「連結」這一概念相吻合。今年的亮點還有台北捷運站入鏡,以及台灣科學家也是搞笑諾貝爾獎兩屆得主楊佩良的 24/7!

就讓我們一起來看看今年的快訊,也一起來期待接下來的深入報導!

泛科專題【不認真就輸了!搞笑諾貝爾獎】,給你歷屆搞笑諾貝爾獎介紹!

【生物獎】分析多種貓語的意義,和貓與人之間的溝通

貓奴們,你各位怎麼讓這個獎被別人拿了?生物學獎得主 Susanne Schötz 因為研究人貓語言交流而獲獎。

-----廣告,請繼續往下閱讀-----

y編覺得這不只搞笑諾貝爾獎,這麼對全人類有貢獻、促進人貓種族和諧的研究,拿個諾貝爾和平獎都不過份啊。

Susanne 藉由一系列的語音研究,分析了貓咪的叫聲以及人與貓之間的溝通方式。

除了在 2019年的研究中將貓咪的叫聲分為 19 種,他還錄了 40 隻貓 780 段「貓語」,發現貓咪在心情好的時候傾向發出頻率上揚的叫聲,而在緊張、情緒低落的時候則是下降的,並以此建構模型。

透過模型,就可以知道你在擼貓時他是真的舒服還是叫你滾蛋、你回家時到底是歡迎你還是在抱怨,諸如此類。

據說 Susanne 還在研究貓貓的方言,有科學家如此孜孜不倦,人貓和平到來的那一天恐怕真的不遠了(?。

-----廣告,請繼續往下閱讀-----
生物學獎得主 Susanne Schötz(右下)因為研究人貓語言交流而獲獎。圖/Improbable Research

研究原文:A Comparative Acoustic Analysis of Purring in Four Cats

詳細介紹請看: 【2021 年搞笑諾貝爾:生物獎】鏟屎官們聽令!貓咪如何透過 20 種叫聲支配人類?

【物理獎】建立物理模型,說明行人為什麼不容易相撞

這次的物理獎,在研究團隊中發現臺灣學者啦(驚)!他是任職於加州大學數學與統計系的 Chung-min Lee 教授。而這次獲獎的原因,是建立了物理模型說明行人為什麼不容易相撞。

大家不陌生的忠孝新生站,左上為 Chung-min Lee 教授。圖/《APS physics

研究人員歷經了六個月的數據收集後,建立了數百萬條移動軌跡,以此數據作為基礎發展出模型,並發現這個模型具有「朗之萬公式」的特徵

換句話說,行人的行走行為,與花粉在水中亂飄的「布朗運動」,可能有點類似。(A 編:物理真的好難Q)

-----廣告,請繼續往下閱讀-----

研究結果也說明行人的周圍,有類似《獵人》中的「圓」,如果兩人的橫向距離小於 1.4 公尺時,行人會感知到對方並改變行走路徑

研究原文:Physics-based modeling and data representation of pairwise interactions among pedestrians

詳細介紹請看:【2021 年搞笑諾貝爾:物理獎】AT 力場全開!如何在擁擠的車站通道中不被別人撞到?

【動力學獎】走路看手機,行人會更容易相撞

物理學獎才解釋完為什麼不容易相撞,下一個頒發的動力學獎立刻打臉,說明為什麼行人會容易相撞!

物理學獎表示:說好的尊重呢?

研究者邀請了 54 名大學生,並將他們平均分配在走道兩端,以他們自由行走的軌跡作為對照組(軌跡如下圖 Baseline 所示),並測試滑手機的人在隊伍的不同位置,會對行走軌跡造成什麼影響。

-----廣告,請繼續往下閱讀-----

如果是領頭羊開始滑手機,隊伍軌跡不只混亂,整體的移動速度也會變慢,但如果是隊伍最後的人滑手機,則沒有顯著影響。

研究中,人群自由行走的軌跡對照圖。圖/《Science
圖/Improbable Research

研究原文:Mutual Anticipation Can Contribute to Self-Organization in Human Crowds

詳細介紹請看:【2021 年搞笑諾貝爾:動力學獎】實驗證實:邊走邊當低頭族,會更容易和行人相撞喔!

【化學獎】電影院觀眾釋放的氣味,會隨情緒改變

故事是這樣開始的,研究團隊在聖誕假期不想放假,跑到電影院測量空氣。(A 編:什麼鬼)

測量結果發現當觀眾因電影特定橋段造成害怕、緊張、喜悅…等情緒時,呼吸或皮膚(體味)代謝出的物質會有所不同。

-----廣告,請繼續往下閱讀-----

這表示以後只要做類似酒測的檢定,就能知道你剛剛看了什麼。(誤)

研究原文:“Proof of Concept Study: Testing Human Volatile Organic Compounds as Tools for Age Classification of Films

【生態獎】分析多國廢棄口香糖上的菌菌

看到亂吐的口香糖,你會覺得哪裡怪 ㄍㄞ ㄋㄧㄡ 的嗎?(y 編會,而且很會!)

這次的搞笑諾貝爾生態學獎的研究,支持了你的這種心理,因為這些廢棄的口香糖裡不只有很多菌菌,它們還會在幾週的時間從口腔微生物群、轉換為環境微生物群。

-----廣告,請繼續往下閱讀-----

研究團隊的樣本來自西班牙、法國、希臘、土耳其和新加坡(為什麼新加坡可以找到樣本!),這看似有點不衛生又搞笑的研究其實可以很好的幫助法醫學、傳染病控制等領域。

研究團隊的樣本來自西班牙、法國、希臘、土耳其和新加坡。圖/Improbable Research

研究原文:The Wasted Chewing Gum Bacteriome

詳細介紹請看: 【2021 年搞笑諾貝爾:生態學獎】口香糖渣裡的微生物小宇宙!

【經濟學獎】體重或許可以成為貪腐的指標?

這聽起來很直覺的指標,要驗證起來需要轉幾個彎。因為研究者沒辦法拿到政治家實際的健康資料,因此他收集了 15 個後蘇聯國家(post-Soviet countries)299 張內閣首長的照片,並透過機器學習,推算他們的 BMI 值。

研究發現,這些政治家的 BMI 值的中位數,和該國的貪腐程度相關,研究結果如下圖,可以看到波羅的海三小國——拉脫維亞、愛沙尼亞和立陶宛的體重中位數是相對來說最低的。

-----廣告,請繼續往下閱讀-----
波羅的海三小國——拉脫維亞、愛沙尼亞和立陶宛的體重中位數是相對來說最低的。圖/《Wiley Online Library

不過該研究也有人質疑這個假設不科學,甚至會有加強偏見的狀況。總之,要理解這個研究是在其特殊性,並還存在諸多限制,他並不適合當作你之後投票時的重要參考指標,還是請自己好好做功課吧!

圖/Improbable Research

研究原文:Obesity of Politicians and Corruption in Post‐Soviet Countries

【醫學獎】鼻子與生殖器之間的連結

1897 年一位在柏林職業的耳鼻喉科醫師  Wilhelm Fliess(他還是佛洛伊德的好朋友),發表了「鼻反射神經」的理論,假設了鼻子與生殖器之間存在著必然的生理連結。

既然有假設,那有研究者想深入了解了解,也是很合理!

於是百年後,有研究團隊找了 18 組伴侶,要求他們在性行為時的五個特定時間點進行「鼻功能」的自評,分別是:性行為前、性高潮後立刻、性高潮後 30 分鐘、一小時及三小時。為了科學,要在性高潮後想著要填量表也是相當浪漫的事情呢(手比愛心)。

研究發現,有鼻塞情況的人,在性行為之後,鼻塞的狀況確實有獲得改善

很期待看到這裡的有志之士可以試試看並與我們分享有沒有效,也為要與正在鼻塞的伴侶做愛的夥伴致上無限的敬意。

圖/Improbable Research

研究原文:Can Sex Improve Nasal Function? — An Exploration of the Link Between Sex and Nasal Function

詳細介紹請看: 【2021 年搞笑諾貝爾:醫學獎】呼吸不順免驚!實驗證實:愛愛可以治鼻塞

【和平獎】驗證男性的鬍鬚面對拳擊的防禦力

不管是東方還是西方,濃密的鬍鬚一直是男性氣質的指標,更曾經是社會地位的象徵。但過去一直未有針對鬍子在實戰中的防禦力進行研究。

現在這個研究出現了!研究者為了驗證鬍子的「拳擊假說」(鬍子可在拳擊中保護下巴被貓爆),用羊毛代替人類的鬍子、用落錘衝擊實驗機(型號:Instron Dynatup 8250 )代替拳頭進行衝擊力的實驗。

研究結果指出,3 種羊毛型態的對照組中,「毛茸茸的毛」比「修剪過的毛」及「拔下來的毛」都更能有效吸收衝擊力!

此研究證實了,如果有人要對你的下巴貓一拳,有鬍子的你,真的可以減少下頜骨粉碎的可能性喔!(不然呢?)

羊毛物理衝擊實驗示意圖。圖/《Integrative Organismal Biology

研究原文:Impact Protection Potential of Mammalian Hair: Testing the Pugilism Hypothesis for the Evolution of Human Facial Hair

詳細介紹請看:【2021 年搞笑諾貝爾:和平獎】光溜溜的下巴怕鐵拳?快把你的鬍子留好留滿!

【昆蟲學獎】如何在潛水艇中消滅蟑螂

看過台灣夏季街道滿滿的蟑螂嗎?相信不管身在哪裡都不會有人樂見看到蟑螂出沒(抖),更何況是在密閉的潛水艇裡(瘋掉rrr),因此有研究者開始研究,究竟怎樣才能消滅潛水艇裡的蟑螂。

這份 1964 年的研究,當年在經歷了 3 艘潛水艇中與蟑螂的戰役後指出,相較於蚊香中的除蟲菊脂及農藥中的胡椒基丁醚,噴灑敵敵畏(dichlorvos)是最安全、經濟且有效殺蟑的方案。

因此研究結論也建議,「噴灑敵敵畏」可當作美國海軍控制潛艦內蟑螂數量的方案。

當年的研究者現在已經是老爺爺了(右下)。圖/Improbable Research

研究原文:A New Method of Cockroach Control on Submarines

【交通獎】用直升機倒掛犀牛,會比側臥更安全嗎?

如何用更符合人道的方式運輸動物,一直是備受關注的議題。而本研究以黑犀牛為實驗對象,想探討從腳部倒掛黑犀牛,究竟有沒有比側臥懸掛的方式更安全?

在本次實驗中,研究者將 12 頭黑犀牛麻醉後,依序讓牠們側臥吊掛10分鐘後,再被起重機用腳部倒掛 10 分鐘(看來是為了節省經費),想比較出 2 種姿勢哪種對黑犀牛來說更加安全?

最後從犀牛們的生理指標來看結果,吊掛及側臥對犀牛的肺功能損害……沒什麼區別,但因為吊掛對胸腔的壓迫較小,犀牛們的吸氣量有微量提升,也就是說呼吸似乎更順暢了!

圖/Improbable Research

研究原文:The Pulmonary and Metabolic Effects of Suspension by the Feet Compared with Lateral Recumbency in Immobilized Black Rhinoceroses (Diceros bicornis) Captured by Aerial Darting

詳細介紹請看:【2021 年搞笑諾貝爾:交通獎】四腳朝天倒吊運送犀牛,會比側臥更安全嗎?


雖然來到 2021 年,這已是第二次的遠端頒獎典禮了,但這群科學家們還是十分自娛自樂呢!能夠在這樣的日子繼續愛著科學,實在是再幸福不過的事呀。如果大家想要支持主辦單位,可以去他們的官網贊助喔!(也可以贊助認真報導的我們<3)

圖/Improbable Research

那麼,今年的典禮到此結束啦!更多詳細內容請期待我們的後續報導!也可以複習一下以前超有哏的頒獎典禮,或是去看看往年的得獎內容喔!

所有討論 2