0

0
1

文字

分享

0
0
1

揭開大腦神經網絡的奧秘–磁振造影新技術發現嚴謹的三維結構

活躍星系核_96
・2012/03/31 ・1622字 ・閱讀時間約 3 分鐘 ・SR值 626 ・十年級

腦神經相關的精神疾病如何防治?以及大腦的奧秘為何?一直是醫學界的重大挑戰!因為人類大腦約有一千億個神經元細胞,每一個神經元細胞都延伸出細長的神經纖維作為連結到其他神經元的通路。成千上萬的神經元細胞經由更多更密而無法細數的神經纖維互相連結,看似高度複雜的神經連結究竟遵循何種規則來精確的傳遞訊號而不失真?與精神相關的疾病是否有預防與治療的有效途徑?臺大醫學院曾文毅教授與哈佛醫學院 Van Jay Wedeen 教授發表在最新一期的《科學》的研究成果,首度發現了腦神經網絡的三維結構,可望揭開許多大腦之謎。

猴腦神經纖維在各處都呈現三維網格的結構,而且遵循體軸的方向排列。
猴腦神經纖維在各處都呈現三維網格的結構,而且遵循體軸的方向排列。

曾教授及研究團隊利用磁振造影發現不同種類的猴子大腦神經纖維是以簡單的三維網格結構所組成,就像棋盤格線相互垂直正交排列。三維網格結構正好平行生物體的前後、左右、上下三個軸向排列。神經纖維組織的架構竟然是如此簡單規律的幾何結構,並遵循身體的三個軸向是很出乎科學家意料之外的,因為這種情形在機率上幾乎是零。這種符合立體空間向度的三維結構,正可以說明人類腦部如何正確的判讀空間資訊的立體位置

這種簡單的立體三維結構在過去從未被發現過,主因是傳統的組織染色切片只能觀察到局部少數的神經纖維,就好像見樹不見林,無法掌握整體的結構形態。

而曾教授研究團隊運用一種先進的影像技術-水分子擴散頻譜造影(Diffusion Spectrum Imaging, DSI)來偵測神經纖維的方向及長度,從而重建出大腦中的神經纖維結構。由於目前的科技水平仍無法獲得活體大腦完整精確的神經纖維影像,因此研究團隊利用離體猴腦進行超高解析度的擴散頻譜造影影像掃瞄,才發現這個簡單的三維網格結構。

-----廣告,請繼續往下閱讀-----

研究結果顯示三維網格結構普遍存在於四種不同種類的猴子,而後續的研究亦已發現,人腦也存在類似猴腦的三維網格結構。

此網格結構有助於了解大腦網路互相連結的發育與演化途徑。首先,神經纖維很可能按照身體主軸的三個方向,發展成一個規則的「棋盤式神經纖維網」。腦神經元細胞再透過此謹然有序的「交通網絡」與遠端神經元細胞傳遞訊息。如此可確保訊息能精確的傳到遠端對應的神經元細胞。目前科學家已經運用此網格結構來探討精神疾病的現象和診斷。神經科學研究結果已顯示一些精神疾病可能源自於腦神經連結的問題。因此,網格結構的排列異常有可能成為精神疾病的生物標記。換言之,我們可以藉由觀察網格結構之異常,早期診斷精神疾病。我們也可以透過觀察網格結構之變化,來追蹤精神藥物的療效。

由於人腦具有高度複雜的皮質,目前臨床使用的磁振造影儀還無法清楚看到人腦的神經網格結構。此問題的關鍵在於磁振造影的核心元件「梯度線圈」所產生的磁場梯度不夠強,因此達不到所需之解析度。有鑑於精神疾病的日益增加,及早期診斷控制的重要性,美國國家衛生院從2010年發起了「人腦連結體計畫」,資助哈佛大學麻省綜合醫院建置了一臺研究型磁振造影儀。相較於臨床磁振造影儀,此研究型機器可提供八倍之多的磁場梯度,有助於科學家們觀察活體人腦的神經網絡。事實上, 人腦的研究已成為基因研究的下一個最受重視的重大科學研究計畫。

在此同時,臺灣經濟部從 2011 年年底開始,經由學界科專計畫資助曾教授團隊發展腦連結體磁振造影系統。經濟部希望透過此計畫培育高階醫療器材研發人才,進而帶動臺灣的醫療器材產業。曾教授研究團隊現正與國內外醫學中心密切合作,針對精神分裂,過動症,自閉症,失智症,癲癇症及中風等六大神經精神疾病進行研究。預計於2014年在臺灣做出第一臺腦連結體磁振造影原型系統,建立正常人及精神疾病腦連結體資料庫。期望能夠透過先進的醫療科技揭開人類精神疾病的神秘面紗。

-----廣告,請繼續往下閱讀-----

(本文由台大提供,PanSci 編輯)

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
1

文字

分享

0
4
1
神經元如何發展成神經網絡?神經元為「愛」向前的奇妙旅程
研之有物│中央研究院_96
・2023/05/12 ・4787字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/歐宇甜
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

分子生物研究所所長程淮榮與軸突導向研究

在我們大腦裡面,有各式各樣的神經元。神經需要彼此連結才能發揮作用,而神經元的軸突會去連接其他神經元的樹突,軸突跟樹突連在一起時,稱為突觸,神經連結也就此建立。過程說起來簡單,實際很複雜,例如軸突如何知道自己的目的地?軸突有沒有可能接錯對象?找到目標之後,神經元又是如何形成突觸呢?中央研究院「研之有物」專訪院內分子生物研究所所長程淮榮特聘研究員,他從研究多年的「軸突導向」題目出發,深入淺出地和我們解釋了神經元形成連結的過程。

神經需要彼此連結才能發揮作用,突觸是如何形成的呢? 圖/iStock

從神經元到神經網路,一切是如何開始的?

神經細胞又稱為神經元(Neuron),不會單獨存在,必須互相連結才能傳遞各種訊息,例如人腦有各式各樣的神經元,外型都不太一樣。神經元主要結構有細胞體(Cell body)和突起兩部分,細胞體中間是細胞核,突起則有兩種。軸突(Axon)能伸出去以連結其他神經元,將訊息傳遞出去,樹突(Dendrite)能接收其他神經元傳來的訊息,軸突跟樹突連在一起的接觸點稱為突觸(Synapse)。

兩個神經元彼此連結,軸突終點與樹突棘的接觸點為突觸。 圖|研之有物(資料來源/Current Biology

這張圖顯示神經元有不同構造,由左而右為:皮質神經元(Cortex)、小腦神經元(Cerebellum)以及視網膜神經元(Retina)。圖中神經元類型屬於投射神經元,軸突訊號將發送到細胞體之外,把訊息「投射」到遠處的神經元。
圖/Current Biology

和「研之有物」團隊簡介神經元彼此連結時,程淮榮笑著比喻:「我常說這像是神經元的愛情故事,形成突觸好比 Kiss(接吻),有了第一個、第二個連結,逐漸才構成有千萬個連結的神經網路。」

-----廣告,請繼續往下閱讀-----

他接著說,現在很多神經科學家研究的議題是「Connectome」(大腦連結體),這是大腦所有神經元連結的集體名詞。「人類起初只是一顆受精卵,從出生到長大成人,大腦如何形成這麼多而複雜的神經網路?」程淮榮道。

國際科學期刊《自然》2014 年 4 月 10 日刊載的封面,展示老鼠大腦神經的 3D 連結圖像。
圖/Nature

整個神經網路這麼複雜,每個地方的神經元都不一樣,神經元如何伸出軸突和其他神經元的樹突形成連結呢?這個問題呼應了程淮榮過去幾十年的研究議題「軸突導向」(Axon guidance)

畢竟神經連結不是這麼簡單的,軸突有沒有可能找錯對象,找錯時該怎麼辦?找到樹突後,它們是怎樣形成突觸?如果沒有形成突觸,該如何解決?這些過程有哪些因素和分子會產生影響?如果能弄懂一個機制,就能連帶了解成千上萬個案例。

一路往前衝的生長錐

發育中的軸突前端有個部位稱為生長錐(Growth cone),形狀像有多根手指的手掌。所有的神經元剛開始發育時,活潑好動的生長錐會萬箭齊發,四處去尋找該連結的地方。一旦找到樹突並形成突觸,生長錐就會消失。但生長錐怎麼知道它要往哪裡走?程淮榮說,其實是有一些信號在告訴生長錐:「你要右轉,你要左轉」、「你要去這裡,不要去那裡」。

-----廣告,請繼續往下閱讀-----

他接著說,「引導生長錐移動的方式其實只有兩種:來或去。我常用愛情故事來比喻:愛,就是來;恨,就是去。西班牙籍的神經解剖學教父桑地牙哥·拉蒙卡哈(Santiago Ramón Y Cajal)寫過許多書,某次我讀到他書裡寫著:『促進了生長錐的生長和分化……最終建立了那些原生質親吻……這似乎構成了史詩般愛情故事的最終狂喜』,發現我的想法原來跟他一樣,後來就拿來引用。」

神經元的生長錐結構示意圖。 圖/研之有物(資料來源:程淮榮)
在培養皿觀察到往前爬行的生長錐,相當好動。(可設定循環播放觀看) 資料來源:程淮榮

生長錐的愛恨與捨離

軸突的生長錐並非一步到位,需要一些過程,才能找到與之連接的樹突。程淮榮用了一個比喻來解釋這個過程:就像一個人開車去尋找真愛。

假如這個人(也就是生長錐)從臺北出發,最終要到達高雄。但他為什麼不會去東部呢?因為有些東西在引導著他:桃園有個吸引他的戀人。如果沒有這個吸引,他就不會去。

但當生長錐到達桃園後,又不能沉溺於短暫的愛情,否則就會一直停留在那裡。因此,他必須對桃園由愛轉恨、果斷離開,繼續前往新竹。依此類推,生長錐在旅途中會不斷地愛、恨、離開,直到最後在目的地(高雄)找到真愛並組建家庭,與其他神經元的樹突形成突觸。

-----廣告,請繼續往下閱讀-----

「那麼,是什麼分子在吸引生長錐前進呢?當生長錐被吸引到某個地方時,哪些分子會排斥它、讓它轉向或離開,直到最終與樹突連接呢?神經科學家在研究這些過程中涉及的各種機制,也就是所謂的分子和細胞機轉。」程淮榮說道。

在身體不同部位像腦或脊椎,促進或抑制生長錐的分子都不一樣。體內有成千上萬各種分子在調控生長錐的生長,有許多不同的機轉,才能構成如此複雜的神經網路。到底是什麼樣的分子會先分泌出來,讓生長錐受到吸引?然後是哪一個分子會把它推開呢?從愛轉恨的轉折點是什麼?這些就是神經科學家的研究課題與精髓。

程淮榮說,「其實裡面有很多的細節,我可以花幾個小時跟學生講每一段的愛情故事,因為牽涉到不同的分子。如果有任何科學家能把這些愛恨轉折點和機轉都研究清楚的話,論文幾乎都能登上 CNS 期刊」(註:頂級期刊《Cell》、《Nature》和《Science》。)

接著程淮榮在訪談中展示下圖,說明神經元如何找到「真愛」,也就是神經網路形成的分子與細胞機制:

-----廣告,請繼續往下閱讀-----
  1. 啟動:最初一開始,神經元的生長錐往前延伸。
  2. 排斥/吸引:有的分子(桃紅色)會吸引生長錐,有的分子(黑色)則會讓生長錐選擇避開。
  3. 定位/凋亡:生長錐最後會到達目的地(藍色)。右邊虛線(綠色)表示神經元沒有順利形成連結而死去。
  4. 分枝:個體發育是漸進式的,不是瞬間所有東西都長好,有些地方較早成熟,有些地方較慢成熟。有可能剛開始神經元連在一處(藍色),但過一段時間後,神經元有另一處新的目的地(灰色),軸突出現分枝(branching out)。
  5. 修剪:軸突連到新的目的地之後,原本的軸突會消失。
  6. 維持:正確的神經連結建立後,通常就一直維持到個體死亡。
神經元軸突如何找到一生至愛?透過生長錐往前探索的過程中,會受到不同分子的吸引和排斥。剛開始建立神經連結時,軸突也可能出現分枝,轉移到真正目的地。一旦建立起真正連結,就會維持終生。 圖/研之有物(資料來源:程淮榮)

神經系統也跟樹枝一樣,需要修剪不需要的部分

神經元的軸突不只有一根分枝,剛開始可以有很多根,但最後只會留下幾根,其它沒用到的軸突分枝就會修剪掉,或是斷開突觸的連結點,這是神經系統調節的一種方式,稱為剪枝(Pruning)。

程淮榮說,剛開始大腦與神經系統要建立起連結時,這是個浩大的工程,第一步只會大致上讓每個神經元都去到該去的地方,很多連結可能都不是非常精確,或是有許多不必要的連結。因此接下來,要進行修剪。

神經細胞跟其他體細胞不同,神經元有神經電位,訊號會以電的形式傳遞,稱為動作電位或神經脈衝。當神經連結初步連好,這時需要外界的刺激來幫助修正,如果連接到對的地方,神經脈衝會很頻繁;連接到錯的地方,神經脈衝不頻繁。於是接錯與不需要的部分就被剪除,藉此能讓神經連結變得更精確。

就像樹枝需要剪枝一樣,神經系統的連結要長得好,長得準確,必須接收大量外界刺激,把不需要且多餘的部分剪掉,去蕪存菁。 圖/研之有物(資料來源:Bing Image Creator

舉例來說,剛出生的嬰兒視力不佳,是因為神經連結沒有很準確。經過一段時間後,因為接收了大量外界刺激,讓神經連結變精確、發育越成熟,視力就會變好。

-----廣告,請繼續往下閱讀-----

透過外界刺激來修剪神經元,使連結更精確,這段時間稱為關鍵期(critical period)。一旦錯過關鍵期,可能會讓神經系統無法準確建立,就比較難再調整。關鍵期牽涉的很廣,有時候不是單單是指剪枝,而是指突觸的連結增強,因為這表示消息的傳遞越多。在學習語言或專業運動訓練等,也都有類似的發展關鍵期。

並非小孩才有,成年後神經連結仍具可塑性

因為連結可以形成、也可以消失,所以神經連結具有可塑性(neuronal plasticity)。儘管成年後神經連結的速度不及幼年期那麼快,但科學家觀察到成體腦部仍然可能發生新的連結變化。

程淮榮在專訪中提到,以前有個傳統實驗,科學家觀察在猴子大腦皮質與五根手指對應的 1、2、3、4、5 五個區域,先切除第三根手指,過幾個月再觀察,發現控制第三根手指的 3 區域不見了。隨後進行第二個實驗,只讓第二根和第三根手指頭一直重複活動,幾個月後發現控制第二根和第三根手指的 2、3 區域都有變大,證實成體腦部仍有可塑性。

猴子手指運動與相應的大腦皮質區域變化,說明成年腦部具有可塑性。第一個實驗切斷猴子第三指之後,可以看到第三根手指對應的皮質區消失了。第二個實驗只讓猴子第二、第三根手指活動,可以看到第二根手指和第三根手指的對應區域都變大。 圖/研之有物(資料來源:程淮榮)

關於成年後的神經可塑性,程淮榮補充道,「樹突有一個突出部位稱為樹突棘(dendritic spine),是神經元之間形成突觸的主要部位。科學家實驗發現,在成年老鼠腦部仍能觀察到長出新的樹突棘,表示形成新的突觸。當然,越老的老鼠,形成新突觸的情況可能沒那麼好,但這表示動物在成年後神經仍然具一定的可塑性。」

-----廣告,請繼續往下閱讀-----

關於神經系統的建立、神經元的生長與消失,仍有許多未完全解開的機制。程淮榮與神經科學家們仍繼續努力去抽絲剝繭,深入瞭解神經元那一段段如史詩般的愛情故事。

延伸閱讀

-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
1

文字

分享

0
0
1
揭開大腦神經網絡的奧秘–磁振造影新技術發現嚴謹的三維結構
活躍星系核_96
・2012/03/31 ・1622字 ・閱讀時間約 3 分鐘 ・SR值 626 ・十年級

-----廣告,請繼續往下閱讀-----

腦神經相關的精神疾病如何防治?以及大腦的奧秘為何?一直是醫學界的重大挑戰!因為人類大腦約有一千億個神經元細胞,每一個神經元細胞都延伸出細長的神經纖維作為連結到其他神經元的通路。成千上萬的神經元細胞經由更多更密而無法細數的神經纖維互相連結,看似高度複雜的神經連結究竟遵循何種規則來精確的傳遞訊號而不失真?與精神相關的疾病是否有預防與治療的有效途徑?臺大醫學院曾文毅教授與哈佛醫學院 Van Jay Wedeen 教授發表在最新一期的《科學》的研究成果,首度發現了腦神經網絡的三維結構,可望揭開許多大腦之謎。

猴腦神經纖維在各處都呈現三維網格的結構,而且遵循體軸的方向排列。
猴腦神經纖維在各處都呈現三維網格的結構,而且遵循體軸的方向排列。

曾教授及研究團隊利用磁振造影發現不同種類的猴子大腦神經纖維是以簡單的三維網格結構所組成,就像棋盤格線相互垂直正交排列。三維網格結構正好平行生物體的前後、左右、上下三個軸向排列。神經纖維組織的架構竟然是如此簡單規律的幾何結構,並遵循身體的三個軸向是很出乎科學家意料之外的,因為這種情形在機率上幾乎是零。這種符合立體空間向度的三維結構,正可以說明人類腦部如何正確的判讀空間資訊的立體位置

這種簡單的立體三維結構在過去從未被發現過,主因是傳統的組織染色切片只能觀察到局部少數的神經纖維,就好像見樹不見林,無法掌握整體的結構形態。

-----廣告,請繼續往下閱讀-----

而曾教授研究團隊運用一種先進的影像技術-水分子擴散頻譜造影(Diffusion Spectrum Imaging, DSI)來偵測神經纖維的方向及長度,從而重建出大腦中的神經纖維結構。由於目前的科技水平仍無法獲得活體大腦完整精確的神經纖維影像,因此研究團隊利用離體猴腦進行超高解析度的擴散頻譜造影影像掃瞄,才發現這個簡單的三維網格結構。

研究結果顯示三維網格結構普遍存在於四種不同種類的猴子,而後續的研究亦已發現,人腦也存在類似猴腦的三維網格結構。

此網格結構有助於了解大腦網路互相連結的發育與演化途徑。首先,神經纖維很可能按照身體主軸的三個方向,發展成一個規則的「棋盤式神經纖維網」。腦神經元細胞再透過此謹然有序的「交通網絡」與遠端神經元細胞傳遞訊息。如此可確保訊息能精確的傳到遠端對應的神經元細胞。目前科學家已經運用此網格結構來探討精神疾病的現象和診斷。神經科學研究結果已顯示一些精神疾病可能源自於腦神經連結的問題。因此,網格結構的排列異常有可能成為精神疾病的生物標記。換言之,我們可以藉由觀察網格結構之異常,早期診斷精神疾病。我們也可以透過觀察網格結構之變化,來追蹤精神藥物的療效。

由於人腦具有高度複雜的皮質,目前臨床使用的磁振造影儀還無法清楚看到人腦的神經網格結構。此問題的關鍵在於磁振造影的核心元件「梯度線圈」所產生的磁場梯度不夠強,因此達不到所需之解析度。有鑑於精神疾病的日益增加,及早期診斷控制的重要性,美國國家衛生院從2010年發起了「人腦連結體計畫」,資助哈佛大學麻省綜合醫院建置了一臺研究型磁振造影儀。相較於臨床磁振造影儀,此研究型機器可提供八倍之多的磁場梯度,有助於科學家們觀察活體人腦的神經網絡。事實上, 人腦的研究已成為基因研究的下一個最受重視的重大科學研究計畫。

-----廣告,請繼續往下閱讀-----

在此同時,臺灣經濟部從 2011 年年底開始,經由學界科專計畫資助曾教授團隊發展腦連結體磁振造影系統。經濟部希望透過此計畫培育高階醫療器材研發人才,進而帶動臺灣的醫療器材產業。曾教授研究團隊現正與國內外醫學中心密切合作,針對精神分裂,過動症,自閉症,失智症,癲癇症及中風等六大神經精神疾病進行研究。預計於2014年在臺灣做出第一臺腦連結體磁振造影原型系統,建立正常人及精神疾病腦連結體資料庫。期望能夠透過先進的醫療科技揭開人類精神疾病的神秘面紗。

(本文由台大提供,PanSci 編輯)

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia