0

21
7

文字

分享

0
21
7

量子電腦為何比傳統電腦強大?量子運算的發展又有哪些挑戰呢?

Research Portal(科技政策觀點)_96
・2018/04/27 ・6199字 ・閱讀時間約 12 分鐘 ・SR值 587 ・九年級

  • 文/林明宜 │ 國家實驗研究院科技政策與資訊中心助理研究員,研究領域為神經科學、醫學工程及前瞻技術趨勢分析

量子電腦挾著其強大運算速度和能力的潛能,使得全球科學界和產業界(Google, IBM, Microsoft, Intel 等)競相投入7。雖然目前仍在理論實踐和可操作原型發展階段,近年的技術突破似乎使得每年都「即將成功」的量子電腦真正更接近商業化應用。在今日知識經濟和全球化競爭的時代,運算能力即是國家和企業的競爭力,因此量子電腦在近年頻頻被各國視為重點發展技術,許多科技趨勢報告也將其列為年度突破11 12 13。國研院科政中心之前已經對各國的量子技術發展策略和台灣的研發現況撰寫專文討論(編按:參見英國量子技術發展戰略第二次量子革命啟動)。本文將更新近期技術發展趨勢和討論量子電腦未來對社會可能造成的衝擊。

圖/TheDigitalArtist @Pixabay

什麼是「量子運算」?從基本原理談起

量子位元(qubit)是量子電腦最基本的運算單元,為了使量子位元能夠被運用,量子必須達到量子疊加(quantum superposition)和量子糾纏狀態(quantum entanglement):即單一量子須同時處於兩種物理狀態,且兩個量子間需形成聯結,使得兩個量子即使不處於同一個空間,卻可以即時互相影響,才能做為量子運算基本單元17。量子可以是電子、離子或光子,只要能夠達到疊加和糾纏狀態就可以做為量子位元,量子位元的讀寫可透過微波、磁脈衝或雷射。目前主流的五種量子運算方式有矽自旋量子離子阱超導迴路鑽石空位拓樸量子

量子疊加可以用丟擲硬幣比喻:硬幣可為頭像(1)或反面(0)就如同傳統的位元,將硬幣擲到空中轉動時,硬幣不停在頭像和反面轉換,在空中旋轉時就像是同時為 1 和 0,只有真正落下後才知道最後落在那一面。以電子做為量子為例,電子自旋向下時能量最低為 0,可利用特定頻率的微波脈衝加熱電子,使電子獲得能量後自旋向上,寫為 1,若將量子置於矽晶體電極中,就可以量測到電流獲知量子的狀態。

圖/jarmoluk @Pixabay

那麼又如何達成量子糾纏狀態?若以光子為例,科學家可以用雷射產生大量光子射入兩層超薄,相性相反的非線性晶體,當光子通過非線性晶體時,偶爾會產生成對的光子,由於兩層晶體相位相反,產生的光子極性相反,可能為垂直或是水平,又因為晶體極薄,光子的相位是垂直或水平,只有在量測時可以得知,而且這對光子的相位一個若為垂直,另一個就必為水平,反之亦然,此時這對光子的狀態就稱為量子糾纏狀態。

-----廣告,請繼續往下閱讀-----
量子糾纏示意圖 圖/作者提供

由於量子位元的疊加和糾纏特性,使得量子位元可以不像傳統電腦位元只能為 0 或 1,而是能夠同時為 0 和 1,此特性使量子位元的運算能力增加,量子電腦得以進行大量資料的平行運算。

量子電腦為何比傳統電腦強大?

如前所述,量子電腦不像傳統電腦,運算步驟被位元數限制。如果想找出 4 位元(可為 0 或 1)組合中某一組數字,傳統電腦最多需要嘗試到 16 次,平均需要嘗試 8 次;如果想找出 20 位元組合的其中一組數字,最多需要嘗試到約一百萬次運算步驟。由此可知傳統電腦在解決這類問題時,嘗試的次數和所欲搜尋的數字可能組數呈線性關係,當所運算的可能性呈指數成長時,即使是超級電腦,所需要的運算時間將長到無法實際用來解決問題。量子運算由於其特殊的量子特性,在上述的 4 位元組合數字問題,量子運算可以在 4 次運算後直接得到 16 種可能情形中的解答,在 1000 次運算後即可找出 20 位元組合,一百萬個可能的其中一組特定數字,運算次數只需可能情形總數的平方根,滿足指數型的複雜運算需求。

要發展量子運算,還有哪些技術挑戰?

(一)穩定量子態的維持

細緻的量子態十分容易受到振動或電磁場,甚至一般熱擾動的干擾,所以現在的量子電腦需要在接近絕對零度的超低溫度操作8。目前主要的技術瓶頸除了增加量子位元數之外,就是如何維持穩定量子態,使量子維持在某個量子態時間(相干時間,coherence time)夠長,足以完成運算工作並增加運算正確率。

其中微軟的研究團隊正嘗試操縱 2012 年才被發現的「準粒子」,用編辮子糾結方式,使量子位元可以抵抗外界干擾,讓量子位元和繩結一樣穩定,如此一來,量子電腦的運算能力就不用再被大量浪費在更正錯誤上17

-----廣告,請繼續往下閱讀-----

(二)量子位元的可擴充性

另一個使量子電腦能夠進入實際應用的關鍵,是量子位元的可擴充性,現行主流量子運算技術之一的矽自旋量子,就是由於可以利用已經十分成熟的半導體技術,具有和現行電腦相容性,且被認為未來容易向上擴充,而吸引英特爾和其他研究人員投入研發。普林斯頓大學的實驗室近期在矽量子元件上有關鍵性的技術突破15,製造出能夠準確控制兩個電子之間量子行為,以矽為材料的元件,且錯誤率極低。這個突破性的量子位元邏輯閘,由高度有序排列的矽晶體構成,晶體上布有數十奈米的氧化鋁線,用來遞送電壓,將兩個被能階隔開的電子困在特定的量子點,再利用短暫的降低能階隔閡,使兩個電子能夠互相交換資訊,達到量子糾纏狀態。這項研究是第一次在矽材料中成功達到量子糾纏。研究人員可以利用磁場控制量子位元行為,目前控制電子量子態穩定度達 99%,而邏輯閘的可靠度達到 75%,這項技術除了具有可擴充性,錯誤率在未來還可能再下降。

(三)量子軟體研發

除此之外,為了使量子電腦真正發揮效能,專家們認為應該同步開發量子軟體20。量子運算程式的複雜度和難度源於量子電腦的本質,運算時將帶有一定程度的雜訊,所以程式設計時必需將量子電腦的物理原理和位元限制納入考量,需要先預建雜訊模擬模型,以處理操作正確性的問題。而早期發展出的量子電腦由於運算硬體設計尚未統一,將具有不同性質的細微差別,軟體需要一定程度的客製化。運算的高複雜度也將帶動新的演算法和開發工具的需求,量子電腦軟體設計人員需具備深厚的物理、數學和軟體工程知識,跨領域、對各領域有深度知識的人才培育將會是軟體研發的關鍵,同時許多量子軟體都有開源式社群開發平台,以群策群力結合資源加速早期軟體開發速度。

量子電腦發展現況

  • IBM 官方釋出的量子電腦研究室( IBM Q computation center)介紹影片

目前最早實際被投入應用的量子電腦由 5 個量子位元構成,由 IBM 研發,採用的是超導迴路技術,IBM 並在 2017 年底開始提供 20 位元的商業化雲端量子運算服務16。而 50 個量子位元是一個深具意義的里程碑,這代表著超越現有任何超級電腦可以達到的運算能力,象徵量子優越(quantum supremacy)時代的來臨,目前 IBM 已十分接近這個目標,建造出 50 量子位元的原型機4,Google 的團隊也緊追在後,2017 年 11 月的自然期刊中,麻省理工學院、哈佛、加州理工學院的合作團隊和馬里蘭大學的量子運算中心也分別用不同的技術達到 50 個量子位元的運算系統14;大陸在 2017 年底宣布將投資一百億美元成立新的量子電腦中心,預計在 2020 年開始運作5,日本也加入國際量子競賽,宣布免費提供量子類神經網路服務,並將投資 2 億 6 千 7 百萬美元,在 2018 年開始十年量子研發計畫18

雖然由於量子電腦特性,無法儲存資訊和運算結果,加上體積和所需要的硬體維護人員及費用高昂,在可見的未來都將與傳統電腦結合透過雲端提供運算服務,現在的量子電腦確實已經即將從實驗室步入實際應用,預備顛覆創新材料製造、化學製藥、人工智慧、網路安全和金融科技的領域。

-----廣告,請繼續往下閱讀-----

量子電腦未來普及,將對社會帶來哪些改變與衝擊?

(一)量子電腦和人工智慧的結合

圖/geralt @Pixabay

量子電腦的強項在於亂數產生、尋找未排序數列的最小值、解決圖論中的節點連結問題、特徴吻合等,科學家已經設計出多種量子演算法,來解決傳統電腦不易解決的問題16。其中 2008 年由三位科學家 Harrow、 Hassidim 和 Lloyd 發明的量子演算法 HHL,能夠快速解決多自由度,龐大的線性代數問題;而機器學習正好大量倚重這類型的大量線性代數運算,因此專家們很快就開始試圖將量子演算法和機器學習結合,機器學習是少數在量子電腦發展早期就有機會找到利基的領域。

雖然短期內傳統的機器學習仍會較早開始實際應用在交通、醫學和金融市場,量子系統在產生真正亂數和處理非傳統二進位式資料會時將占有較大的優勢,例如傳統常應用於金融市場的蒙地卡羅機器學習演算法,需要產生真正的亂數才能有最佳表現,此時量子電腦的長處就可以被展現10。許多量子機器學習新創公司已經開始研發如何利用量子系統加速機器學習,其市場潛能也吸引了許多資金投入19

(二)量子電腦在化學和製藥的應用

圖/hioahelsefag @Pixabay

一般專家普遍認為,化學將是量子運算最強且最立即的應用9。量子電腦將可以用來幫助設計乾淨能源所需要的催化劑,了解生物體內的酵素,發現新的太陽能電池材料或高溫超導體材料。它的優勢在於超乎現有傳統電腦的強大運算能力,足以真正模擬和創造複雜的電子和分子互動模型。

一般進行化學反應模擬時,由於需了解各分子所含原子彼此間互動情形,需計算各原子的電子互動能量,包含所有電子的位置和能階(即軌域)。現有的傳統電腦在 125 個軌域時,就需要超出宇宙所有原子數量的記億體來儲存所有的資訊,實際上無法處理如此大量複雜的資料和運算,因此現在的量子化學家在建模型時,常必須故意省略某些電子的行為特性,尤其是電子間強烈互動的情形。這種近似算法在模擬有機化學分子時是可以接受的,但是在金屬分子這種大量電子擠在極小空間的例子,電子間的強互動卻正是它的本質,被忽略就無法真正了解實際的化學原理。類似無法被簡化的傳統方式模擬的例子還有高溫超導體材料、含金屬的酵素活性位點等。

-----廣告,請繼續往下閱讀-----

然而量子位元的疊加特性使量子電腦能夠輕鬆完成這類運算,對新藥和新材料研發做出極大的貢獻,一旦技術成熟,新藥的研發前期將可透過量子電腦模擬化合物結構和生物體內酵素或受器的交互作用,對療效和副作用做較佳的預測,減少研發時間和成本,熟悉並且了解如何利用量子運算的廠商在新藥設計就會占有先機。

(三)量子電腦對比特幣市場和區塊鏈安全的威脅

圖/BenjaminNelan @Pixabay

虛擬貨幣比特幣和其他使用區塊鏈技術之應用的安全性,在於其加密的強度很高,不容易被傳統電腦破解,當擅長於複雜運算及密碼破解的量子電腦技術漸趨成熟,會不會對這些應用產生威脅?例如現行的比特幣協定,利用生成一個特定的隨機數(nonce)做為新區塊鏈生成的必要條件之一,而生成這個隨機數需要大量的計算能力,礦工挖礦就是提供計算能力,並獲得比特幣做為獎勵。然而偶爾會有兩組礦工同時宣告兩個不同的區塊,此時比特幣協定會以已完成較多運算的區塊為主,抛棄另一個落後的區塊,這會導致網路中擁有多數運算能力的礦工永遠獲得下一個區塊,成為控制比特幣帳簿的主宰。如果量子電腦加入挖礦的行列,並且展現出壓倒性超出其他礦工的計算能力,整個比特幣市場就可能瓦解。新加坡國立大學的研究人員針對這個可能,對未來十年量子電腦運算能力的預測和目前用來挖礦的電路運算能力成長做比較;結果發現,未來十年內現有的硬體還能夠在速度上占有優勢,量子電腦主宰比特幣挖礦的情況應該不至於馬上發生。

然而比特幣的另一個安全協定特徵,橢圓曲線數位簽章(elliptic curve signature)卻可能更快在量子運算下暴露出弱點,比特幣的擁有者會握有一個私有密鑰和發布一個公開密鑰,在不公布私有密鑰的情形下,利用公開密鑰來證明自己是這個比特幣的擁有者,而公開密鑰可以很容易的由私有密鑰生成,反之則不然。雖然傳統電腦很難透過公開密鑰算出私有密鑰,對量子電腦來說卻很容易,研究人員估計在 2027 年這項安全協定就可能會被破解6

雖然比特幣和其他虛擬貨幣還未真正普及,但其交易熱度和市場接受度日漸增加,在金融市場逐漸開始接受和嘗試奠基於密碼保護的數位化交易平台時,量子運算技術對區塊鏈的威脅和未來金融市場的衝擊不可小覷,在可見的未來,這場矛與盾的對決將隨著量子運算漸趨成熟,和區塊鏈技術的普及化越來越激烈。

-----廣告,請繼續往下閱讀-----

結語:量子電腦的未來,企業與國家的挑戰

IBM 推出的 20 量子位元的商業化雲端量子運算服務,是量子電腦的重大里程碑,象徵著量子運算時代的曙光乍現,有些分析指出最快 2 到 5 年內,量子運算會開始進入實質企業應用。

如前文所述,也許量子電腦初期的應用是在於特定領域解決特定的問題,同時需搭配傳統電腦作為運算升級之用,但仍然具有極大潛在的商業機會或是風險。如同人工智慧的快速發展,一旦量子電腦起飛,企業和國家如何因應和準備,找到利基,建立差異化優勢,又如何預應風險,例如發展不受量子運算破解的加密方式,維護資料安全等,都需要全方位的整體性思考及規畫。

參考資料:

  1. 陳蔚然(2017)。第二次量子革命啟動
  2. 王宣智(2015) 。英國量子技術發展戰略
  3. Ashley Montanaro. (2016). Quantum algorithms: an overview.
  4. Associated Press. (2017). IBM says it’s reached milestone in quantum computing.
  5. Brian Wang. (2017). China will open a $10 billion quantum computer center and others also investing in quantum computing.
  6. Emerging Technology from the arXiv. (2017). Quantum computers pose imminent threat to bitcoin security.
  7. Idalia Friedson. (2017). Quantum computing will be a huge advantage to whatever nation gets it to work first.
  8. Jennifer ouellete. (2017). Nanofridge could keep quantum computers cool enough to calculate.
  9. Katherine Bourzac. (2017). Chemistry is quantum computing’s killer app.
  10. Mark Anderson. (2017). A hybrid of quantum computing and machine learning is spawning new ventures.
  11. MIT review. (2017). 10 breakthrough technologies 2017.
  12. OECD. (2016). OECD Science, Technology and Innovation Outlook 2016.
  13. Office of the deputy assistant secretary of the army (research & technology). (2016). Emerging science and technology trends: 2016-2045.
  14. Peter Reuell. (2017). Researchers create quantum calculator.
  15. Princeton University. (2017). New silicon structure opens the gate to quantum computers.
  16. Ron Miller. (2017). IBM makes 20 qubit quantum computing machine available as a cloud service.
  17. Russ Juskalian. (2017). Practical quantum computers.
  18. Tiffany Trader. (2017). Japan unveils quantum neural network.
  19. Will Knight. (2017). A start up uses quantum computing to boost machine learning.
  20. Will Zeng, Blake Johnson, Robert Smith, Nick Rubin, Matt Reagor, Colm Ryan& Chad Rigetti. (20173). First quantum computers need smart software.
  21. IBM Quantum Computing 

本文轉載自科技政策與資訊中心網站《科技政策觀點》,原文標題《量子電腦─曙光乍現

延伸閱讀:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
Research Portal(科技政策觀點)_96
10 篇文章 ・ 8 位粉絲
Research Portal(科技政策觀點)為科技政策研究與資訊中心(STPI)以重要議題導向分析全球科技政策與科技發展趨勢,呈現研究觀點與產出精華。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
從 MiniLED 到 QLED:量子點技術如何改寫螢幕的未來?
PanSci_96
・2024/11/17 ・2235字 ・閱讀時間約 4 分鐘

量子點:從顯示技術到量子計算的革命

顯示面板的技術一直在進步,從最早的液晶顯示(LCD),到日益火熱的 MiniLED,再到正在被熱烈研發中的 MicroLED。隨著像素越來越小,螢幕畫質的進步讓人驚嘆不已。然而,現在有一項技術,它並非透過縮小像素來提升畫質,而是以更純淨的顏色帶來視覺上的革命—那就是「量子點技術」(Quantum Dot)。

量子點技術不僅為我們的螢幕帶來更好的顏色,甚至還有可能在量子電腦的未來發展中扮演重要角色。究竟這些小到幾奈米的半導體晶體是如何改變我們的世界?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子點?

量子點是一種半導體奈米晶體,其直徑僅為幾奈米大小,也就是僅包含數百到數萬個原子。在這麼小的尺寸下,量子力學的奇妙特性開始影響顆粒的物理性質。這些量子點能夠吸收特定波長的光,並根據自身大小發射出頻寬極窄的單色光。這也意味著,透過控制量子點的大小,我們可以精確地調整它所發出的顏色。

這項技術在顯示領域中得到了應用,稱為量子點顯示技術(QLED)。QLED 螢幕通常使用藍光 LED 作為背光源,再經由塗有量子點的薄膜來產生鮮艷的紅光和綠光,以此混合出更飽和的色彩,並提供更廣的色域。此外,由於減少了傳統彩色濾光片的使用,QLED 螢幕也更為省電且光效更高。

-----廣告,請繼續往下閱讀-----

MiniLED 與 MicroLED 的比較

要了解量子點技術的優勢,我們首先需要認識當前的顯示技術:MiniLED 與 MicroLED。

MiniLED 雖然名字聽起來和 MicroLED 相似,但它們的工作原理和應用有所不同。MiniLED 屬於有背光結構的面板,主要用於電腦和電視螢幕市場。它的顯色能力優秀,且通過調整背光區域的亮度,可以產生高對比度的畫面,甚至能呈現比傳統 LCD 更黑的黑色。

相比之下,MicroLED 則是無背光的技術,利用紅、綠、藍三種顏色的小燈泡直接發光,這些燈泡小到可以嵌入每個像素中。因此,MicroLED 的螢幕結構更薄,並能減少顏色劣化問題。然而,由於技術難度高,MicroLED 目前仍處於開發階段。

量子點的顯色技術有多特別?

傳統的顯示技術中,無論是 LCD、MiniLED 還是 OLED,它們的色彩顯示都需要依賴彩色濾光片來混合光源。而量子點技術則不然。量子點可以根據顆粒的大小發射出精確且純淨的單色光,其顏色純度遠超傳統濾光片。

-----廣告,請繼續往下閱讀-----

量子點的神奇之處在於,同一種材料可以隨著顆粒尺寸的變化而發射出不同的顏色。這意味著我們只需要製造出不同大小的量子點,就可以得到紅、綠、藍三原色的高純度光源,進而混合出更加鮮豔的色彩。這種「大小決定顏色」的現象,正是量子力學中能階與顆粒大小之間微妙關係的體現。

量子點技術憑顆粒大小精準發光,色彩純度遠勝傳統濾光片。圖/envato

量子力學與量子點的關聯

量子點的顏色之所以能隨顆粒大小改變,是因為量子點內部的電子受到能階的限制。在半導體材料中,電子的能量可以分佈在幾個不同的能階上,當電子從高能階回到低能階時,會以光的形式釋放出多餘的能量。而量子點的尺寸越小,電子能佔據的能階也越少,因此當電子釋放能量時,會放出更高能量的光子,這也導致了更短波長的光,比如藍光。

諾貝爾化學獎與量子點的製備技術

早在幾千年前,工匠們就已經能透過加入不同的金屬粉末來製作出不同顏色的玻璃,但他們並不知道背後的原理。直到 1980 年代,科學家們才發現,這些顏色變化與量子效應有關。2023 年的諾貝爾化學獎,正是授予了對量子點研究做出重要貢獻的三位科學家(分別為巴汶帝 ( Moungi G. Bawendi )、布魯斯 ( Louis E. Brus ) 和艾吉莫夫 ( Alexei I. Ekimov )),他們開發的技術讓量子點的製造變得更加容易且精確。

其中,蒙吉·巴文迪(Moungi Bawendi)開發的製程可以在溶液中精確控制量子點的大小,這使得量子點的性質與應用變得更加穩定且可預測,從而加速了量子點在顯示技術和其他領域的商業化應用。

-----廣告,請繼續往下閱讀-----

量子點在量子電腦中的應用

量子點的應用並不僅限於顯示技術。由於它們能夠透過改變大小來調控各種物理特性,因此又被稱為「人工原子」。這使得量子點在量子電腦中也有巨大的潛力,特別是在儲存與處理量子位元資訊方面。

量子電腦與傳統電腦不同,其運算依賴量子位元,而量子位元可以同時處於多個狀態。要讓量子位元的狀態穩定且能長時間儲存,是量子電腦硬體設計的一大挑戰。量子點因其特殊的能階特性,有望成為量子電腦中儲存量子位元的理想材料。

量子點技術的未來

量子點技術的出現,不僅改變了我們對顯示面板的認知,也為量子計算領域帶來了新希望。隨著技術的進一步成熟,量子點在顯示技術之外,還有可能應用在更多的高科技領域,如光學感測、生物醫學標記等。

如果你對量子點的應用充滿好奇,不妨繼續關注相關的技術發展。也許有一天,這些微小的「人工原子」會成為推動科技變革的核心力量,為我們的生活帶來更多的驚喜和便利。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
愛因斯坦也困惑!量子糾纏如何顛覆距離的限制?
PanSci_96
・2024/11/05 ・1765字 ・閱讀時間約 3 分鐘

量子糾纏的生活比喻:情感的同步

想像一下,你有一位從小就非常要好的朋友,無論他做什麼,你都感同身受。他吃下午茶,你也立刻想來一份;他開心,你也情不自禁地微笑;他難過,你也跟著心情低落。你們之間的情緒達到了百分之百的同步。雖然你們身處不同的地方,但似乎有一條無形的線將你們連接在一起。

這種神奇的連結,正是量子力學中的量子糾纏(Quantum Entanglement)。在微觀的量子世界裡,兩個曾經互相影響的粒子,即使相隔萬里,依然可以保持同步的狀態。一旦其中一個粒子的狀態被測量,另一個粒子的狀態也會立即確定,這種現象挑戰了我們對於時空和因果關係的理解。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

角動量守恆與粒子自旋

要理解量子糾纏,我們首先需要了解角動量守恆和粒子的自旋。想像一顆靜止的砲彈,突然爆炸成兩個旋轉的碎片。根據角動量守恆定律,兩個碎片的旋轉方向必須相反,才能使總角動量保持為零。

在量子力學中,粒子的自旋類似於這種旋轉,但並非真正的物體旋轉,而是粒子固有的一種量子性質。一個自旋為零的粒子衰變成兩個帶有自旋的粒子時,兩者的自旋方向必須相反,以維持角動量的守恆。

-----廣告,請繼續往下閱讀-----

然而,與宏觀世界不同的是,量子粒子的自旋狀態在被測量之前,處於一種「疊加態」,也就是說,它們同時具有多種可能的狀態,直到測量發生,狀態才被「塌縮」為確定的值。

EPR悖論:量子力學的挑戰

1935 年,愛因斯坦、波多爾斯基和羅森提出了著名的 EPR 悖論。他們認為,量子力學對於自然的描述並不完備,因為它無法預測單個粒子的確切狀態。他們設想,如果兩個粒子處於糾纏狀態,測量其中一個粒子的自旋方向,另一個粒子的自旋方向就立即確定,無論兩者距離多遠。

這似乎暗示著訊息以超光速傳遞,違反了相對論。然而,他們認為,應該存在一些「隱變量」來決定粒子的狀態,而不是量子力學的機率性描述。

貝爾不等式與實驗驗證

為了檢驗 EPR 悖論,物理學家貝爾在 1964 年提出了貝爾不等式。該不等式提供了一種方法,可以通過實驗來區分量子力學的預測和隱變量理論。

-----廣告,請繼續往下閱讀-----

1972 年,約翰·克勞澤和他的同事首次進行了實驗驗證,結果支持量子力學的預測,違背了貝爾不等式。這意味著,量子糾纏的現象是真實存在的,粒子之間的連結不需要透過任何已知的訊息傳遞。

之後,阿蘭·阿斯佩等科學家進一步完善了實驗,消除了可能的漏洞,堅定了量子力學的立場。2022 年,克勞澤、阿斯佩和安東·塞林格因在量子糾纏領域的貢獻,共同獲得諾貝爾物理學獎。

阿蘭·阿斯佩(Alain Aspect )的實驗堅定了量子力學的發展。圖/wikimedia

「鬼魅般的超距作用」的理解

量子糾纏挑戰了傳統物理學對於因果和現實的理解。愛因斯坦稱之為「鬼魅般的超距作用」,因為它似乎違反了光速的限制。然而,現代物理學家認為,量子糾纏並不傳遞任何可用於通信的訊息,因此不違反相對論。

糾纏粒子之間的連結被視為量子系統的整體性質,而非個別粒子的屬性。當我們測量其中一個粒子時,整個系統的波函數發生了變化,導致另一個粒子的狀態也被確定。

-----廣告,請繼續往下閱讀-----

量子糾纏的應用與未來

量子糾纏不僅僅是理論上的奇觀,它在實際應用中也展現了巨大的潛力。安東·塞林格成功地利用量子糾纏實現了量子隱形傳態,將一個粒子的量子態傳輸到遠方的另一個粒子上。

此外,量子糾纏在量子計算和量子通信中扮演關鍵角色。量子計算機利用糾纏態進行超高速的計算,而量子通信則提供了無法被破解的加密方式,保障訊息的安全。

結語:量子世界的奇妙之旅

量子糾纏揭示了自然界深層次的連結,挑戰了我們對於現實的直覺認知。儘管我們無法在宏觀世界中直接感受到這種現象,但它真實地存在於微觀的量子世界中,影響著未來科技的發展。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。