0

10
6

文字

分享

0
10
6

量子電腦為何比傳統電腦強大?量子運算的發展又有哪些挑戰呢?

Research Portal(科技政策觀點)_96
・2018/04/27 ・6199字 ・閱讀時間約 12 分鐘 ・SR值 587 ・九年級

國小高年級科普文,素養閱讀就從今天就開始!!

  • 文/林明宜 │ 國家實驗研究院科技政策與資訊中心助理研究員,研究領域為神經科學、醫學工程及前瞻技術趨勢分析

量子電腦挾著其強大運算速度和能力的潛能,使得全球科學界和產業界(Google, IBM, Microsoft, Intel 等)競相投入7。雖然目前仍在理論實踐和可操作原型發展階段,近年的技術突破似乎使得每年都「即將成功」的量子電腦真正更接近商業化應用。在今日知識經濟和全球化競爭的時代,運算能力即是國家和企業的競爭力,因此量子電腦在近年頻頻被各國視為重點發展技術,許多科技趨勢報告也將其列為年度突破11 12 13。國研院科政中心之前已經對各國的量子技術發展策略和台灣的研發現況撰寫專文討論(編按:參見英國量子技術發展戰略第二次量子革命啟動)。本文將更新近期技術發展趨勢和討論量子電腦未來對社會可能造成的衝擊。

圖/TheDigitalArtist @Pixabay

什麼是「量子運算」?從基本原理談起

量子位元(qubit)是量子電腦最基本的運算單元,為了使量子位元能夠被運用,量子必須達到量子疊加(quantum superposition)和量子糾纏狀態(quantum entanglement):即單一量子須同時處於兩種物理狀態,且兩個量子間需形成聯結,使得兩個量子即使不處於同一個空間,卻可以即時互相影響,才能做為量子運算基本單元17。量子可以是電子、離子或光子,只要能夠達到疊加和糾纏狀態就可以做為量子位元,量子位元的讀寫可透過微波、磁脈衝或雷射。目前主流的五種量子運算方式有矽自旋量子離子阱超導迴路鑽石空位拓樸量子

量子疊加可以用丟擲硬幣比喻:硬幣可為頭像(1)或反面(0)就如同傳統的位元,將硬幣擲到空中轉動時,硬幣不停在頭像和反面轉換,在空中旋轉時就像是同時為 1 和 0,只有真正落下後才知道最後落在那一面。以電子做為量子為例,電子自旋向下時能量最低為 0,可利用特定頻率的微波脈衝加熱電子,使電子獲得能量後自旋向上,寫為 1,若將量子置於矽晶體電極中,就可以量測到電流獲知量子的狀態。

圖/jarmoluk @Pixabay

那麼又如何達成量子糾纏狀態?若以光子為例,科學家可以用雷射產生大量光子射入兩層超薄,相性相反的非線性晶體,當光子通過非線性晶體時,偶爾會產生成對的光子,由於兩層晶體相位相反,產生的光子極性相反,可能為垂直或是水平,又因為晶體極薄,光子的相位是垂直或水平,只有在量測時可以得知,而且這對光子的相位一個若為垂直,另一個就必為水平,反之亦然,此時這對光子的狀態就稱為量子糾纏狀態。

量子糾纏示意圖 圖/作者提供

由於量子位元的疊加和糾纏特性,使得量子位元可以不像傳統電腦位元只能為 0 或 1,而是能夠同時為 0 和 1,此特性使量子位元的運算能力增加,量子電腦得以進行大量資料的平行運算。

量子電腦為何比傳統電腦強大?

如前所述,量子電腦不像傳統電腦,運算步驟被位元數限制。如果想找出 4 位元(可為 0 或 1)組合中某一組數字,傳統電腦最多需要嘗試到 16 次,平均需要嘗試 8 次;如果想找出 20 位元組合的其中一組數字,最多需要嘗試到約一百萬次運算步驟。由此可知傳統電腦在解決這類問題時,嘗試的次數和所欲搜尋的數字可能組數呈線性關係,當所運算的可能性呈指數成長時,即使是超級電腦,所需要的運算時間將長到無法實際用來解決問題。量子運算由於其特殊的量子特性,在上述的 4 位元組合數字問題,量子運算可以在 4 次運算後直接得到 16 種可能情形中的解答,在 1000 次運算後即可找出 20 位元組合,一百萬個可能的其中一組特定數字,運算次數只需可能情形總數的平方根,滿足指數型的複雜運算需求。

要發展量子運算,還有哪些技術挑戰?

(一)穩定量子態的維持

細緻的量子態十分容易受到振動或電磁場,甚至一般熱擾動的干擾,所以現在的量子電腦需要在接近絕對零度的超低溫度操作8。目前主要的技術瓶頸除了增加量子位元數之外,就是如何維持穩定量子態,使量子維持在某個量子態時間(相干時間,coherence time)夠長,足以完成運算工作並增加運算正確率。

其中微軟的研究團隊正嘗試操縱 2012 年才被發現的「準粒子」,用編辮子糾結方式,使量子位元可以抵抗外界干擾,讓量子位元和繩結一樣穩定,如此一來,量子電腦的運算能力就不用再被大量浪費在更正錯誤上17

(二)量子位元的可擴充性

另一個使量子電腦能夠進入實際應用的關鍵,是量子位元的可擴充性,現行主流量子運算技術之一的矽自旋量子,就是由於可以利用已經十分成熟的半導體技術,具有和現行電腦相容性,且被認為未來容易向上擴充,而吸引英特爾和其他研究人員投入研發。普林斯頓大學的實驗室近期在矽量子元件上有關鍵性的技術突破15,製造出能夠準確控制兩個電子之間量子行為,以矽為材料的元件,且錯誤率極低。這個突破性的量子位元邏輯閘,由高度有序排列的矽晶體構成,晶體上布有數十奈米的氧化鋁線,用來遞送電壓,將兩個被能階隔開的電子困在特定的量子點,再利用短暫的降低能階隔閡,使兩個電子能夠互相交換資訊,達到量子糾纏狀態。這項研究是第一次在矽材料中成功達到量子糾纏。研究人員可以利用磁場控制量子位元行為,目前控制電子量子態穩定度達 99%,而邏輯閘的可靠度達到 75%,這項技術除了具有可擴充性,錯誤率在未來還可能再下降。

(三)量子軟體研發

除此之外,為了使量子電腦真正發揮效能,專家們認為應該同步開發量子軟體20。量子運算程式的複雜度和難度源於量子電腦的本質,運算時將帶有一定程度的雜訊,所以程式設計時必需將量子電腦的物理原理和位元限制納入考量,需要先預建雜訊模擬模型,以處理操作正確性的問題。而早期發展出的量子電腦由於運算硬體設計尚未統一,將具有不同性質的細微差別,軟體需要一定程度的客製化。運算的高複雜度也將帶動新的演算法和開發工具的需求,量子電腦軟體設計人員需具備深厚的物理、數學和軟體工程知識,跨領域、對各領域有深度知識的人才培育將會是軟體研發的關鍵,同時許多量子軟體都有開源式社群開發平台,以群策群力結合資源加速早期軟體開發速度。

量子電腦發展現況

  • IBM 官方釋出的量子電腦研究室( IBM Q computation center)介紹影片

目前最早實際被投入應用的量子電腦由 5 個量子位元構成,由 IBM 研發,採用的是超導迴路技術,IBM 並在 2017 年底開始提供 20 位元的商業化雲端量子運算服務16。而 50 個量子位元是一個深具意義的里程碑,這代表著超越現有任何超級電腦可以達到的運算能力,象徵量子優越(quantum supremacy)時代的來臨,目前 IBM 已十分接近這個目標,建造出 50 量子位元的原型機4,Google 的團隊也緊追在後,2017 年 11 月的自然期刊中,麻省理工學院、哈佛、加州理工學院的合作團隊和馬里蘭大學的量子運算中心也分別用不同的技術達到 50 個量子位元的運算系統14;大陸在 2017 年底宣布將投資一百億美元成立新的量子電腦中心,預計在 2020 年開始運作5,日本也加入國際量子競賽,宣布免費提供量子類神經網路服務,並將投資 2 億 6 千 7 百萬美元,在 2018 年開始十年量子研發計畫18

雖然由於量子電腦特性,無法儲存資訊和運算結果,加上體積和所需要的硬體維護人員及費用高昂,在可見的未來都將與傳統電腦結合透過雲端提供運算服務,現在的量子電腦確實已經即將從實驗室步入實際應用,預備顛覆創新材料製造、化學製藥、人工智慧、網路安全和金融科技的領域。

量子電腦未來普及,將對社會帶來哪些改變與衝擊?

(一)量子電腦和人工智慧的結合

圖/geralt @Pixabay

量子電腦的強項在於亂數產生、尋找未排序數列的最小值、解決圖論中的節點連結問題、特徴吻合等,科學家已經設計出多種量子演算法,來解決傳統電腦不易解決的問題16。其中 2008 年由三位科學家 Harrow、 Hassidim 和 Lloyd 發明的量子演算法 HHL,能夠快速解決多自由度,龐大的線性代數問題;而機器學習正好大量倚重這類型的大量線性代數運算,因此專家們很快就開始試圖將量子演算法和機器學習結合,機器學習是少數在量子電腦發展早期就有機會找到利基的領域。

雖然短期內傳統的機器學習仍會較早開始實際應用在交通、醫學和金融市場,量子系統在產生真正亂數和處理非傳統二進位式資料會時將占有較大的優勢,例如傳統常應用於金融市場的蒙地卡羅機器學習演算法,需要產生真正的亂數才能有最佳表現,此時量子電腦的長處就可以被展現10。許多量子機器學習新創公司已經開始研發如何利用量子系統加速機器學習,其市場潛能也吸引了許多資金投入19

(二)量子電腦在化學和製藥的應用

圖/hioahelsefag @Pixabay

一般專家普遍認為,化學將是量子運算最強且最立即的應用9。量子電腦將可以用來幫助設計乾淨能源所需要的催化劑,了解生物體內的酵素,發現新的太陽能電池材料或高溫超導體材料。它的優勢在於超乎現有傳統電腦的強大運算能力,足以真正模擬和創造複雜的電子和分子互動模型。

一般進行化學反應模擬時,由於需了解各分子所含原子彼此間互動情形,需計算各原子的電子互動能量,包含所有電子的位置和能階(即軌域)。現有的傳統電腦在 125 個軌域時,就需要超出宇宙所有原子數量的記億體來儲存所有的資訊,實際上無法處理如此大量複雜的資料和運算,因此現在的量子化學家在建模型時,常必須故意省略某些電子的行為特性,尤其是電子間強烈互動的情形。這種近似算法在模擬有機化學分子時是可以接受的,但是在金屬分子這種大量電子擠在極小空間的例子,電子間的強互動卻正是它的本質,被忽略就無法真正了解實際的化學原理。類似無法被簡化的傳統方式模擬的例子還有高溫超導體材料、含金屬的酵素活性位點等。

然而量子位元的疊加特性使量子電腦能夠輕鬆完成這類運算,對新藥和新材料研發做出極大的貢獻,一旦技術成熟,新藥的研發前期將可透過量子電腦模擬化合物結構和生物體內酵素或受器的交互作用,對療效和副作用做較佳的預測,減少研發時間和成本,熟悉並且了解如何利用量子運算的廠商在新藥設計就會占有先機。

(三)量子電腦對比特幣市場和區塊鏈安全的威脅

圖/BenjaminNelan @Pixabay

虛擬貨幣比特幣和其他使用區塊鏈技術之應用的安全性,在於其加密的強度很高,不容易被傳統電腦破解,當擅長於複雜運算及密碼破解的量子電腦技術漸趨成熟,會不會對這些應用產生威脅?例如現行的比特幣協定,利用生成一個特定的隨機數(nonce)做為新區塊鏈生成的必要條件之一,而生成這個隨機數需要大量的計算能力,礦工挖礦就是提供計算能力,並獲得比特幣做為獎勵。然而偶爾會有兩組礦工同時宣告兩個不同的區塊,此時比特幣協定會以已完成較多運算的區塊為主,抛棄另一個落後的區塊,這會導致網路中擁有多數運算能力的礦工永遠獲得下一個區塊,成為控制比特幣帳簿的主宰。如果量子電腦加入挖礦的行列,並且展現出壓倒性超出其他礦工的計算能力,整個比特幣市場就可能瓦解。新加坡國立大學的研究人員針對這個可能,對未來十年量子電腦運算能力的預測和目前用來挖礦的電路運算能力成長做比較;結果發現,未來十年內現有的硬體還能夠在速度上占有優勢,量子電腦主宰比特幣挖礦的情況應該不至於馬上發生。

然而比特幣的另一個安全協定特徵,橢圓曲線數位簽章(elliptic curve signature)卻可能更快在量子運算下暴露出弱點,比特幣的擁有者會握有一個私有密鑰和發布一個公開密鑰,在不公布私有密鑰的情形下,利用公開密鑰來證明自己是這個比特幣的擁有者,而公開密鑰可以很容易的由私有密鑰生成,反之則不然。雖然傳統電腦很難透過公開密鑰算出私有密鑰,對量子電腦來說卻很容易,研究人員估計在 2027 年這項安全協定就可能會被破解6

雖然比特幣和其他虛擬貨幣還未真正普及,但其交易熱度和市場接受度日漸增加,在金融市場逐漸開始接受和嘗試奠基於密碼保護的數位化交易平台時,量子運算技術對區塊鏈的威脅和未來金融市場的衝擊不可小覷,在可見的未來,這場矛與盾的對決將隨著量子運算漸趨成熟,和區塊鏈技術的普及化越來越激烈。

結語:量子電腦的未來,企業與國家的挑戰

IBM 推出的 20 量子位元的商業化雲端量子運算服務,是量子電腦的重大里程碑,象徵著量子運算時代的曙光乍現,有些分析指出最快 2 到 5 年內,量子運算會開始進入實質企業應用。

如前文所述,也許量子電腦初期的應用是在於特定領域解決特定的問題,同時需搭配傳統電腦作為運算升級之用,但仍然具有極大潛在的商業機會或是風險。如同人工智慧的快速發展,一旦量子電腦起飛,企業和國家如何因應和準備,找到利基,建立差異化優勢,又如何預應風險,例如發展不受量子運算破解的加密方式,維護資料安全等,都需要全方位的整體性思考及規畫。

參考資料:

  1. 陳蔚然(2017)。第二次量子革命啟動
  2. 王宣智(2015) 。英國量子技術發展戰略
  3. Ashley Montanaro. (2016). Quantum algorithms: an overview.
  4. Associated Press. (2017). IBM says it’s reached milestone in quantum computing.
  5. Brian Wang. (2017). China will open a $10 billion quantum computer center and others also investing in quantum computing.
  6. Emerging Technology from the arXiv. (2017). Quantum computers pose imminent threat to bitcoin security.
  7. Idalia Friedson. (2017). Quantum computing will be a huge advantage to whatever nation gets it to work first.
  8. Jennifer ouellete. (2017). Nanofridge could keep quantum computers cool enough to calculate.
  9. Katherine Bourzac. (2017). Chemistry is quantum computing’s killer app.
  10. Mark Anderson. (2017). A hybrid of quantum computing and machine learning is spawning new ventures.
  11. MIT review. (2017). 10 breakthrough technologies 2017.
  12. OECD. (2016). OECD Science, Technology and Innovation Outlook 2016.
  13. Office of the deputy assistant secretary of the army (research & technology). (2016). Emerging science and technology trends: 2016-2045.
  14. Peter Reuell. (2017). Researchers create quantum calculator.
  15. Princeton University. (2017). New silicon structure opens the gate to quantum computers.
  16. Ron Miller. (2017). IBM makes 20 qubit quantum computing machine available as a cloud service.
  17. Russ Juskalian. (2017). Practical quantum computers.
  18. Tiffany Trader. (2017). Japan unveils quantum neural network.
  19. Will Knight. (2017). A start up uses quantum computing to boost machine learning.
  20. Will Zeng, Blake Johnson, Robert Smith, Nick Rubin, Matt Reagor, Colm Ryan& Chad Rigetti. (20173). First quantum computers need smart software.
  21. IBM Quantum Computing 

本文轉載自科技政策與資訊中心網站《科技政策觀點》,原文標題《量子電腦─曙光乍現

延伸閱讀:

文章難易度
Research Portal(科技政策觀點)_96
10 篇文章 ・ 4 位粉絲
Research Portal(科技政策觀點)為科技政策研究與資訊中心(STPI)以重要議題導向分析全球科技政策與科技發展趨勢,呈現研究觀點與產出精華。

0

1
2

文字

分享

0
1
2
超級電腦爭霸戰的新一頁開始了:Exascale(10 的 18 次方)之戰
Y.-S. Lu
・2022/09/10 ・5230字 ・閱讀時間約 10 分鐘

2023 即將上線的超級電腦(Supercomputer)

歐洲最大的超級電腦(Supercomputer),將要在 2023 年上線啦!今年六月中時,德國于利希研究中心(Forschungszentrum Jülich GmbH)的超級計算中心(Jülich Supercomputing Centre, JSC)發佈新聞稿[1],表示歐盟的歐洲超級電腦中心聯合承辦組織(EuroHPC Joint Undertaking)選定該研究中心的超級計算中心,做為歐洲第一個設立 Exascale 超級電腦 Jupiter 的地點[2],歐盟出資一半,而另一半的資金將由德國教育部(BMBF)以及北萊茵威斯特法倫州(Nordrhein-Westfalen)文化部共同出資,其意昧著這台超級電腦也將優先提供給德國的科學家,以及北威州的研究單位使用[註一]。表示現今的超級電腦軍備競賽,已打到了 Exascale 了,Jupiter 將是繼美國設立世界第一台 Exascale[註二]的超級電腦 Frontier 後[3],即將出現的次世代超級電腦(如果德國的施工期有好好的踩點)

位於阿貢國家實驗室的 IBM Blue Gene/P 超級計算機。圖/wikipedia

Exascale 的超級電腦具有「每秒百億億次(1018)」(也就是 100 京)的每秒浮點運算(FLOP)能力,實際規模也將具有國家高速運算中心台灣杉二號[4]的 111 倍以上的運算能力,也就是要建立超過百台規模的台灣杉二號才具有 Exascale 的規模,但也同時考驗硬體的處理能力、主機間節點的連線架構、資料讀寫能力,更甚者,則是軟體是否具有 Exascale 的使用能力,也就是硬體與軟體都必須要能夠良好的契合才行。

什麼是超級電腦?可以幫助都市成為超級都市嗎?

「這些顯示器太舊了」雷迪亞茲說。

「但它們後面是世界最強大的電腦,每秒可以進行五百萬億次浮點運算。」

~ 劉欣慈《三體:黑暗森林》

劉欣慈《三體:黑暗森林》(2007)提到人類「當時」最強的電腦,為五百萬億的運算能力「而已」,沒想到 15 年後的今天,地表最強的超級電腦 Frontier 是出現在美國的橡樹嶺國家實驗室(Oak Ridge National Laboratory),而不是小說裡說的,在洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),而且 Frontier 的效能還是小說裡超級電腦的五千多倍,可說是現實終於有超過小說的時候了(但我們依就沒有飛天滑板可以借東京都的死神小學生)

超級電腦是科學家進行高速/高效計算(High Performance Computing)的主要設備。超級電腦的架構,可以說是非常的簡單:用網路線連結各台主機,讓主機間互相溝通,才能夠進行平行運算。

一般超級電腦的架構大致上如下:一機板上可能會有一個到數個 CPU,而一個或是數個機板會組成一個節點(Node),有時數個結點會組成一個機櫃(Rack/Cabinet)。節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。

節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。圖/pixabay

在此架構下,如何讓結點間有效溝通,也是一門學問了[5]。這些 CPU 可以想象是每個拿著工程計算機的研究生,正等著教授指派任務給他們算,而一個節點就是一個房間,在同一個房間內的溝通一定是比較快的,當不同房間需要溝通時,就會需要走出房間去給資料,如果所有的人一起拿資料回報給教授,那這教授可能就會崩潰,所以如何讓研究生(CPU)互相溝通,又不至於塞車,就是電腦工程專家們的專業了。

現在超級電腦的架構也與過往的超級電腦不同了。除了採用巨量 Arm 晶片的日本富岳(具 158,976 節點)、自主研發晶片的中國神威太湖之光(具 40,960 節點)外,前十大超級電腦[3]都是採用 CPU 加上 GPU 的混合架構(如在機板上插上 GPU 增加運算效率),才達到 100 Peta-Flop(1Peta = 1015) 以上的計算量,也意味著未來要在超級電腦上進行高效計算,GPU 運算也成為很重要的應用,因此也有許多計畫正在將軟體朝 GPU 運算的方向前進與推動。

軟體是否能配合平行化,也是非常是否能進行高效運算的重點之一。所謂的高效計算,也是利用許許多多的運算元件(CPU 或是 GPU),採平行運算的方法,將一個問題切成許多碎片,以螞蟻雄兵的方法一一解決,所以不要再怪為什麼你家的電腦 CPU 無論幾核心都只用了一核心,那是因為你的軟體沒有進行平行處理。早期土木界在進行坡面的圓弧破壞面計算時,據說就是用人力一人算一片圓弧的切片,也算是(人力)平行運算的先驅之一了。一般電腦中使用平行運算最多的,應該就是你手上那張 GPU 顯卡,在 GPU 的加持下,電腦螢幕中每個點、每個邊、每個平面上的顏色與光影,才能完美的呈現在使用者的眼前,所以與其用顯卡挖礦,還不如投身虛幻而真實的遊戲世界

不過有了地表最強的超級電腦,並不代表我們今天就能夠像小說形容的一樣,能幾秒內預測核子彈的破壞能力,或是在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。

有了地表最強的超級電腦,並不代表我們能夠像小說一樣,在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。圖/pixabay

資料的讀入或是寫出,也是瓶頸之一,電路板與網路速度,以及資料存取方式都會造成資料讀寫的延遲,更不用說,若是打算模擬地球,其將耗盡 80 exabyte 等級的儲存空間,其為 CERN 的 ATLAS 與 CMS 計畫所產生的資料量的十倍[6]

為什麼氣候模擬要用到 Exascale?

Exascale 的超級電腦除了可以提供更多的運算能力,給更多的使用者進行模擬與計算外,也是挑戰超大型計算的開始。不過為什麼要 Exascale?到底為什麼一個模擬要用到上千甚至是上萬顆的 CPU 在運算?氣象氣候模擬已經將 Exascale 喻為下一階段應使用的救星[7],在氣象上除了要能做到一小時內達成氣象預測外,也希望能夠進行叢集式運算(像是利用隨機方法產生上百個因亂度而有不同結果的預測),進而進行機率式預測分析,或是提高水平距離至 2.5 公里以下的網格精度,此精度也為可進行對流模擬 (Convection-Permit)[8] 的精度。氣候模擬也需要高效能的運算,除了高精度的全球模型外,也需要進行長程的氣候模擬,幾十年到幾百萬年的模擬時間,也將需要 Exascale 等級的超級電腦來加速模擬,縮短實驗時間。越多的計算核心以及有效的平行運算,才能讓最真實的模擬結果讓人類使用,畢竟,誰都希望出遊不要遇上下大雨,也會希望能夠提前幾天知道颱風的路徑。

地球系統模擬中,其中一個挑戰便是進行模擬時程:挑戰一日(24 小時)的超級電腦計算可以得到多少年的模擬結果(simulated years per wall-clock day, SYPD)[6]還真的是「度日如年」,而此地球系統的精度為水平方向僅一公里的超高解析度,用來進行最終極的地球系統模擬:數位攣生(Digital Twins)[9]。數位攣生計畫主要是要建立地球的複製體,以方便人們對地球進行各種「實驗」,了解到經濟或政策面對地球生態或是氣候的影響,因此要達成此目的,強大具 Exascale 能力的電腦,便成為了目標。

目前已經有部份超級電腦都在進行 SYPD 的挑戰,如中國的神威太湖之光,其已完成了每日 3.4 年的地球系統模擬[10],只不過其地面僅有 25 公里的水平精度,海面僅 10 公里的水平精度,還有非常多的進步空間。只可惜,這個實驗並沒有進行進行資料輸出,無法得到正確的效能結果(資料的寫入與輸出也是非常費時的),以及真正的運算結果:因為沒有資料,就沒有辦法分析。

從高速電腦看量子電腦:量子電腦會是傳統的救星嗎?

量子電腦目前也成為了熱門名詞,從 2019 年開始,IBM 與 MIT 共同開始了量子計算課程,各學術單位也在搶攻量子電腦領域,但對地球模擬領域而言,量子電腦還太遙遠,對「傳統物理」的地球科學來說,我們解偏微分、解多項式,用的是傳統的數值方法,跟量子電腦界在進行的運算,也差了十萬八千里。

編按:這邊所說的數值方法,簡單講就是「暴力解」。例如要求圓周率,就先設定一個半徑為 1 的圓面積公式,然後問電腦答案是多少,電腦的第一步會把所有正整數代入公式中從一個初始數字(nitial State)開始,先找到答案會在 3 到 4 之間,之後又把 3 到 4 之間的所有數,帶回一開始的公式,得知答案在 3.1 到 3.2 之間,之後又將這個區間的所有數帶回一開始的公式,如此重複很多次後,就會得到相對接近的正確答案。

量子電腦就比較詭異了,量子態的平行運算與邏輯閘,使得兩者的運算邏輯完全不同,以上面的圓周率問題為例,量子電腦會直接給出在 3.1415925 至 3.1415927 之間,存在正確答案的可能性是最高的,但是這個範圍也有可能是錯的,而且就算是錯的,以我們現在的能力也很難說明它錯在哪裡。

從表面上來看,傳統電腦用暴力解,以排除錯誤答案的方式逼近正確答案,而量子電腦不排除錯誤答案,直接找到最有可能的答案會在哪個區域,但不保證運算過程中的正確性。

因為這個區別,若將現在成熟的模擬方法直接導入量子電腦中,最有可能出現的就是不知道怎麼解讀得到的數據,這包含了答案的正確程度,以及改動特定變數後所產生的答案變動是從何而來?

IBM 與 GOOGLE 正在爭奪追逐量子霸權(Quantum Supremacy)的同時[11],(不過 Google 號稱的量子霸權,也就是一萬倍的計算速度,在 2021 年被中國科學院理論物理所的 Feng 等人用了 15 個 NVIDIA V100 GPU 給追上[12][註五]),其離傳統電腦計算的距離,也有十萬八千里遠,離應用於地球科學計算上還有一定的距離,但只要哪一天能夠應用在普通的大氣循環模式(GCM),就可以算是第一步吧。但是在量子力學進入大氣科學前,我們氣候與氣象模擬還是只能使用傳統的電腦主機,靠著 2 位元的方法進行大氣模擬,所以目前傳統超級電腦還沒有被取代的機會。

結語:超大主機與超大計算

依摩爾定律,每十八個月,CPU 晶片的製成就會進步一倍,同時,超級電腦中心卻是一直受益於摩爾定律帶來的好處,也就是 CPU 的能力越來越強,而價格也越來越親民,也讓氣候氣象模擬的空間精度也隨之升高。

Neumann 等人也預計在 2030 年代後,進行 1 公里等級的超高精度計算也將不是夢想[7],而在 Exascale 主機降臨前的這個年代,有些超級計算中心已經以節點(Node)做為計算資源耗費的單位(Node per hour),而非 CPU per hour,顯示出大型主機對計算資源消耗的想法以從 CPU 規模上升到了 Node 規模。

一方面使用者受益於更多的 CPU 資源,但同時這些主機也要求更新更大量的計算能力,如瑞士的 Piz Daint 與瑞典的 LUMI,皆要求使用者的計算必須是含有 GPU 運算能力,而純粹靠 CPU 運算的軟體,將無法享受到同等的巨量資源。

IBM為橡樹嶺國家實驗室開發的Summit超級計算機(或 OLCF-4)。圖/flickr

而相應的挑戰也隨之而生,除了硬體將進入 Exascale 的時代,軟體也將一同進入這場大戰,才能享受同等的資源。另外一個挑戰則是綠色挑戰,1 公里精度的氣象模擬,每一模擬年將耗盡 191.7 百萬瓦時[6],相當於台灣一個家庭可以用上 43 年的電量[註三],也可以讓特斯拉的 Model 3LR 從地球開到月球來回開 1.5 次[註四],其耗能之巨,也是我們計算或是模擬界科學家應該要注意到的問題,也是為何除了 HPC Top500 外,亦有 Green 500[13]的原因吧,而具有超高效能的 Frontier,也同時奪下了 Green 500 之冠,也算是 Exascale 的好處吧。

註解與文獻

  • [註一] 若需使用 JSC 的超級電腦,必須透過不同的計畫項目進行申請,其計畫主持人(PI)為歐洲或是德國的研究者[14]
  • [註二] 日本的富岳其實也可以進行到 Exscale 的運算,只是要超頻而已,想當然爾是非常規設定。
  • [註三] 根據台電 2021 年新聞稿中,家庭離峰平均用電為 339 度以及 6-9 月為 434 度推估。
  • [註四] 根據 Tesla M3 LR 為 25kWh per 100 Miles,月球至地球為 384400 公里推估
  • [註五] Feng 也公開了他的程式碼
  • [1] Forschungszentrum Jülich 新聞稿
  • [2] EUROPE HPC 新聞稿
  • [3] 2022 年六月 HPC Top 500 名單
  • [4] 國家高速網路中心台灣杉二號介紹
  • [5] 司徒加特超級電腦中心:HAWK 主機之連線架構
  • [6] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler and C. Schär, “Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations,” in Computing in Science & Engineering, vol. 21, no. 1, pp. 30-41, 1 Jan.-Feb. 2019, doi: 10.1109/MCSE.2018.2888788.
  • [7] Neumann P et al. 2019, Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?. Phil. Trans. R. Soc. A 377: 20180148. http://dx.doi.org/10.1098/rsta.2018.0148
  • [8] Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., & Wilkinson, J. M. (2017). Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?, Bulletin of the American Meteorological Society, 98(1), 79-93
  • [9] Bauer, P., Dueben, P.D., Hoefler, T. et al. The digital revolution of Earth-system science. Nat Comput Sci 1, 104–113 (2021). https://doi.org/10.1038/s43588-021-00023-0
  • [10] Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. https://gmd.copernicus.org/articles/13/4809/2020/
  • [11] 「嗨量子世界!」~ Nature Newsletter
  • [12] Feng Pan, Keyang Chen, and Pan Zhang, Solving the sampling problem of the Sycamore quantum circuits, accepted by Phys. Rev. Lett.
  • [13] 2022 年六月 HPC Green 500 名單
  • [14] JSC 系統申請辦法

Y.-S. Lu
4 篇文章 ・ 5 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

0

7
2

文字

分享

0
7
2
水熊蟲真的能跟量子位元「量子糾纏」嗎?
linjunJR_96
・2022/01/20 ・2131字 ・閱讀時間約 4 分鐘

身形嬌小的水熊號稱地表最強生物,能夠透過獨特的「隱生」能力在最極端的環境下存活。這種狀態有點類似冬眠,遇見不利生存的條件時將所有代謝活動停止。

近期,有一國際研究團隊宣稱這種生物還有另一種出乎意料的能耐:和超導量子位元進行量子糾纏。用生物體做量子糾纏可是前所未聞,讓大家都嚇壞了。不過這個實驗究竟做出了什麼結果,讓作者可以做出這種宣稱?科學家沒事又為什麼要去抓水熊來糾纏呢?

掃描式電子顯微鏡下的水熊成蟲。圖/EOL

什麼是量子糾纏?

量子糾纏是量子力學獨有的一種描述,至於實際上到底是在「糾纏」什麼,可以參考先前這篇文章[2]

儘管名字聽起來很神祕,但量子糾纏並不只存在於科幻電影和內容農場,現今在實驗室中造出糾纏的粒子對早已是稀鬆平常的技術。量子計算和量子傳送等應用領域就是以糾纏作為基礎發展至今。

雖然這樣說,但利用糾纏粒子將物品或人類在星際間傳送的夢想可能還得再等等。因為目前能夠成功被「糾纏」的都是個別的金屬離子、奈米大小的粒子、和鑽石結晶這類易於控制,結構簡單的微小目標物。

相對於這些乾淨整齊的系統,生物體的結構可說是極為雜亂複雜,難以成為量子實驗的對象。

此外,為了減少物質本身熱能所帶來的振動影響,糾纏的實驗程序時常需要在接近絕對零度的低溫環境下進行。在這種溫度下不只生命無法延續,許多物質的特性也都已經改變。

因此,儘管實驗方面已經發展許久,要對活生生的生物進行量子糾纏仍是相當遙遠的目標。對量子力學來說,整個生物世界太亂又太熱,完全不會想靠近一步。正因如此,這篇拿水熊做實驗的文章才引起了大家的關注。

水熊和超導量子位元的糾纏

水熊一般只有幾百微米大,算是「巨觀」生物中相對微小的種類,要做量子實驗的話較好下手;更重要的是水熊能夠以隱生狀態度過嚴苛的實驗環境,爾後再重新恢復活力,如此一來要是成功便也算是對生物體進行量子糾纏了。

實驗團隊於是將一隻水熊放到了絕對溫標 0.01 度(也就是只比絕對零度高 0.01 度),同時接近真空的環境中,在此和兩個超導量子位元進行實驗。他們將水熊放入其中一個量子位元零件中,並觀察到位元的共振頻率產生改變。接著他們用常見的量子計算程序將兩個位元進行糾纏,並測試糾纏結果。

根據測試的結果,作者宣稱水熊和兩個量子位元形成了三個位元的組合態。也就是說,水熊在這裡變成了第三個等效的量子位元,和另外兩個超導位元糾纏在一起!實驗結束後,水熊周遭的溫度和壓力被緩慢恢復至適合生存的範圍,最後重新開始代謝活動。

作者宣布他們突破了以往的實驗限制,打開了通往量子生物學的大門,並以「水熊和超導量子位元的糾纏」為題,將文章的預印版放上了 arXiv 網站,引起科學界一片譁然。

圖/GIPHY

等等,這其實不用量子力學也能解釋

雖然實驗相當有趣,媒體也爭相報導,但是許多物理學家認為這份研究的標題過為聳動,突破性恐怕也是過於誇大。

超導量子位元其實跟一般電子零件一樣,裡面有電容、電感等等基本單元所組成的電路;而接近絕對零度的水熊,基本上能當成一小團冰塊。

實驗團隊將冰塊放到電容裡面,會改變它的共振頻率等特性其實不足為奇。如果電容裡面掉進了一些灰塵,其電路性質也會受到類似的影響。

不論零件中放入冰塊,灰塵,還是螞蟻,這些影響都是「傳統」的電磁學可以描述的,並非量子現象。

也就是說,作者宣稱的「整隻水熊做為一個量子位元進入了量子糾纏態」這個解讀不只言過其實,甚至有誤導之嫌。這篇文章目前還未投稿至期刊,因此沒有經歷同行科學家的審查,還不算是夠格的科學實驗結果。

關於這份研究有哪些方面需要改進,目前仍是備受爭辯的有趣問題。不過有件事是大部分人都同意的,那就是這次實驗再度刷新了水熊生存能力的極限。或許將來某天,水熊的隱生能力真的能成為生物世界和量子物理之間的橋樑。不過就目前而言,好奇心滿點的物理學家得再更努力些。

編按:該如何驗證量子糾纏,可以參考〈驗證量子纏結的貝爾不等式 │ 科學史上的今天:06/28〉,此論文的主要問題是不能藉由實驗設計,來確認三者共振頻率改變是源自於量子糾纏。

參考資料

  1. 看過「水熊蟲」走路嗎?——牠的步態與 50 萬倍大的昆蟲很相似!
  2. 照出黑洞不算什麼,科學家連量子纏結都能拍到!?
  3. 水熊和超導量子位元的糾纏(原文)
linjunJR_96
31 篇文章 ・ 491 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

3

14
1

文字

分享

3
14
1
是否有密碼之盾能夠擋住量子電腦之矛?後量子密碼學的前世今生——匯智安全科技陳君明董事長專訪
科技大觀園_96
・2021/09/30 ・3614字 ・閱讀時間約 7 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

密碼學這門學問對於多數的人來說可能並不是那麼熟悉,但現在構築我們的資訊世界基礎的其實就是密碼學,小到我們生活中的娛樂與通信,像是電子信件的收發、在社群網站上發文、線上消費時要用的電子支付,大到國家保護、商業資訊防護,像是銀行的資料防護系統,甚至到現在很活躍的區塊鏈技術,這些技術的核心都要仰賴密碼學為基礎去做發展。

現代密碼學是數學、電機、資訊的結合應用,其中包含了大量的資訊原理,以及數學理論,所以也可以說是數學在實務應用上的分支,隨著科技的發展,人類計算機的算力不斷的提升,相關的應用也持續在發展。

生活中處處可見密碼學的蹤跡。圖/pixabay

不過近年來量子運算 (Quantum computing) 技術的快速進展,也開始對現今使用的加密與解密系統帶來衝擊。其實早在1994年彼得.秀爾(Peter Williston Shor)這位數學家提出的量子質因數分解演算法(Shor演算法或是Shor公式)時,就宣告了只要人類能夠使用量子電腦,將可以快速突破 RSA 這種我們目前生活中的主流演算法(RSA為發明此演算法的三位科學家姓氏的第一個字)。

時至今日,不管是 google 的「Sycamore」還是IBM的「IBM Q System One」甚至是中國科學技術大學的「九章」,都在告訴我們量子電腦的應用在可預見的未來是會出現的,為了應對量子跳躍性的計算能力,世界上也展開了次世代資安技術的研究與規格制定,這其中以基於密碼學為發展基礎的後量子密碼學 (Post-Quantum Cryptography, PQC) 以及以量子技術為基礎的量子密鑰分發 (Quantum Key Distribution,QKD) 為目前較有名的加密方式。

不過由於 QKD 目前在開發上還有很多問待解決,美國國家安全局(NAS)目前並不建議使用這種加密系統,所以這次主題將集中在 PQC 的討論上,我們就請到匯智安全科技陳君明董事長,和我們談談究竟 PQC 怎麼從眾多加密方式中脫穎而出,而 PQC 領域現在發展的狀況又是如何呢?

陳君明董事長。圖/陳君明提供

早在40年前就開始的後量子密碼學,最近開始進入到大眾的視野中

陳君明表示,在過去幾十年來的加密算法主要是以質因數分解(RSA)與離散對數問題 (DSA.ECC…) 為安全基礎下去設計,直到目前為止也都是如此,但就像前面說的,1994 年 Shor 演算法 (shor’s Algorithm) 的出現,就已經預知了量子電腦的出現將可以快速突破這類利用特定「群」來設計的演算法。

不過雖然說量子電腦在破解 RSA 有非常大的優勢,但他能發揮優勢的也只是在這樣特定的領域,所以科學家們為了要防禦量子電腦在未來造成的衝擊便開始往 PQC 的方向走,而數學專業的陳董事長也剛好就是在這個時期觸到密碼學,原本就不希望數學的專才侷限在純數學的領域的關係,便順水推舟的往密碼學方向做發展。

量子電腦的出現,大幅挑戰密碼學的安全性。圖/flickr

PQC 一開始的出現並不完全是為了要防禦量子電腦的攻擊(畢竟當時也還沒發明出量子電腦),他比較像是科學家們為了要加強我們的公鑰加密系統去做的研究,說的簡單一點,就是數學家們不斷的在開發數學工具 (演算法) 來讓我們的加密系統可以有更好的防護效果,而 PQC 是其中一個大分支,直到近期量子電腦的出現 PQC 才開始變得更主流。至於原本前面談到的RSA、ECC…過去主流的演算法也因此開始變得較為沉寂,畢竟未來會被破解的機會比較大,研究者們自然比較不會往這些舊的加密領域做太多投入。

PQC如何對抗量子電腦?

在談到如何對抗量子電腦前,我們必須先了解量子電腦到底強在哪裡。在大眾的想法中量子電腦聽起來非常厲害,應該是運算能力比我們目前使用的傳統電腦強上非常非常多的新形態電腦,但這樣的說法其實只說對了一半。

量子電腦強大的是他在解特定種類的數學問題時,可以有極為強大的運算能力(百萬倍以上),也就是說量子電腦在做特定的事情上非常厲害,但在這些事情之外,量子電腦基本上並不會比傳統電腦更有優勢,而 PQC 就是繞過量子電腦優勢去設計的加密演算法。

「嚴格來說,利用代數結構的特性,來讓量子電腦無法發揮他的優點。」陳君明和我們說明道,但了解了PQC之所以能防禦量子運算的原因後,你大概就會發現,其實 PQC 並不是一種單純的演算法,而是「繞開量子電腦算力優勢」這種策略下出現的演算法的總稱。

目前美國國家標準技術研究院 (NIST) 已於 2016 年啟動了後量子密碼學標準化流程,並向世界公開徵求演算法,經由透明且嚴謹的程序來篩選出適合的國家標準,說的簡單一點,做為 PQC 領域領頭羊的 NIST,會先提供一個演算法的基本規則,讓大家投稿自己的演算法,接著公開這些算法讓大家去互相破解,逐步篩選出夠強的演算法,就像提供一個演算法的PK擂台,留下夠強的演算法進入下一輪篩選,2017 年通過初審的的演算法有69組,進入第二輪(2019)的有26組,晉級第三輪(2020)的有7組勝選組和8組敗部組,而NIST也將在 2022 到 2024 年經由競賽的結果,來公布國家標準的草案。

「這些數學工具(演算法)基本上都不太一樣,其中lattice是比較被看好的算法,不過真的要說誰最強並不準。」陳君明和我們說明道,在演算法的驗證過程中,要去證明一個算法是安全的其實不太可能辦到,反之我們要證明他不安全是相對容易的,所以在密碼學領域中,能夠經過千錘百鍊留下來的算法更能證明自己的安全性,同時也比較能受到大家的信任。

所以在今年底或明年初,NIST將會公布獲選的演算法,彼時就會知道未來將由哪種算法來代表PQC領域帶著世界繼續前進。

PQC這麼早就有了為什麼到現在才開始用呢?

PQC 的好處是不需要使用到量子力學(技術與設備條件較為嚴苛),僅使用現有的傳統電腦套用函數庫,即可完成加密系統的運作且能防禦量子運算的威脅。那你可能會問,如果 PQC 這種解法這麼好用,為什麼到近年才開始成為顯學呢?當然前面有說到量子電腦的出現推了 PQC 一把,但實際上 PQC 有一個比較明顯的問題,那就是加密使用的金鑰非常巨大。

前面有說到現行使用的大宗加密方式有 RSA 和 ECC 等方法,他們的大小約為 2048 bit 上下,算是比較小的,運算上較為便利。但 PQC 的金鑰可能會大上千倍以上,這樣在存儲與運算上需要的門檻也就會有所提升。所以以過去十幾二十年前硬體存儲能力與算力的水平還不夠強的情況下,PQC 這樣的加密方式在實用上是比較麻煩的,但到了現代我們硬體有了大幅度的提升,配合上演算法的優化,PQC 的使用就沒有像過去那麼麻煩了,換句話說,現在 PQC 能走上時代舞台某個程度上也是水到渠成的結果。

PQC將如何進入我們的生活

在文章的開頭有說到,密碼學在我們的生活中是構築資訊世界的基礎,現在要將舊的算法轉換為新的算法肯定會有轉換的過渡期,也正因為密碼系統的應用面實在太廣了,所以要更新現行的公鑰加密系統會是一個非常浩大的工程。

舉例來說,最近一次大規模更換算法約在 2000 年左右,當時美國決定採用 AES 算法,各大相關企業光是將部分加密方式採用新的方法就花了近十年的時間去做調整。

同理,陳董事長認為,這次要轉換為PQC系統所需要花費的時間可能也要十年以上,但這並不代表PQC就難以執行或是還要很久才派上用場,反之可以做更靈活的應用,最簡單的方法便是將原本的資訊做風險分級,分級最高的就使用PQC來做加密,而風險分級較低的就使用原始的加密方式去做分配就是一個比較實用的做法。

隨著 NIST 的相關標準的完善,許多大企業也開始跟進 PQC 的使用,像 J.P. Morgan 在近期也已經在未來的時程表上標示準備開始導入 PQC 系統,也隨著越來越多的單位開始使用 PQC 加密系統,相應的 PQC 技術與相關產品也會應運而生。

你我都正在參與這場後量子密碼時代的揭幕,你可以不知道 PQC 背後的複雜數學原理,但我推薦各位讀者務必認識一下,當大家都在說量子電腦多強多猛的時候,世界上早就有一群科學家準備好 PQC 這張盾,來面對接下來量子運算的衝擊。

面對量子運算的衝擊,科學家已做好準備。圖/pixabay

參考文獻

所有討論 3
科技大觀園_96
82 篇文章 ・ 1098 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。