Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

會數數的捕蠅草

葉綠舒
・2016/08/12 ・1492字 ・閱讀時間約 3 分鐘 ・SR值 460 ・五年級

-----廣告,請繼續往下閱讀-----

從先前的研究可知,在 30 秒之內連續碰兩下捕蠅草葉片內側的感覺毛(sensory hair),而且這兩下都要能夠引發捕蠅草產生動作電位(action potential,AP),這時捕蠅草就會在小於 1 秒的時間內把它的「蟲夾」(葉片)關起來。

823px-Venus_Flytrap_showing_trigger_hairs
捕蠅草,可以看見葉片內側的感覺毛。圖/wikipedia

只數兩下?真的很性急耶!不過,關起來以後,捕蠅草是否馬上就開始分泌消化液呢?由來自歐洲與澳洲的科學家們所組成的研究團隊,想要知道捕蠅草數完「一、二!」以後的故事,於是他們進行了一連串實驗。在「蟲夾」關閉後,捕蠅草便會開始製造茉莉酸(jasmonate, JA);茉莉酸接著與它的受器 COI1-JAZ1 結合,接著 JAZ1 便會被泛素化(ubiquitination),然後分解。但是,JAZ1 的泛素化與分解,會使它的表現量上昇。

有意思的是,頭兩個動作電位發生時,JAZ1 與 COI1 的表現量維持不變,這時候茉莉酸的分泌也還沒有開始;接下來的動作電位的出現(代表被抓到的昆蟲持續掙扎),造成茉莉酸的分泌開始上昇,於是 JAZ1 與 COI1 的表現量也開始出現變化──JAZ1 表現量上昇而 COI1 下降。

第五個動作電位出現時,JAZ1 的表現量到達最高峰(為一開始的 5.5 倍),這時候腺細胞內的鈣離子濃度開始上昇,接著包括幾丁質酶(chitinase)在內的許多水解酶(hydrolase)便會開始分泌了。

-----廣告,請繼續往下閱讀-----

捕蠅草的動作電位

要產生動作電位,需要在短時間內把大量的離子運出/運入細胞。由於吃肉的生物常會從肉食中取得所需要的鈉離子,研究團隊對於捕蠅草是否會由它們吃的肉裡面取得鈉離子感到非常好奇,於是他們用飼料(內含的鈉離子較容易定量)來餵食捕蠅草。當然,用飼料餵食還是不能忘記要去刺激一下捕蠅草的葉片的。

結果發現,在餵食後 6 小時,捕蠅草細胞內的鈉離子濃度開始上昇,到 12-24 小時到達高峰並繼續維持 2-3 天。由於只有葉片的細胞呈現鈉離子濃度上昇的現象,這也顯示了捕蠅草的確會吸收獵物的鈉離子

為了進一步證明捕蠅草的確會吸收鈉離子,研究團隊分析了捕蠅草的鈉離子通道蛋白 DmHKT1。結果研究團隊發現,從零到第三個動作電位發生之間,DmHKT1 的表現量都沒有變化;但是在第五個動作電位(又是第五個!)發生後,DmHKT1 的表現量開始上昇,並於四小時候達到最高,可達原來的 60 倍。同時也發現,DmHKT1 的表現受到 JA 的調節。這顯示了捕蠅草雖然是植物,但是吃肉的植物與吃肉的動物一樣,會吸收獵物的鈉離子來作為產生動作電位使用。不只是鈉離子,研究團隊還發現捕蠅草可能還會吸收獵物的銨離子(NH4+)與鉀離子(K+喔!

死亡的倒數計時

所以,當蟲兒降落在捕蠅草的葉片內部時,若只碰一下、或是只有輕輕的碰幾下感覺毛,捕蠅草是不會關門的。在捕蠅草被碰了第一下以後,只要 30 秒內它的感覺毛又被用力碰了一下,這時候捕蠅草便迅速地將葉片關上。接著若真的抓到蟲了,蟲兒當然會開始用力掙扎,於是……

-----廣告,請繼續往下閱讀-----

「三、四、五!」

腺細胞內的鈣離子濃度上昇、茉莉酸受器基因 JAZ1 表現量上昇、水解酶大量分泌、鈉離子通道基因 DmHKT1 表現量也上昇,隨著葉片關得越來越緊,形成一個如胃(「綠胃」,green stomach)的構造,等到蟲兒被消化殆盡後,葉片才會打開,讓蟲兒的殘渣掉出來。

所以,捕蠅草真的會數數喔!不過,捕蠅草的數法是:

「一,二!三,四,五!!!」

-----廣告,請繼續往下閱讀-----
吃完蟲兒重新打開的捕蠅草葉片。圖片來源:wiki
吃完蟲兒重新打開的捕蠅草葉片。圖/wikipedia

參考文獻:

本文原出自臺灣大學科學教育發展中心其他單位需經同意始可轉載

-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

7
0

文字

分享

0
7
0
植物界的兇猛掠食者—《植物比你想的更聰明》
商周出版_96
・2016/08/09 ・3807字 ・閱讀時間約 7 分鐘 ・SR值 483 ・五年級

-----廣告,請繼續往下閱讀-----

從一株捕蠅草開始

提到植物職司味覺的部位,我們會直覺地看向土壤。畢竟植物大半養料來源就在裡頭。可是,有多種植物另有攝食之道。這些便是所謂的肉食性植物。接下來我們就要看看,植物學家最早發現的肉食性植物:捕蠅草

1760 年 1 月 24 日,亞瑟.多布斯(Arthur Dobbs)寫了封信給英國皇家學會(the British Royal Society)會員植物學家彼得.科林森(Peter Collinson,1694 年至 1768 年)。多布斯是北卡羅來納的富裕地主,於 1754 年至 1765 年間擔任殖民地總督。他在信中描述,有種令人驚奇的新植物能捕捉蒼蠅:「但是,這植物界的奇觀是非常古怪的新種敏感植物:矮生植物;葉部像是球體扁平切片,共有兩瓣,好比手提包內裡外翻,各瓣會如鐵製獵狐陷阱闔起,邊緣呈鋸齒狀;若遭觸碰,或有物闖入,葉部就會捕獸夾一般緊閉,將置身其中的昆蟲或別種物體困住;花朵為白色。我將這出人意表的植物取名為『敏感捕蠅草』(Sensitiva Acchiappamosche, Fly Trap Sensitive)。」

捕蠅草2
捕蠅草。圖/Marie@Flickr

科林森將這發現最早的神奇植物樣本寄到歐洲給英國植物學家約翰.埃里斯(John Ellis),而埃里斯為此物種定下了拉丁文學名(Dionaea muscipula)。一七六九年,他察覺了該植物屬肉食性,便致信林奈道:「……如所附精確圖解及花葉樣本所示,這植物顯現了大自然對其滋養也許另有看法,才會讓上面這節的葉部有如器械,可捕獲食物:葉部中央有誘餌,以獵食不走運的昆蟲。有許多紅色腺體覆蓋內層表面,也許能釋放甜味液體,引倒霉的動物前來一嚐。要是動物的腳刺激了這些細嫩部位,葉片雙瓣便會即刻升起,把動物牢牢抓住,而一排排尖刺會閉緊而將其擠斃。再者,為免獵物奮力求生,竟能掙脫,腺體之間近葉瓣中心處,還挺立著三根小刺,能有效讓一切掙扎畫下句點。」

-----廣告,請繼續往下閱讀-----

毫無疑問,這種植物會獵捕昆蟲!但林奈不做此想。他排斥埃里斯的結論,反而贊同多布斯最初的評估,將捕蠅草歸類為「敏感植物」,會因觸覺刺激而有不由自主的舉動。

對現代人而言,捕蠅草顯而易見能捕捉昆蟲。但林奈將之與一樣會在觸碰下閉起的含羞草視為同種。他與埃里斯的論斷天差地別:後者認為捕蠅草能捕獵動物,前者則將獵捕行為看做不假思索的反應。

食蟲究竟是不是一種意識行為?

兩名科學家的觀察怎會引來迥然不同的推斷?埃里斯名氣較小,不受通行觀念左右,只是描述所見,並出以合理推論。但林奈正值聲名巔峰,離不開當時整體科學社群的思潮,仍由「自然界秩序」的角度來看待生物間的關係。他所受影響極深,以至於否定證據。試圖使觀察所得遷就理論,不惜扭曲事實。因此,儘管有長年的研究,也有無可反駁的憑證指出捕蠅草會捕殺昆蟲,林奈仍不願斷言捕蠅草具肉食性(從而認定此論符合科學事理),因為這等植物行為實在難以想像。

然而,誰都看得很清楚,捕蠅草似乎真能捕殺某些昆蟲。人如何能貶低這般能耐?那時有很多科學家馳騁想像,要把這事搪塞過去。他們主張,葉片闔起是反射動作(亦即,並非有意取命),而昆蟲若是有心,自能脫出。若未脫身,則是因為過於衰老,或有意求死。在我們來看,這樣的理路很可笑。但彼時的科學社群卻欣然接納,未見猶疑。只要能反駁植物可能以動物為食,什麼樣的說明都行。「食肉植物說」不得不被下放到冒險故事裡。那年頭,這類故事差不多都會提到很厲害的食人樹。

-----廣告,請繼續往下閱讀-----

Capture
食肉植物說被當作和食人樹一樣只存在於傳說故事。圖/Man-Eating Cryptid Plants Might Be Real

但是,該怎麼解釋捕蠅草從未放出遭捕昆蟲,而總是將之殺死並消化?又該怎樣理解葉片在捉住無滋無味或難以分解的物體後,會隨即再次張開?

要等到達爾文於 1875 年出版《食蟲植物》Insectivorous Plants一書,科學社群才有了合理答案,也才開始提到「會吃昆蟲的植物」。如此定義固然貼近實情,仍嫌不夠精準。畢竟,到了達爾文的年代,已發現為數可觀的植物能捕食老鼠、蜥蜴一類小動物。而這可很難說是「食蟲」!十九世紀中期,很多植物劃歸為此類的原因,並不是能獵捕昆蟲,而是人們覺得把植物說成「肉食性」太過頭了。縱然已經曉得有很多植物,尤其是某些豬籠草屬,會捕殺小型哺乳類動物,十九世紀末的人依然很難想像真有草能食肉。

昆蟲的致命陷阱

話說回來,為何某些植物要以動物為食?理由再度和演化有關。幾百萬年前,在演化出這些物種的潮濕沼澤裡,生物生成蛋白質所必須的氮,不是數量稀少,就是無從取得。植物生長於缺乏的地方,就必須找到不涉及根部與土壤的方式,來獲取此重要元素。

-----廣告,請繼續往下閱讀-----

這是怎樣辦到的呢?植物會利用在地面上的部位:隨著時間流轉,調整葉片形狀,轉變成陷阱,好捕捉昆蟲這類會移動的「小型氮儲存槽」。而在囚禁並殺死獵物後,將之消化以攝取養分。其實,這正是肉食性植物的決定性特質:產生酵素分解養分,以利葉部吸收,藉此代謝掉所吃的動物。

讓我們看看捕蠅草豬籠草兩大王牌獵食者的狩獵技巧。和所有厲害的獵人一樣,兩者都由引誘獵物著手。捕蠅草會將相當芬芳、帶有糖分的分泌物排放到如今已成陷阱的葉部,讓昆蟲擋不了誘惑。儘管林奈的成就教人尊敬,我們仍必須提到,捕蠅草並無多餘能量可浪費,不會一以為碰到獵物就把葉片倏然闔起。若是這麼做,有可能會抓到不能吃的物體,甚至讓昆蟲得以在葉部邊緣定住,而後逃脫。相反,捕蠅草會等到狩獵標的恰在葉片中央才行動,避免徒勞無功。

構成死亡陷阱的兩瓣葉片各有三根細毛,用以觸動陷阱緊閉。昆蟲一次觸碰一根細毛,尚不足以啟動陷阱。至少得觸及兩根,間隔不超過二十秒。這時植物才會清楚上門的東西有搞頭,並將葉瓣闔上。受困的昆蟲扭來動去,不斷碰觸細毛,卻只是讓捕蠅草越抓越緊。等獵物一死,動也不動,葉部便漸漸釋放酵素,幾乎將之消化殆盡。陷阱再次開啟後,仍可看到這場動植物大戰的遺痕:在捕蠅草葉片上找到吃剩下的獵物殼甲,並不是新鮮事。

捕蠅草(感覺毛)
捕蠅草葉片內的感覺毛能偵測食物。/來源:NoahElhardt @wiki

-----廣告,請繼續往下閱讀-----

至於另一類可怕的獵食者,則運用別套戰術。在演化過程中,豬籠草發展出特殊囊狀器官,邊緣灑滿帶有甜味的芳香物質。動物一旦聞香而來,吸吮甜液,便會滑入囊中,逃脫無門。此陷阱囊的內裡極其平滑,在自然界數一數二,乃至於有人加以研究,想要以科技仿造。在陷阱中,動物最終會陷溺於消化液裡,而且由於一再努力要爬出求生,弄得筋疲力竭。這會兒,豬籠草會開始消化獵物,將之化為含養分的泡泡,再緩緩吸收。

OLYMPUS DIGITAL CAMERA
豬籠草內壁的光滑表面。圖/corveless@Flickr

豬籠草不僅吃昆蟲,還會吃蜥蜴一類小型爬蟲。就連相當大隻的老鼠也會遭殃。獵物屍骨就積存在陷阱囊底部,既是老舊的戰利品,又能給下一個成為受害者的不幸動物一點含糊的警告。

還有更多……

肉食性植物除了是很有趣的例子,讓人看清植物如何應用味覺,還促使人思索花草樹木的攝食。首先,我們以前受了誤導。這類植物其實不少,已知的起碼有六百種,每一種都使用相異的陷阱和謀劃來捕食形形色色動物。確切地說,肉食性植物比人們過往所想的還多樣,牽扯到數以百計物種。要是把在某些方面間接受益於捕捉昆蟲的植物也計入,數量還會更多。幾年前,科學家仍以為唯有可明確定義為肉食性的植物才有能力消化小型動物,攝取所需營養。但新近研究證實,植物廣泛以動物為養料來源。

-----廣告,請繼續往下閱讀-----

拿馬鈴薯、菸草,和甚至更具異國風情的毛泡桐[1]為例。你如果看過這些植物的葉子,也許會留意到上頭時常有小蟲屍體:既然不能消化昆蟲,為何要以葉部分泌帶黏性或毒性的物質來殺蟲呢?答案很簡單,而且想起來非常有道理。即便難以消化,昆蟲屍體墜落地面後會分解,釋出植物所需的氮;還留在葉子上的,則成為細菌的養料,而細菌所製造的廢棄物含有豐富的氮,很容易為植物吸收。

於是,縱然很多植物實際上並非肉食性,也會利用動物來使食物攝取更營養、更有變化。用科學術語來說,這些是「原始肉食性植物」(“protocarnivores”)

花草樹木的攝食,還有別的地方出人意表。二○一二年初,一份新研究描述了有種捕食蟲子的植物能使用特別的……地下陷阱。這種紫羅蘭生長於巴西喜拉朵十分乾燥而貧瘠的土地,是以發展出地下葉來捕食常見的小小線蟲:蟲子一靠近葉片就會被黏住,然後遭消化,以有效補足食物攝取中原本不足的氮。這發現很是重要:頭一次有研究提到了地底下的捕獵技巧,而這等技巧或許在其他荒蕪土壤特有的植物身上也找得到。

如前所述,肉食性植物約有六百種。如果加上所謂的原始肉食性植物和可能具備地底捕獵能力的物種,數量便更多。而我們對植物的食物攝取也會刮目相看。

-----廣告,請繼續往下閱讀-----

 

  • 註:[1]這一種樹源自中國,在歐洲和中國越來越普遍

植物書封

 

 

 

 

 

本文摘自《植物比你想的更聰明:植物智能的探索之旅》商周出版

-----廣告,請繼續往下閱讀-----
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。