0

0
0

文字

分享

0
0
0

台灣流感疫情也可以問問Google大神!

miss9_96
・2016/04/20 ・2780字 ・閱讀時間約 5 分鐘 ・SR值 592 ・九年級

今(2016)年年初,台灣各地出現流感病例,疫情在春節期間達到高峰,急診就醫的民眾超過上萬人,併發重症者將近兩千人。面對瞬息萬變的疫情,除了仰賴疾病管制署(以下稱疾管署)每週的疫情報導,難道沒有更快速的評估方法嗎?

google-485611_640

用 Google 評估疫情研究登 Nature 期刊

現代人喜歡任何事都問問看 Google,甚至連生病了也會用 Google 查查症狀。因此當感冒的人多了,使用 Google 查詢「發燒」或「咳嗽」的民眾也跟著變多,讓特定關鍵字的搜尋熱門度,成了疫情變化的指標。2009 年在「自然(Nature)」期刊上發表了一篇以上述理論為基礎的評估系統,並且對照 2008 年真實爆發的流感病例,該系統的表現令人激賞,預測的數值和真實的病情呈現超高度的正相關(請參考表 1。該系統在評估 2008 年疫情的表現上,相關係數高達 0.85)[1]!

表 1:相關係數等級 [2]

正相關係數(介於1~0之間) 等級
≧0.8 超高度相關(excellent correlation)
0.8~0.6 高度相關(good correlation)
0.6~0.4 中度相關(moderate correlation)
<0.4 低度或無相關(poor correlation)

為什麼要用 Google 協助評估疫情?

640px-thumbnail
圖/wikipedia,由U.S. Navy photo by Mass Communication Specialist 3rd Class Jake Berenguer,公有領域。

正式的疫情統計方式,是由醫院採集患者檢體,再送交實驗室檢驗,確診後再回報給疾管署,最後再由政府每週公佈上週的確診病例數。可以預料的是,這套系統雖然可靠,但作業時間曠時費日(如 PCR 等檢驗需數日的時間),面對發展迅速的流行病,難免會有慢半拍的疑慮。而 Google 利用群眾的行為模式進行評估,不但隨時都是最新的資訊(Google Trend 每分鐘更新一次),並且所有人都能使用,更重要的是省卻了曠時費日的檢驗、公文流程,在面對瞬息萬變的疫情時,提供了另一種角度的疫情參考。因此 Google 設立了專門的流感統計系統—— Google Flu Trend,用來協助各國預警可能襲來的全球大流感。

但 Google Flu Trend 的評估規模是如美國、澳洲等大國,台灣是個相對小型的國家,並且 Google Flu Trend 也沒有提供中文關鍵字的資訊,難道台灣不能用 google 來協助評估疾病了嗎?讓我們改用 Google 趨勢(Google Trend)的關鍵字搜尋熱門度,來分析看看今年的流感疫情!

-----廣告,請繼續往下閱讀-----

(J 編註:目前 Google Flu Trend 已經停止服務,但舊的資料依舊可以查詢喔!)

實際用在台灣,也有評估能力嗎?

首先針對今年的流感進行分析,條件如下:

表 2:2016 年流感分析條件

時間範圍:2016 年 1 月至 4 月初(第 1~13 週)
疾病別 每週流感重症確診人數
資料來源:中華民國疾管署的統計資料
正體中文關鍵字 A 感冒
正體中文關鍵字 B 發燒
正體中文關鍵字 C 咳嗽
資料來源:Google趨勢(Google Trend)

我們得到圖 1 的趨勢圖,其中直條圖為疾管署每週公佈的病例數,曲線圖為關鍵字每週的搜尋熱門度。

-----廣告,請繼續往下閱讀-----
圖1:台灣2016年每週流感重症人數和關鍵字搜尋熱門度關係圖。圖/作者製圖。資料來源/中華民國疾管署、Google Trend。

從上圖中我們可以觀察到,疫情感覺上和關鍵字有正相關。但「感覺上」、「看起來」還不夠,我們實際來計算相關係數的表現如何。

熱搜圖
圖2:「感冒」每週搜尋熱門度和當週病例數作相關分析。

根據圖 2,「感冒」的搜尋熱門度和病例數產生的交點,有很高的線性關係,相關係數高達 0.9326,屬超高度相關!而從表 3 中可以看出,「感冒」、「發燒」和「咳嗽」的當週搜尋熱門度,都和當週的疫情數字有高度相關!顯示用Google 來幫助評估流感疫情是很有潛力的方式!

表3:關鍵字和流感重症人數的相關程度

關鍵字 相關程度(相關係數)
感冒 超高度相關(0.9326)
發燒 超高度相關(0.8378)
咳嗽 高度相關(0.7279)

所以真的能用 Google 預測下週疫情嗎?

用當週的數值比較只能算是「評估」系統,接下來我們以「當週」的 Google 數值和「下週」的病例數做計算 [2],來看看 Google 能不能幫我們「提前猜到趨勢」,替未來的疫情做一個猜測呢?

-----廣告,請繼續往下閱讀-----

從圖 3 可以發現到,當週的 Google 數值和「下週」的實際病例數依然有線性關係,並且呈現高度相關!

疫情預測
圖 3:以感冒每週搜尋熱門度和「下一週」實際病例數作相關分析。

而表 4 的結果裡可以發現到,以「感冒」的預警效果最好,屬高度相關,而「發燒」和「咳嗽」的表現也不錯,屬中度相關!雖然未達神預測的地步,但在時刻必爭的疫情控制上,也是另一種值得參考的角度!

表 4:以「當週」的 Google 數據對照「下週」的確診病例,觀察預警的效果

  疫情「評估」效果 疫情「預警」效果
關鍵字 相關程度(相關係數) 相關程度(相關係數)
感冒 超高度相關(0.9326) 高度相關(0.7534)
發燒 超高度相關(0.8378) 中度相關(0.5184)
咳嗽 高度相關(0.7279) 中度相關(0.5919)

群眾的行為模式就是趨勢

近年來在商業界裡,以觀察群眾行為作出未來趨勢判斷的例子越來越多(如:Netflix 打造熱門影視「紙牌屋」),而利用群眾行為模式在公衛防疫上的應用更在最近興起(如:利用飛航記錄預測茲卡病毒的流行 [3]),而利用群眾的活動模式來協助我國疫情的評估,將能有快速、預警的優勢,並且提供不同角度的觀點。未來在面對腸病毒、登革熱,甚至於是明年的流感威脅,何不聚集群眾的智慧來替我國的防疫多一層把關呢?

-----廣告,請繼續往下閱讀-----

本文感謝台東部立醫院 醫檢師 張昱維(Yu-Wei Chang)和病後人生 一站式服務網 站長 羅佩琪 協助

註釋:

  1. 筆者尚有以 2012 年的腸病毒疫情,以及 2015 年的登革熱疫情作評估的數據,若有興趣者歡迎一起來討論。
  2. 用 Google 評估疫情會受到許多因素影響,如媒體大量報導時,因個人興趣而查詢特定關鍵字的民眾會變多,導致搜尋熱門度趨勢受到影響。因此群眾行為模式並不能完全取代現行的機制。所以本文著重於提供「不同面向的參考」。

參考文獻:

  1. Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski & Larry Brilliant (2009) Detecting influenza epidemics using search engine query data. Nature, 457, 1012-1014
  2. Andrea Freyer Dugas, Yu-Hsiang Hsieh, Scott R. Levin, Jesse M. Pines, Darren P. Mareiniss, Amir Mohareb, Charlotte A. Gaydos, Trish M. Perl, and Richard E. Rothman (2012) Google Flu Trends: Correlation With Emergency Department Influenza Rates and Crowding Metrics. Clinical Infectious Diseases, 54, 463-469
  3. Isaac I Bogoch, Oliver J Brady, Moritz U G Kraemer, Matthew German, Marisa I Creatore, Manisha A Kulkarni, John S Brownstein, Sumiko R Mekaru, Simon I Hay, Emily Groot, Alexander Watts, Kamran Khan (2016) Anticipating the international spread of Zika virus from Brazil. The Lancet, 387, 335-336
文章難易度
miss9_96
170 篇文章 ・ 974 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

4
0

文字

分享

0
4
0
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
193 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

2
1

文字

分享

1
2
1
AI 做簡報又更簡單了!只輸入網址,Bard 就整理好線上論文?
泛科學院_96
・2023/08/20 ・689字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

超誇張,只要貼上網址,Google Bard AI 把網頁內容變成簡報,這這這我還能不變心嗎?

之前有一支影片分享了 ChatGPT 結合 Power Point 的簡報製作技巧。

在 Bard 大更新之後,運用網頁瀏覽的功能,不管是線上期刊還是論文,轉換成簡報更加的方便,根據我自己的測試,只要五分鐘,從一篇網路上的論文就可以快速的變成一份漂亮的簡報,這真是懶人救星啊!

今天簡單的分享了 Bard 支援連接網路之後的論文摘要功能,並且回應之前影片網友遇到的內容大綱轉簡報的製作問題,希望這支影片能解決你的問題

-----廣告,請繼續往下閱讀-----

看完影片之後你覺得 Bard 的哪個功能最讓你驚艷或驚嚇呢?

  1. 拳打 ChatGPT 的連網功能
  2. 腳踢 ChatGPT 的內容準確性
  3. 豪奪網站的資訊內容
  4. 巧取生成錯誤資訊魚目混珠

如果你有更多的想法與問題,歡迎加入泛科學 AI 的 Discord 論壇,我把連結放在影片下方資訊欄。

如果這支影片對你有幫助的話,請幫我在影片下方點個喜歡,或是透過超級感謝展現你的心意,讓我製作更多實用有趣的 AI 教學影片,最後別忘了訂閱泛科學院的頻道,我們下支影片再見囉。

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

所有討論 1
泛科學院_96
20 篇文章 ・ 24 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

4
1

文字

分享

0
4
1
ChatGPT 還是 AI 之王嗎?Google Bard AI 與微軟 Bing AI 的終極測試
泛科學院_96
・2023/08/12 ・537字 ・閱讀時間約 1 分鐘

今天這集影片我們準備拿 ChatGPT、Google Bard AI 跟微軟的 Bing AI 來作一個大亂鬥比賽,我們準備了幾個不同的挑戰看誰最厲害。

因為 Bard 跟 Bing 都是免費提供,為了公平性,我主要會使用免費的 GPT 3.5 來比較,不過我同時會放上 GPT-4 開啟網路瀏覽功能的結果來給各位作參考。

評比的成果我會給一顆星到五顆星來呈現,主要分為四個類別:易用性、實用性、創造性以及回應速度。

看完今天的影片,你會想要使用Bing、Bard還是Chatgpt呢?歡迎在影片下方留下你的看法

-----廣告,請繼續往下閱讀-----

如果這支影片對你有幫助的話,請幫我在影片下方點個喜歡,並且把這支影片分享給需要的朋友,最後別忘了訂閱泛科學院的頻道,我們下支影片再見囉。

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

泛科學院_96
20 篇文章 ・ 24 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!