0

0
1

文字

分享

0
0
1

星星一定在動嗎?──《跟著怪咖物理學家一起跳進黑洞》

聯經出版_96
・2016/04/14 ・3115字 ・閱讀時間約 6 分鐘 ・SR值 533 ・七年級

星星一定在動?

好, 今天我想來談談暗物質。在進入主題之前, 我想請大家回想一下上一回說過的牛頓「運動定律」。牛頓思考「為什麼星星不會掉到地球上」,想出了「因為它在動」的答案。

如果停止運動, 就會掉下來。例如,這是人造衛星墜落地球前的狀態,但它並不是以靜止狀態飄浮在地球上空。因為重力一直在運作,一旦靜止的話,最後一定會朝著地球墜落。它沒有墜落,就是因為它相對(或是抵抗著?)重力朝某方向在運動。

人造衛星之所以沒有墜落到地球上,就是因為它持續相對著重力朝著某方向運動。

這個圖的狀況,人造衛星正好繞著地球周圍打轉。它飛行的運動,與重力巧妙的維持均衡,所以不會掉落下來。它拚命的運動以避免墜落。請各位記住,重力與運動永遠互為表裡。重力發生作用的地方,物體在運動。反言之,如果有天體在運動,那就是重力發生作用。

記住這個法則,今天講述的內容就會比較容易理解。

-----廣告,請繼續往下閱讀-----

離太陽越近,公轉速度越快,離得越遠越慢

那麼我們先來想想太陽系行星的公轉運動吧。太陽在正中央,行星繞著它的周圍旋轉(圖 56 ☞)。行星不會朝著太陽墜落,是因為它保持著某個速度。而且越接近中心的星球,應該旋轉得越快。事實上水星旋轉的速度驚人的快,而最外側的海王星則是個慢郎中。

【P239-圖56】跟著怪咖物理學家一起跳進黑洞!

距離中心越遠,公轉速度越慢─我們做個圖表看看吧(圖 56 ☛)。縱軸是「速度」,橫軸是「與太陽的距離」,輸入各別行星的速度之後,就會形成這樣。離太陽近的行星速度快,距離遠的速度慢。原因是離太陽越近,受到它的重力影響越大。重力正是公轉的原動力。請牢記,畫成圖表的話,可以描出這樣的曲線。

依據這個原理,我們再來看看星系吧。

這是仙女座星系(圖57)。大和宇宙戰艦的目的地─位於我們銀河系的隔壁,所以經常看得到它的名字。

-----廣告,請繼續往下閱讀-----

從側面來看這個星系的話,會呈現這種形狀(圖 57 ☞)。上面照片中的中央也是圓圓隆起的樣子,而且非常明亮。為什麼會這樣呢?因為正中央聚集了大量的恆星,周圍的星球則是呈圓盤狀散開的關係。

這就是被稱為「螺旋星系」的特徵,而中央星球聚集的地方,叫做「核球」(bulge=凸出),而周圍叫做「盤面」(disk=圓盤)。從亮度的分布來推測,絕大多數的星球都集中在核球,周圍的盤面沒什麼星球。星系的結構就是這樣。

星系的自轉速度很奇怪……

接下來我們來思考一下星系的運動吧。看上去,星系是靜止的,但是仔細觀測一下,就會知道它也在旋轉。星系聚集了大量恆星,當然是重力在運作的關係。如同一開始時我說過的,重力運作的地方,星球會恆常的運動。如果運動停止的話,就會朝著核球落下,所以它必定在旋轉。

再來思考盤面上星球的運動吧(圖58)。這些星球以多快的速度在運動呢?我們來測量一下它們個別的旋轉速度。

-----廣告,請繼續往下閱讀-----

【P243-圖58】跟著怪咖物理學家一起跳進黑洞!

有一位學者叫做薇拉.魯賓(Vera Rubin),就真的做過這個測量──她是上一次講到的伽莫夫(George Gamow)的學生──這位科學家使用的方法,是都卜勒效應。前一次也介紹過,這是波必定會出現的現象,遠離時波長會拉長。以光來說,「波長拉長」的意思,在顏色上會往紅色方向(紅移)移動。測量它的偏移量,就可以測得星球的速度─這是上一回講義中說過的。魯賓就是用這種方法,測量盤面上的星球速度。

預測的狀況是這樣(圖 58 ☚),照理說,越接近核球,速度越快吧?因為幾乎所有的質量都凝聚在核球,所以它應該和太陽系一樣,越近越快,越遠越慢。若不是如此就有問題了。

可是……

但實際上這位學者發現了一個驚人的現象,不論內外,所有星球的旋轉速度幾乎都一樣。(圖 59 ☜)即使距離中央十分遙遠,速度卻不變。照理說,越往邊緣走,速度會越慢才對。速度沒有變慢,恐怕是發生以下這種狀況,即本來以為星球凝聚在核球,而周圍的盤面幾乎呈現沒有星球的狀態,但似乎不然,難道是有星球以外的物體,以「黑」的狀態密集分布在周圍嗎?(圖 59 ☚)這裡應該有一些具有大質量的無法以光看見的物質吧……

-----廣告,請繼續往下閱讀-----

這個以「黑」顯示的領域稱為「銀暈」(halo=光暈)。密集在銀暈中的某物──一般認為就是暗物質,就是今天的主角。「halo」這名字滿可愛,但卻是「黑暗的」。

這是宇宙的一個謎,今天就要來說說這個謎。

球形的笨蛋!

這一位是科學家茲威基(Fritz Zwicky,圖 60)。他是超新星的專家,從他的名字弗里茨,很多人會以為,他是德語系的人,其實他是瑞士人,在美國做研究。

【P247-圖60】跟著怪咖物理學家一起跳進黑洞!

據說,他是個頑固老爹,可能因為自詡聰明,所以常常對人大聲責罵。罵人的方法也變化多端。但他最喜歡的一句,卻是「球形的笨蛋」。為什麼是「球形」呢?這表示不論從哪個角度看都是笨蛋的意思……算是個不夠聰明還會意不來的玩笑。德國常常有這類玩笑話,需要轉個彎想才會明白,但一點都不好笑。

-----廣告,請繼續往下閱讀-----

剛才的那位魯賓在 70 年代時,曾研究過星系的旋轉速度,得出「好像有暗物質」的結論。但是這位茲威基卻在她 40 年前──也就是一九三○年代,就發現了這個驚人的現象。當時的時代既沒有「暗物質」這個名稱,連概念都沒有。但這位學者並不是研究星系中一顆顆恆星的旋轉運動,他研究的是星系本身的動態。

這個圖是「后髮星系團」,其中發出朦朧光線的圓盤狀物體,每一個都是一個星系(圖 60),集合了大量星系的天體叫做星系團。既然每一個圓盤都是星系的話,質量當然大得不得了。質量大的星系大量聚集─聚集歸聚集,但也有著相當的距離─會產生無法想像的重力。既然重力在運作,當然就會運動。茲威基便因此研究起星系團的運動。

運用牛頓的運動定律,計算速度,就可以估算出質量。若要對一個一個星系縝密的計算,需要極困難的演算,但是有一種匯總這種問題的學問,叫做統計力學,使用它就能比較簡單的求得。

為星星取你的名字送給你

對了,為什麼會取「后髮座」這個名字呢。星座的取名最初是從「把某顆星和另一顆星連起來,變成某種形狀」的方式開始的,但世界各地都有不同取法,很容易造成混亂。所以某一時候決定做個統一,國際天文學會的組織決定了哪裡是獅子座,哪裡是小熊座─雖然怎麼看也不像小熊啊─長得像「后髮」的說法也很玄奇,不過,那個組織就決定了「后髮座」的名字。

-----廣告,請繼續往下閱讀-----

再說件不相干的事。天體中只有星座和一等星會取名字。各位應該也有聽過織女星或是牛郎星吧,但是二等星以下基本上沒有名字。二等星中有取名的,只有北極星,其他的都是無名星,你可以任意幫它們取名。

因為這個原因,還興起了一門生意。有人以「為星星取你的名字送給你」作為宣傳,只要付一筆錢,就能拿到認定書之類的證明。但實際上並沒有得到國際天文學會的承認,只是隨便任意取名而已。其實不用花錢,自己隨便幫一顆星取名也是一樣。那種手法只是欺騙不懂內情的人罷了。


0010708410

 

 

你一定聽過黑洞、時間旅行、暗物質、蟲洞、希格斯粒子、空間扭曲、相對論……但你真的「知道」那是什麼嗎?快跟著《跟著怪咖物理學家一起跳進黑洞》吧!(本書為聯經出版

-----廣告,請繼續往下閱讀-----
文章難易度
聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
「哈佛最優秀的人」卻被迫低頭:塞西莉亞·佩恩未被承認的天文革命——《你的身體怎麼來的?》
商周出版_96
・2025/01/20 ・4176字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

世人接受新觀念分為三個階段:

  A. 胡說八道

  B. 早就有人想過了

  C. 我們一直都是這樣想

-----廣告,請繼續往下閱讀-----

──佛萊德.霍伊爾,轉述雷蒙.利托頓(Raymond Lyttleton)說法

滿懷熱情的劍橋叛逆者:佩恩如何走上科學之路

一九二三年春天,二十一歲、身材高䠷的劍橋大學學生塞西莉亞.佩恩(Cecilia Payne)開始對未來感到惶恐。她熱愛天文學研究,夢想能走上研究道路,長期筆記自己成為科學家之後想研究的課題。但在校最後一年,她意識到面前可能是個死胡同。

那時代的英國,如她這般具備聰明才智的女性充其量只是當上女子學校的教師或校長。「彷彿腳下裂開一條深淵,」後來佩恩在自傳這樣比喻:「對我而言,當女教師是『比死亡還糟糕的命運』。」所幸悲慘命運沒有降臨在她身上,儘管面臨種種困難,佩恩仍舊在科學上做出突破,為二十世紀科學的轉捩點奠定基礎:她發現人體所有元素(除了氫)最初如何形成。

佩恩對科學的興趣萌芽於六歲,那年一顆流星給她留下深刻印象。十歲時,她在天主教學校做實驗測試禱告的力量,為一半考試的成績祈禱、另一半則不做祈禱。事後發現成績沒有差別時,她轉而肯定理性的力量,對科學的興趣於此扎根。至於宗教,佩恩後來相信一位論14

-----廣告,請繼續往下閱讀-----

虔誠女校長對佩恩說學習科學是「糟蹋她的天賦」。學校合唱團指揮古斯塔夫.霍爾斯特(Gustav Holst)雖然當時默默無聞但之後會創作《行星組曲》,他則鼓勵佩恩走音樂這條路。

但佩恩有自己的想法:她拿到劍橋大學獎學金,準備攻讀植物學。然而適逢第一次世界大戰之後物理學風起雲湧的時期,佩恩正好聽了天文學家亞瑟.愛丁頓那場劃時代講座,得知太陽引力場能夠扭曲光線路徑,而且一切符合愛因斯坦的預測。佩恩大受震撼,人生再次拐了個彎。她後來寫道:「我的世界天旋地轉,感覺差點神經休克。」那瞬間她徹底愛上物理學,所以隔天就去「面對校方」,申請從植物學系轉到物理學系。回家以後她幾乎逐字逐句默寫講座內容,為此三天沒怎麼睡。

天文學家亞瑟.愛丁頓的講座改變了佩恩的志向,讓她的人生轉了彎。圖 / unsplash

劍橋卡文迪什實驗室的氣氛像是帶著電。發現電子的湯木生、發明雲室的威爾遜都在這裡,但最耀眼的常駐明星是發現原子核的傳奇人物拉塞福。對佩恩來說美中不足的是拉塞福不喜歡課堂有女性參與。儘管當時年輕女性不再需要年長者時時監護,但仍要求座位與男性分開。因此每次進入講堂,佩恩作為唯一女性必須單獨坐在最前排,而拉塞福更是刻意每堂課都以「各位女士先生」這句話開場。佩恩在自傳中回憶:「男生聽到教授意有所指總是很捧場,歡聲雷動之外還會老派地跺腳,每次上課我都想挖個洞鑽進去。」[38]

星星的祕密:她用光譜解開宇宙的指紋

她很快投靠愛丁頓。愛丁頓理解她的熱忱,也比拉塞福更加包容,允許她參與研究團隊。同時佩恩還接觸到最新領域量子物理學,帶她入門的正是理論發現者之一尼爾斯.波耳(Niels Bohr)。即便如此,在學最後一年她又發現面前是死路,因為劍橋大學根本不允許女性獲得高等學位。(不授予文憑,也無法獲邀參加畢業典禮。)險阻重重,但她堅持不懈、動用一些關係,終於爭取到哈佛天文臺的女性研究員資格,能在臺長哈洛.沙普利指導下工作。

-----廣告,請繼續往下閱讀-----

天文臺位於麻薩諸塞州劍橋市距離校園大約一英里的小山上,特點是願意僱用女性,因為前任臺長愛德華.皮克林(Edward Pickering)發現她們除了勤奮聰明還能大幅降低預算壓力。在一次史無前例的星體清點作業中,皮克林僱用超過八十位女性處理大量圖片,最終數量高達五十萬份。有些人將這群女性稱為「皮克林的計算機」,但更常見的諢名是「皮克林的後宮」。

一開始沙普利也期望佩恩幫忙利用照片來對星體進行分類和編目,但她才第一個獨立研究就急於解決劍橋教授提出的大哉問。當時人類對宇宙的理解有個顯而易見的盲點:星星是由什麼構成的?

當時的人們還不知道,星星是由什麼構成的。圖 / unsplash

科學家已經掌握部分答案。除了拍攝恆星,哈佛天文學家還會記錄玻璃底片上的光譜。光譜提供線索,可以判斷星星含有何種元素。星體發出的光包含各種顏色,但元素周期表中每個元素會吸收一組特定波長。換句話說,飄浮在星體大氣層的元素原子會在星光到達地球前吸收特定波長的光。天文學家觀察星體光譜的水平面會發現波長缺失部分出現細黑線,從這些黑線就能推測出光線被什麼元素吸收了。可以說感光玻璃板留下了指紋光譜、宇宙條碼,結論是星星含有許多地球上能找到的元素,例如鐵、氧、矽、氫。

隨之而來的問題是光譜模式有異常,想要詮釋並不容易。儘管玻璃底片能告訴科學家星星包含什麼元素,卻無法有效判斷各元素的份量。

-----廣告,請繼續往下閱讀-----

星星的祕密:她用光譜解開宇宙的指紋

儘管如此,天文學家卻認為自己已經知道答案是恆星和行星必定由相同物質構成。當時許多人認為行星是另一顆恆星經過時從太陽拉出大團熱氣體之後凝固而成,因此地球與太陽必然成分相近。就連恆星研究龍頭亨利.諾里斯.羅素也信心滿滿,他相信太陽就像地球有個巨大鐵核心,如果將地球地殼加熱到太陽的溫度就會散發出幾乎一模一樣的光譜。

這正是佩恩想研究的問題。她意圖藉由底片確認恆星中各種元素的比例,並提議採納最新的前沿理論:遠在加爾各答的傑出天體物理學家梅納德.薩哈(Meghnad Saha)指出新的量子力學理論中,電子只能在特定軌道圍繞原子核旋轉,能量越高就必須離原子核越遠。據此出發,薩哈認為恆星溫度各有不同,即使原子是相同元素,其中電子也很可能處於不同路徑(若是最高溫的恆星,原子還可能直接失去電子)。這些變化導致相同原子會吸收光線中的不同波長組合,混淆人類對星星光譜的理解。

工程浩大,但佩恩不畏挑戰,將薩哈方程式應用於哈佛的龐大底片館藏。哈佛天文臺也只有她具備足夠的量子理論知識能完成這項工作。[40]

佩恩辦公室位於紅磚大樓三樓,裡頭堆滿了底片。她不舍晝夜努力分析,數萬筆恆星光譜看得人眼花繚亂。底片至今仍保存在同一棟大樓,只是外面護膜泛黃了。曾經接受佩恩指導的天文學家歐文.金杰里奇(Owen Gingerich)拿了一張給我看過,上面的黑色帶狀紋路每條約四分之一英寸寬(約零點六公分),裡頭交織亮度不一的模糊細線,必須拿放大鏡才能判讀。「單純這樣看想必一頭霧水,」金杰里奇解釋:「但其實有一套辨識的系統,只要日復一日觀察就能跟它們變成朋友。」我盯著那些線條直呼不可思議。

-----廣告,請繼續往下閱讀-----

天文臺臺長沙普利偶爾在夜裡經過那間辦公室,發現佩恩邊抽菸邊端詳底片,絞盡腦汁在模糊線條裡辨認出模式、與計算結果做對照。她自己也寫下:「我日以繼夜研究,時常處在疲憊崩潰的邊緣。」研究計畫從幾個月延長到將近一年,期間只能以「霧裡看花」形容,但皇天不負苦心人,佩恩運用薩哈方程式之後得到出乎意料的結果。

論文初稿中她大膽宣稱:儘管大家相信恆星與地球成分應該相同,但事實並非如此。恆星中幾乎沒有地球上最常見的元素如鐵、矽、氧、鋁。反之,每顆恆星有百分之九十八是氫和氦,而且太陽的氫比地球多一百萬倍。

太奇怪了,與她在劍橋所學不符,也與老師們對地球形成的理解不一致。「佩恩小姐?你很勇敢」,物理學家艾爾弗雷德.福勒(Alfred Fowler)這樣對她說。沙普利臺長很得意地將佩恩的論文草稿寄給自己以前的指導教授、普林斯頓大學著名天文學家亨利.諾里斯.羅素。

哈佛大學最優秀的人也被迫低頭

羅素回信以高度讚揚夾帶了強烈警語:他認為佩恩的主張,也就是星星幾乎完全由氫和氦組成,「顯然是不可能的」。否定這種說法的理由很充分,其中之一在於他們為何認為太陽中含有大量的鐵。太陽光譜中代表鐵的線條比其他元素更多,而且許多隕石也由鐵構成、地球的核心同樣充滿鐵。在羅素看來,種種現象指向任何天體都含有大量的鐵。

-----廣告,請繼續往下閱讀-----

一邊是研究所學生,另一邊在學界已經聲譽卓著,佩恩自然接受了對方觀點,或者應該說她感覺自己不得不從,回憶時提到:「年輕科學家有沒有前途就看對方一句話。」於是她在論文加上一句前提,表示這部分結論「幾乎肯定不真實」。據佩恩的女兒告訴作家唐納文.摩爾(Donovan Moore),她一生都為這個決定感到遺憾,因為不出幾年量子理論進步了、其他人也透過其他方法得出同樣結論,羅素又回頭肯定了佩恩的發現。

後來很長一段時間裡,大家認為她寫出了天文學史上最傑出的博士論文。著名天文學家愛德溫.哈伯稱她為「哈佛大學最優秀的人(man)」。即便如此,佩恩在哈佛大學內部升遷卻花了很長時間,講座有非常多年沒被列入哈佛的課程目錄。原因出在校長勞倫斯.羅威爾(Lawrence Lowell)強烈排斥女性進入教職一事,還發誓有生之年絕不錄用,所以拖到一九五六年,羅威爾去世非常久以後,佩恩才終於當上教授。

她的發現改變人類對恆星運作的理解。確定恆星主要由氫和氦組成,研究人員得以解決另一個長期未解的謎團:星星以什麼作為燃料?他們發現恆星內部壓力極大,單質子的氫原子融合形成雙質子的氦原子時會釋放能量,太陽就以這種方式產生光和熱。也由於佩恩的貢獻與對恆星的新知識,學界終於有機會揭開重元素誕生的祕密,答案就在星星裡。

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。