網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

Cluster衛星群資料顯示地球的弓形震波層只有17公里厚

臺北天文館_96
・2011/11/24 ・1570字 ・閱讀時間約 3 分鐘 ・SR值 566 ・九年級

英國國王學院科學家Steven Schwartz等人,藉由歐洲太空總署(ESA)由4架衛星組成的Cluster衛星群觀測資料,發現太陽風遭遇地球磁場所形成的弓形震波(bow shock)非常薄,厚度只有17公里而已。像這樣的薄震波區,通常是粒子加速的早期階段所在之處。這項發現可能有助於解決有關背景宇宙線的粒子加速理論的爭議。

宇宙中的大部分重子物質(baryonic matter) 是帶電粒子和離子,即所謂的「電漿(plasma)」。電漿流可在各種大小的空間尺度中移動,穿透行星之間的行星際空間,也會穿越恆星之間的星際空間或星系之間的星系際空間。當超音速(supersonic)電漿流遇到如行星或恆星磁場、另一股速度慢一點的物質流等阻礙時,會產生震波(shock wave,或譯為衝擊波)。

天文學家在多種宇宙環境中都曾觀測到這種突然從超音速流轉換至亞音速流(subsonic)的狀況,其中比較顯著的是年輕和大質量恆星的恆星風、超新星爆炸的殘骸和電波星系(radio galaxy)產生的噴流和波瓣(lobe)等遭遇周圍星際介質的情況。以電波、X射線和伽瑪射線波段觀測時,可以清楚呈現這些震波與宇宙中能量最高的粒子—宇宙線(cosmic ray)的起源有密切相關。

雖然目前已知這些震波是非常有效率的粒子加速場,對於已經被加速到能量相當高的粒子,又從此能量門檻被加速到更高能量現象的物理機制,科學家們已經頗為瞭解。但目前並不清楚粒子如何與震波交互作用以獲取能量的機制究竟為何,尤其是宇宙線粒子加速的早期階段,這些粒子究竟是怎麼進入粒子加速場,可能是個非常複雜的過程,對天文物理學家而言,是個亟待探索的領域。

離地球最近的這類粒子加速區,其實就在地球上空—因太陽風與地球磁層相互遭遇而形成的弓形震波層,尤其是弓形震波層的厚度,是研究粒子加速物理過程的關鍵參數。Schwartz等人從Cluster衛星群資料發現:地球的弓形震波厚度只有17公里,比他們原本認為的薄了許多,這也顯示這類粒子加速場的工作效率遠超過科學家們之前預期的程度。

Cluster衛星群發射於2000年,由4架衛星組成艦隊隊形,以繞極軌道繞行地球,因此可由其觀測資料同時獲知某地球周圍事件的空間和時間變化,以及溫度等電漿中的粒子物理性質。科學家曾在2003年時,分析Cluster衛星群的資料,獲得地球弓形震波層的厚度上限頂多為100公里。而Schwartz等人的最新分析結果更將弓形震波層的厚度降至只有17.3公里,不到2003年估計的1/5。

The magnetic field and electron temperature in the plasma surrounding Earth bow shock. Image courtesy of Steven Schwartz, Imperial College London  Schwartz等人挖掘Cluster的觀測資料庫,發現2005年1月9日有一組Cluster衛星群逐漸穿越震波層的資料。由於穿越速度緩慢,所以弓形震波層隨太陽風改變而引起的擾動非常小,因此時間解析度細達250毫秒,衛星群可以取得非常精確的粒子族群樣本資料,粒子分佈在震波層的空間解析度也非常好。當衛星逐漸進入這電漿震波層的過程中,記錄到電子經歷非常劇烈而突然的溫度陡升現象,幾乎已接近波散(wave dispersion)的極限,意味著這個震波層非常薄;而在物理上,薄層的加速效果更好。

鄰近超薄震波層之處,一種稱為「多次反射(multiple reflection)」或「衝浪(surfing)」的粒子加速機制會變得特別有效率。離子速度起初很慢,僅相當於數keV能量等級,隨著在震波層中重複的來回反射跳躍,能量就愈來愈高。震波起初就像一堵牆,離子無法穿越;但當離子能量隨著來回跳躍升高到0.5MeV以上時,它就能突破震波這堵障礙而離去。(點選此處觀看動畫

這個機制可能是粒子進入宇宙加速器的最佳解釋,如果震波層夠薄,粒子能量就可被加速到高能量級門檻,然後才有機會再藉由別的機制來加速1GeV,這是目前宇宙線研究所偵測到最高的粒子能量等級。

Schwartz等人很高興的說:即使只是研究自家門前的局部現象,也能對瞭解整個宇宙的粒子加速機制做出重要貢獻。

資料來源:Cluster reveals Earth’s bow shock is remarkably thin[2011.11.16]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
477 篇文章 ・ 13 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


0

9
4

文字

分享

0
9
4

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》