0

0
0

文字

分享

0
0
0

蒙古人崛起是因為氣候好?——《科學月刊》

科學月刊_96
・2016/01/28 ・1505字 ・閱讀時間約 3 分鐘 ・SR值 557 ・八年級

劉昭民/前民航局氣象中心研究員,中研院科學史委員會委員,中華科技史學會會員,知名氣象、氣候史學家,著有《中國歷史上氣候之變遷》等書。

中國朝代的興衰,原來和當時的氣候有關!?

01
Source: Shutterstock

根據中國歷史上氣候變遷之研究,可以知道長期乾冷的氣候會造成嚴重的旱災和饑饉,使饑民和塞外的民族鋌而走險,四出搶掠,造成政治動亂,甚至朝廷覆亡。相反地,如果是長期暖濕氣候,會造成農業收成良好,國勢強盛。宋朝末年蒙古人的崛起,便是拜良好的氣候所賜。

民國103 年3 月11 日,《聯合晚報》第七版國際焦點版,報導〈誰暗助成吉思汗?千年神木告訴你〉;同年3 月12 日《中國時報》第12 版國際新聞曾報導〈成吉思汗稱雄,好天氣是大功臣〉。這兩篇新聞報導,皆源自美國西維吉尼亞大學赫瑟教授和哥倫比亞大學彼得森教授的論文,他們在外蒙古杭愛山區,研究松樹的年輪,發現從西元1200 年代起,數十年間松樹的年輪較寬,顯示當時氣候較為溫暖多雨。暖溼氣候有利於牧草生長、牲畜繁殖,成吉思汗因而崛起漠北,締造蒙古帝國,成為史上武功最顯赫的征服者。

-----廣告,請繼續往下閱讀-----

我們再根據國史上的文字資料,可以發現右頁上圖中標示「暖期4」者,為國史上第四個暖期,自南宋光宗紹熙三年(1192 年)至南宋端宗景炎二年(1277 年)的85 年,呈現夏涼冬暖的情況,相關史料如右。

一、南宋光宗紹熙三年(1192 年)夏霜,九月和州隕霜連連。冬大燠,潼州路不寒,氣燠如仲夏。

二、南宋寧宗慶元元年(1195 年)冬無雪。

三、南宋寧宗慶元二年(1196 年)冬無雪。

四、南宋寧宗慶元四年(1198 年)冬無雪。

五、南宋寧宗慶元六年(1200 年)五月無暑氣,凜如秋。冬燠,無雪,桃李華(花),蟲不蟄(蟲不冬眠)

六、南宋寧宗開禧三年(1207 年)冬少雪。

七、南宋寧宗嘉定元年(1208 年)冬無雪。

八、南宋寧宗嘉定四年(1211 年)冬燠而雷,無冰,蟲不蟄。

九、南宋寧宗嘉定六年(1213 年),二月雪,六月無暑氣,夜寒,冬燠無冰,蟲不蟄。

十、南宋寧宗嘉定八年(1215 年)夏大燠,草木枯,百泉皆竭,斗米百錢,江淮杯水數十錢,渴死皆甚眾。

十一、南宋寧宗嘉定九年(1216 年)冬無雪。

十二、南宋寧宗嘉定十三年(1220 年)冬燠無冰雪。越歲,春暴燠,土燥泉竭。

十三、南宋寧宗度宗咸淳七年(1271 年)六月大熱,秋冬無霜雪。

由以上的氣候史料,可見冬燠無冰的年數較多,是比較溫暖的時期。全真教的邱處機(1148~1227 年),1224 年寒食時在北京作春遊詩:「清明時節杏花開,萬戶千門日往來。」可見當時物候和今日相同。又由冬不雨、無冰、冬燠、春燠、冬無雪、夏無暑氣、夏霜、夏雪等紀錄來看,可見南宋後半期的85 年,其平均溫大約和現在平均溫相若,是為中國歷史上第四個暖期。暖濕氣候造成蒙古地區天氣溫暖多雨,冬季少雪,草木繁盛,農牧業比較興旺。蒙古軍隊也因此士飽馬騰,有助於蒙古軍隊東征西討,建立史上版圖最大的蒙古帝國。

再仔細分析,南宋末年以及元朝初期,正是中國歷史上第四個暖期,第二和第三個暖期曾造成漢唐兩朝長治久安、國勢強盛,而魏晉南北朝以及明、清兩朝的冷期,造成長期的社會動亂,所以說南宋末年蒙古人的強盛興起,良好的氣候是重要的因素。

04

03〈本文選自《科學月刊》2015年6月號〉

-----廣告,請繼續往下閱讀-----

延伸閱讀:
《氣候文明史》導讀
火山灰雲的科學知識

什麼?!你還不知道《科學月刊》,我們47歲囉!
入不惑之年還是可以
當個科青

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3706 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

1
1

文字

分享

1
1
1
經濟重要還是環境重要?明朝末年發生了什麼事?氣候如何影響國家?——《價崩》導讀
衛城出版_96
・2024/05/07 ・4105字 ・閱讀時間約 8 分鐘

眼皮底下的事實:環境史研究者看《價崩》

洪廣冀(臺灣大學地理環境資源學系副教授)

著名的漢學家卜正民以如下段落為《價崩:氣候危機與大明王朝的終結》一書定調:

生活在這個時代,我們彷彿逃不出莫測變幻的手掌心。變化讓人這麼痛苦、氣餒,為了安慰自我,我們便告訴自己:當代的生活特徵就是接連不斷的變化,正是這種不穩定,讓世界變得比以往更複雜。

他告訴我們,作為一個「長壽之人」,「過去十年來,氣候變遷、物價通膨,以及政治豪奪的速度與規模」,他認為也是前所未見。只是,作為一個歷史學者,他還是想問,若我們放大時空的尺度,當代人在過去十年來經歷的變化,真的是前所未見嗎?他的答案是否定的。在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。

在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。
圖/unsplash

藏在眼皮下的事實是什麼?小冰期如何發生?

一六四○年代初期的中國發生什麼事?這便是卜正民試圖回答的問題。他反對傳統史學的兩大見解:一者是訴諸人禍,即訴諸當時宮廷內的派系鬥爭,統治階層道德淪喪,導致民不聊生;二者是訴諸十六至十七全球的白銀貿易,即當時從美洲與日本湧入中國的白銀,造成物價波動與社會不安。卜正民認為,訴諸人禍與貿易會讓我們看不見「藏在眼皮底下的事實」:小冰河時期(簡稱小冰期)。

-----廣告,請繼續往下閱讀-----

廣義地說,小冰期是從十四世紀至十九世紀初期的地球寒化現象,氣溫平均掉了攝氏兩度。乍看之下,攝氏兩度的溫差或許微小,但對作物而言,這樣的溫差已經足夠讓作物減少一次收成,或根本無法收成。再者,必須注意,兩度的溫差是「平均」,即可能是極熱與極寒的氣溫交錯變化造就此兩度溫差。這確實也是在小冰期中發生的事。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。影響所及,所謂「聖嬰-南方震盪現象」(El Niño-Southern Oscillation, ENSO,即傳統上所說的「聖嬰現象」加「反聖嬰現象」)變得格外激烈,乾旱、水災等極端氣候頻傳。不僅如此,地球科學家也指出,小冰河期也是火山活動格外頻繁的時期。火山噴出的煙塵,遮蔽了太陽輻射,更加速了地球的寒化。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。
圖/unsplash

小冰期的起因為何?目前普遍接受的見解是太陽活動改變。此外,也有研究者指出,這與所謂歐洲人「發現」新大陸有關。受到所謂「哥倫布大交換」的衝擊,美洲原住民大量消失,森林擴張,吸收大量二氧化碳。眾所周知,二氧化碳是溫室氣體;二氧化碳濃度的減低,讓大氣保溫的能力下降,與前述太陽活動與火山噴發的效果耦合,讓寒化成為不可逆的過程。總之,我們現在已經知道,地球是個混沌系統,牽一髮不只動全身,甚至整個身體都會分崩離析。

回到《價崩》這本書。卜正民指出,明朝的存續時間(一三六八至一六四四年)即落在小冰期,並成為明朝覆亡的主因。他將小冰期之於明朝的影響分為六個泥沼期:一、永樂泥淖期(一四○三年至一四○六年)。二、景泰泥淖期(一四五○年至一四五六年)。三、嘉靖泥淖期(一五四四年至一五四五年)。四、萬曆一號泥淖期(一五八六年至一五八九年)。五、萬曆二號泥淖期(一六一五年至一六二○年)。六、崇禎泥淖期(一六三八年至一六四四年)。

-----廣告,請繼續往下閱讀-----

永樂泥淖期欠缺災荒記載,景泰泥淖期以饑荒收尾,嘉靖泥淖期氣候異常乾冷,萬曆一號泥淖期爆發饑荒、洪水、蝗災與大疫,「人民相食,枕籍死亡」;萬曆二號泥淖期的乾旱與水災頻繁,饑荒再度爆發,「朝廷賑濟的請願如潮水湧來」。崇禎泥淖期是明代乃至於「整個千年期間最慘痛的七年」,「米粟踊貴,餓殍載道」。一六四四年四月末,闖王李自成兵臨北京,致書要求崇禎帝歸順。崇禎不從,在命皇后、貴妃與女兒自盡後,他爬上皇居後的煤山,自縊身亡。李自成稱帝後,滿人入關,將中國納入大清國版圖。

不可忽視的幽靈?拔除合理征服者的解釋,明朝滅亡原因還有哪些?

如此的歷史解釋是否會流於環境決定論?卜正民的回答是:「如果環境決定論的幽靈就在門外徘徊,我也不會在分析時將其拒於門外。」那麼,是什麼讓寫出《縱樂的困惑》、《維梅爾的帽子》等名著的歷史學者相信環境的決定作用?答案就是糧價。

卜正民先生像。
圖/wikipedia

以他的話來說,「太陽能與人類需求的關係,是透過糧價調節的。從景泰年間到崇禎年間,糧價在五次環境泥淖其中激增,每一次都把價格多往上推一截,這樣的事實也說服我必須採用氣候史的大框架。」卜正民表示,「一旦經濟體仰賴太陽輻射為能源來源,那麼無論大自然是幽而不顯還是顯而易見,都必然是社會或國家生命力的決定因素。」

在結語「氣候與歷史」中,卜正民再次反駁那些把明朝覆滅推給「失德」的見解。他認為,這種論調是「合理化明清兩朝遞嬗的過程」,且「編出這種敘事並為之背書的,就是征服者」。他強調,「明朝的滅亡固然不能推給災荒糧價,但講述崇禎末年重大危機時不把氣候因素納入考慮,那簡直就像莎士比亞所言,宛如癡人說夢,充滿著喧譁與騷動,卻沒有任何意義。」

-----廣告,請繼續往下閱讀-----

然而,不至於將環境決定論「拒於門外」是一回事,認為社會變遷就此被環境「決定」,又是另一回事。卜正民並不認為,面對氣候因素帶來的種種挑戰,明朝各級官員只能雙手一攤,感嘆天要亡我,不做任何努力。就如其他生活在小冰期的人們一般,卜正民認為,明朝人建設基礎設施、育種、建立制度、開發新科技與控制生育力等;但問題是,一六三○年代晚期的種種災害,並未催出社會的適應力,反倒是摧毀其適應力。

拜此時勃發的火山活動與激烈的聖嬰-南方震盪現象「之賜」,不論是政府還是市場,都變不出糧食。卜正民認為,至少在前五個泥淖期,明朝人還是表現出相當的韌性,努力予以調適。然而,進入崇禎泥淖期後,春夏乾冷,田地龜裂,運河無水。當每公斤的米得需要兩千五百公升的水,而老天爺就是不願意降下一滴雨時,糧食供應體系就此崩潰,連帶把物價與政治體系拖下去陪葬。

是誰忽略了眼皮底下的事實?這段歷史帶給我們什麼警訊?

回到卜正民所稱的「眼皮底下的事實」。我們要問,是誰忽略了這項事實?誰是這對眼皮的擁有者?卜正民的答案有二。一則是以研究社會、政治與環境變遷的人文社會科學研究者。以小冰期的相關研究為例,他表示,當他開始研究明代中國糧價變異與氣候變化之關係時,驚訝地發現,「其他地方的環境史對糧價幾乎不提」。與之對照,精通糧價的歷史研究者,如不是太快地把糧價理解為「公平交易」的指標,便是視之為社會關係的一環,忽略了糧食必得是在特定的環境條件下孕育出來的。

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。
圖/unsplash

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。然而,卜正民的分析告訴我們,即便明代中國離現在相當遙遠,所謂的小冰期至少也是一百五十年以上的事,但物價恐怕還是可作為某種氣候指標。換言之,若人們以關心物價的熱誠來關心環境,面對當代的環境危機,說不定人們多少可找出個解方。

-----廣告,請繼續往下閱讀-----

此外,讓人心生警惕的是,卜正民告訴我們,小冰期多少是個漫長的地球系統變化。小冰期本身並未造成明朝衰亡,是相伴的極端氣候摧毀了明代社會的韌性與調適。他也認為,面對小冰期、火山噴發與聖嬰-南方震盪現象誘發的極端氣候,從後見之明來看,明朝人也做了他們可以做的,但也只多苟延殘喘了七年,且還是生存條件都被剝奪、生活尊嚴都被否定的七年。

那麼,當人類誘發的氣候變遷可能已加劇了聖嬰-南方震盪現象,讓去年(二○二三年)夏天成為有紀錄以來地球最熱的夏天,而極端氣候彷彿成為日常,人類還有多少時間可以調適?如果說明朝多少是被地球系統的正常運作摧毀,當今地球系統的異常,是人類自己造成的,數百年後的歷史學家,在回顧這段歷史時,恐怕無法如卜正民對待明朝人一樣地寬厚,只能說這是咎由自取。諸如此類的思考,都讓《價崩》有了跨越時代的現實意義。

畢竟,明朝人不是外星人,他們跟我們都生活在同一個地球上。

——本文摘自《價崩:氣候危機與大明王朝的終結》,2024 年 05 月,城出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
衛城出版_96
4 篇文章 ・ 4 位粉絲
"每個人心中都有一座城。每個人在心裡攜帶著文明的種子。 守衛讀者心中之城,與文明的生命力。"

0

1
1

文字

分享

0
1
1
說好的颱風呢?!氣象預報不準?要準確預測天氣有多難?
PanSci_96
・2023/09/12 ・4646字 ・閱讀時間約 9 分鐘

小心啊,打雷囉,下雨收衣服啊!

氣象報告說好是晴天的,怎麼一踏出門就開始下雨了?

昨天都說要直撲的颱風,怎麼又彎出去了?

多麼希望天氣預報能做到百分之百正確,只要出門前問一下手機,就能確定今天是出大太陽還是午後雷陣雨,是幾點幾分在哪裡?又或是最重要的,颱風到底會不會來?

-----廣告,請繼續往下閱讀-----

但你知道,現在的氣象預報,已經動用全球最強的超級電腦們了嗎?既然如此,我們現在的氣象預報能力到底有多準?我們什麼時候能徹底掌握這顆蔚藍星球上發生的所有天氣現象?

天氣預報有多困難?

雖然我們常常嫌說氣象預報不準、颱風路徑不準、預測失靈等等。但我們現在的實力如何呢?

目前美國國家海洋暨大氣總署的數據分析,對西太平洋颱風的 24 小時預測,誤差平均值約 50 英哩,也就是一天內的路徑誤差,大約是 80 公里。其他國家的氣象局,24 小時的誤差也約在 50 到 120 公里之間。台灣呢?根據中央氣象局到 2010 年的統計,誤差大約在 100 公里內。也就是臺灣對颱風的預測,沒有落後其他先進單位。

現在只要打開手機隨便開個 APP,就能問到今天的天氣概況,甚至是小區域或是短時間區間內的天氣預報。但在過去沒有電腦的時代,要預測天氣根本可以不可能(諸葛孔明:哪泥?)。

-----廣告,請繼續往下閱讀-----

近代且稱得上科學的天氣預測可追溯回 1854 年,那個只能靠人工觀測的年代,英國氣象學家為了保護漁民出海的安危,利用電報傳遞來蒐集各地居民的觀察,並進行風暴預報。後來演變成天氣預報後,卻因為有時預報不準,預報員承受了輿論與國會批判的巨大壓力,最後甚至鬱鬱離世。

19 世紀的氣象學家為了保護漁民出海的安危,會利用電報蒐集各地居民的觀察進行風暴預報。圖/Giphy

在電腦還在用打洞卡進行運算的年代,一台電腦比一個房間還大。氣象局要預測天氣,甚至判斷颱風動向,得要依賴專家對天氣系統、氣候型態的認知。因此在模擬預測非主流的年代,我們可以看到氣象局在進行預測時,會拿著一個圓盤,依據量測到的大氣壓力、風速等氣象值,進行專家分析。

當時全球的氣象系統,則是透過全球約一千個氣象站,共同在 UTC 時間(舊稱格林威治時間)的零零時施放高空探測氣球,透過聯合國的「World Weather Watch」計畫來共享天氣資料,用以分析。關於氣象氣球,我們之前也介紹過,歡迎看看這集喔。

也就是說,以前的颱風預測就是專家依靠自身的學理與經驗,來預測颱風的動向,但是,大氣系統極其複雜,先不說大氣系統受到擾動就會有所變化,行星風系、科氏力、地形、氣壓系統這些系統間互相影響,都會造成預測上的失準,更遑論模擬整個大氣系統需要的電腦資源,是非常巨大的。

-----廣告,請繼續往下閱讀-----

那麼,有了現代電腦科技加持的我們,又距離全知還有多遠呢?是不是只要有夠強的超級電腦,我們就能無所不知呢?

有了電腦科技加持,我們的預報更準了嗎?

當然,有更強的電腦,我們就能算得更快。才不會出現花了三天計算,卻只能算出一個小時後天氣預報的窘況。但除了更強悍的超級電腦,也要更先進的預測模型與方法。現在的氣候氣象模擬,會先給一個初始值,像是溫度、壓力、初始風場等等,接著就讓這個數學模型開始跑。

接著我們會得到一個答案,這還不是我們真正要的解,而是一種逼近真實的解,我們還必須告訴模型,我容許的誤差值是多少。什麼意思呢?因為複雜模型算出來的數值不會是整數,而是拖著一堆小數點的複雜數字。我們則要選擇取用數值小數點後 8 位還是後 12 位等等,端看我們的電腦能處理到多少位,以及我們想算多快。時間久了,誤差的累積也越多,預測就有可能失準。沒錯,這就是著名的蝴蝶效應,美國數學暨氣象學家 Edward Norton Lorenz 過去的演講題目「蝴蝶在巴西揮動了翅膀,會不會在德州造成了龍捲風?」就是在講這件事。

回到颱風預報,大家有沒有發現,我們看到的颱風路徑圖,颱風的圈怎麼一定會越變越大,難道颱風就像戶愚呂一樣會從 30% 變成 100% 力量狀態嗎?

-----廣告,請繼續往下閱讀-----
輕颱鴛鴦的颱風路徑潛勢圖。圖/中央氣象局

其實那不是颱風的暴風圈大小,而是颱風的路徑預測範圍,也就是常聽到的颱風路徑潛勢圖,​是未來 1 至 3 天的颱風可能位置,颱風中心可能走的區域​顯示為潛勢圖中的紅圈,機率為 70%,所以圈圈越大,代表不確定性越大。​

1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。

「真鍋模型」用物理建模模擬更真實的地球氣候!

大氣模擬不是只要有電腦就能做,其背後的物理複雜度,也是一大考驗。因此,發展與地球物理相關的研究變得非常重要。

2021 年的諾貝爾物理學獎,就是頒給發展氣候模型的真鍋淑郎。他所開發的地表模式,在這六十年間,從一個沒考慮地表植物的簡單模型,經各家發展,變成現在更為複雜、更為真實的模型。其中的參數涵蓋過去沒有的植物反應、地下水流動、氮碳化合反應等等,增強了氣候氣象模型的真實性。

-----廣告,請繼續往下閱讀-----
2021 年的諾貝爾物理學獎得主真鍋淑郎。圖/wikimedia

當然,越複雜的模型、越短的時間區間、越高的空間精細度,需要更強大的超級電腦,還有更精準的觀測數據,才能預測接下來半日至五日的氣象情況。

世界上前百大的超級電腦,都已被用來做大氣科學模擬。各大氣象中心通常也配有自己的超級電腦,才能做出每日預測。那麼,除了等待更加強大的超級電腦問世,我們還有什麼辦法可以提升預報的準度呢?

天氣預報到底要怎樣才能做得準?

有了電腦,人類可以紀錄一切得到的數據;有了衛星,人類則可以觀察整個地球,對地球科學領域的人來說,可以拿這些現實資訊來校正模擬或預測時的誤差,利用數學方法將觀測到的單點資料,乃至衛星資料,融合至一整個數值模型之中,將各種資料加以比對,進一步提升精準度,這種方法叫做「資料同化 (Data Assimilation)」。例如日本曾使用當時日本最強的超級電腦「京」,做過空間解析度 100 公尺的水平距離「局部」超高解析氣象預測,除了用上最強的電腦,也利用了衛星資料做資料同化。除了日本以外,歐洲中程氣象預測中心 (ECMWF),或是美國大氣暨海洋研究中心 (NOAA),也都早在使用這些技術。

臺灣這幾年升空的福衛系列衛星,和將要升空的獵風者等氣象衛星,也將在未來幫助氣象學家取得更精準的資料,藉由「資料同化」來協助模擬,達到更精準的預測分析。

-----廣告,請繼續往下閱讀-----

如果想要進一步提升預報準度呢?不用擔心,我們還有好幾個招式。

人海戰術!用更多的天氣模型來統計出機率的「概率性模擬」

首先,如果覺得一個模型不夠準,那就來 100 個吧!這是什麼意思?當我們只用一種物理模型來做預測時,我們總是會追求「準」,這種「準確」模型做的模擬預測,稱為「決定性模擬」,需要的是精確的參數、公式,與數值方法。就跟遇上完美的夢中情人共度完美的約會一樣,雖然值得追求,但你可能會先變成控制狂,而且失敗機率極高。

「準確」的模型就跟遇上完美情人共度完美約會一樣,雖然值得追求,但失敗機率極高。圖/Giphy

不如換個角度,改做「概率性模擬」,利用系集模擬,模擬出一大堆可能的交往對象,啊不對,是天氣模型,再根據一定數量的模擬結果,我們就可以統計出一個概率,來分析颱風路徑或是降雨機率,讓成功配對成功預測的機率更高。

製造一個虛擬地球模擬氣象?

再來,在物理層面上,目前各國正摩拳擦掌準備進行等同「數位攣生 (Digital Twin) 」的高階模擬,簡單來說,就是造出一個數位虛擬地球,來進行 1 公里水平長度網格的全球「超高」解析度模擬計算。等等,前面不是說日本可以算到 100 公尺的水平距離,為什麼 1 公里叫做超高解析度?

-----廣告,請繼續往下閱讀-----

因為 500 公尺到 1 公里的網格大小也是地表模式的物理適用最小單位,在這樣的解析度下,科學家相信,可以減少數值模型中被簡化的地方,產生更真實的模擬結果。

電腦要怎麼負荷這麼大的計算量?交給電腦科學家!

當然,這樣的計算非常挑戰,除了需要大量的電腦資源,還需要有穩定的超級電腦,以及幾個 Petabyte,也就是 10 的 15 次方個位元組的儲存設備來存放產出的資料。

不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!

結語

這一切的挑戰,是為了追求更精確的計算結果,也是為了推估大魔王:氣候變遷所造成的影響必須獲得的實力。想要計算幾年,甚至百年後的氣候狀態,氣象與氣候學家就非得克服上面所提到的問題才行。

一百年來,氣候氣象預測已從專家推估,變成了利用龐大電腦系統,耗費百萬瓦的能量來進行運算。所有更強大、更精準的氣象運算,都是為了減少人類的經濟與生命損失。

對於伴隨氣候變遷到來的極端天氣,人類對於這些變化的認知還是有所不足。2021 年的德國洪水,帶走了數十條人命,但是身為歐洲氣象中心的 ECMWF,當時也只能用叢集式系統算出 1% 的豪大雨概率,甚至這個模擬出的豪大雨也並沒有達到實際量測值。

我們期待我們對氣候了解和應對的速度,能追上氣候變遷的腳步,也由衷希望,有更多人才投入地球科學領域,幫助大家更了解我們所處的這顆藍色星球。

也想問問大家,你覺得目前的氣象預報表現得如何?你覺得它夠準嗎?

  1. 夭壽準,我出門都會看預報,說下雨就是會下雨。
  2. 有待加強,預報當參考,自己的經驗才是最準的。
  3. 等科學家開發出天候棒吧,那才是我要的準。更多想法,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
1

文字

分享

0
4
1
走高山只為預測颱風,臺灣氣象學開拓者——近藤久次郎
PanSci_96
・2023/02/10 ・3388字 ・閱讀時間約 7 分鐘

  • 作者/廖子萱

蕞爾臺灣島,地跨熱帶與副熱帶季風氣候區、四面環海,縱貫的百岳更加深了氣候的複雜程度。

在這樣的地理條件下,即便當今借助氣象衛星進行天氣分析,預報仍偶見差之毫釐、失之千里。一百年前,人們對於山岳、海洋與其相生的自然現象往往常處於未知,而至今日手機隨手可得及時的氣象預報,在短短一百年間,臺灣氣象科學從無到有,蓬勃發展。這背後的功臣包括了中央氣象局、高山氣象站、地震觀測站,這些單位的前身與發展,皆與近藤久次郎有關。

圖1. 1897 年臺北測候所。圖/交通部中央氣象局〈台灣氣象憶往之ㄧ〉

近藤久次郎(Kondo Kyujiro ,1858 – 1926)是臺灣首任總督府測候所技手兼所長,也是臺北測候所所長(現中央氣象局)。 1896 至 1924 年在臺期間,近藤引領總督府測候所設立了七座地方測候所,並協調地方基層治理單位,建構氣象觀測方法和資料搜集的網絡。他更推動高山觀測方法,以進行颱風預測、推動高山與地震觀測系統的建置,為臺灣氣象科學翻開了嶄新的一頁。

臺灣近代氣象觀測的發展

臺灣近代氣象觀測發展可追溯於清朝,光緒年間的1883年,清廷聘請杜伯克博士(Dr. William Doberck)赴香港擔任首任天文司(天文台台長),並在沿海稅關和燈塔裝置觀測設備,進行氣象觀察。臺灣基隆、淡水、安平、打狗四港的稅關,以及漁翁島(澎湖)、南岬(鵝鑾鼻)也陸續在 1885 年前後,展開十餘年的氣象記錄。然而,1895 年清廷與日本簽訂馬關條約割讓臺灣,氣象觀測工作就此停擺,多數的觀測儀器與記錄更在政權交替期間散失。

日本統治臺灣之後,由於當時國際航海安全多仰賴氣象資料,在英法強權的施壓下,臺灣總督府於1896年發布第 97 號敕令,以「台灣總督府測候所官制」編制氣象觀測單位,而日本中央氣象台則選派本文主角,技手(技士)近藤久次郎來臺勘查、策劃氣象觀測站。同年,總督府也在民政局通信部海事課增設「氣象掛」一單位,統理全島氣象事務,如氣象觀測、天氣調查、颱風警報、地震檢測等工作。

-----廣告,請繼續往下閱讀-----

1896 年四月至六月間,近藤久次郎與民政局通信部海事課課長遠藤可一翻山越嶺、走訪各地,行跡遠至鵝鑾鼻。根據兩人的調查基礎,臺灣總督府先後於臺北、臺中、臺南、恆春和澎湖設置測候所(後三為 1987 年設立),近藤也在日本中央氣象台台長中村精男(Nakamura Kiyoo)的任命下擔任臺北測候所所長,開始逐步搭建全島的氣象觀測網絡。

在各地氣候觀測所選址的條件上,近藤久次郎配合日本政府在農業、工業、航海與公共衛生等發展項目的資料需求,為詳實觀測各區域氣候根據相對距離由北至南畫設臺北、臺中、臺南、恆春測候所 。此外,還參考了夏季與秋季的颱風路徑設立澎湖測候所,用以觀察自香港與馬尼拉而來的颱風。

除了本島的氣象觀測,近藤還曾於1897年,帶著晴雨計、寒暖針遠赴火燒嶼(綠島)、紅頭嶼(蘭嶼)進行氣象觀測、測量山頂高度,策劃設立觀測站。而後隨著總督府逐步克服東部地區交通和電信的限制, 1900 年、1910 年臺東和花蓮測候所分別建設完成,時至 1924 年近藤久次郎卸任前,全臺共設有七座「一般測候所」。

十九世紀末的觀測所主要沿用清朝遺留的官廳或民房,屋頂簡單設有的風力與風向儀,室內則作為辦公之用。一般測候所以風力塔為主要的觀測設施、可測量風向、風速、風壓、日照和日射;辦公室外設置氣象觀測坪以測量氣溫、雨量、地面溫度等;測候所外另設有提供執勤人員進駐的官舍。

-----廣告,請繼續往下閱讀-----

而在時間方面,位於政治中心的臺北觀測所實施 24 小時氣象觀測;其他測候則每四個小時實施觀測、每日六次,用於地區性天氣預報,並將資料匯報予臺北測候所以利發布臨時颱風警報、氣候月報和年報,進一步進行總體性的氣象分析。

擴大氣象觀測網路,發佈氣象預報歷史頁面

為了擴大氣象觀測網絡,總督府會同官廳、派出所、郵局等單位協助蒐集雨量和氣溫資料,並於 1896 年 7 月以「民通 151 號」公報始建立暴風警報通報流程,命令各官廳、海關、郵局、燈塔,將通信部海事課所轉發的暴風警報公布予地方民眾,九座燈塔更奉「總督府訓」兼任氣象觀測的任務,協助測量氣溫、氣壓、風、雲與雨量。

1897 年 9 月,近藤領導的臺北測候所開始發佈每日三次的氣象預報,並與琉球、九州南部測候所,以及徐家匯、香港、馬尼拉等地的氣象台交換氣象報告。 依循著新展開的天氣觀測模式,總督府府報開設「觀象」專欄,刊登臺北測候所撰寫的天氣預報(「本島氣象天氣豫報び天氣概況及暴風警報等」),開啟了臺灣天氣預報歷史性的一頁。直到1905年,全臺各地的雨量觀測網絡已達78處,涵蓋燈塔、支廳、派岀所、學校、郵局、農業試驗所、自來水廠等單位,各處配備簡易的氣溫觀測工具以協助記錄天候狀況。

很快地,日本在臺短短10年內,近藤久次郎已為氣象觀測網打下綿密的基礎。

不只是天氣預報,開啟高山觀測與地震研究先河

1900 年,近藤久次郎附議天文學者一戶直藏提出的新高山(今玉山北峰)報告(新高山ニ關スル研究報告),近藤提到:「新高山山頂是天然絕佳的天文觀測與氣象學研究位置」,他認為高山觀測有助於天文和氣象研究,可藉由研究大氣動力上升的過程進行天氣預測,尤其臺灣每逢夏季,颱風挾帶滂沱大雨常引發災情,若能在台灣百岳中設置幾處高山觀測所,定有助於颱風警戒和天候預設。

-----廣告,請繼續往下閱讀-----

於是, 1911 年近藤久次郎與一戶直藏率先提出「新高山觀測所設置計畫」,向總督府倡議在玉山、阿里山興建高山觀測所和天文台,間接促成玉山觀測站(1943 年始建造)與阿里山觀測站(1932年建造)的設置。

近藤久次郎除了推動高山氣象、天文與航空研究,也曾與臺北測候所同仁積極推動與地震和火山相關的研究: 1896 年,臺北臨時測候所首次藉由人體感受進行地震觀測; 1897 年正式落成的臺北測候所,引進格雷-米爾恩型地震儀(Gray-Milne Seismograph); 1900 年,由被譽為日本地震之父的大森房吉所改良的大森式水平地震儀(Omori horizontal pendulum seismograph)以及強震儀(Strong motion seismograph)裝設於臺北測候所。

這些地震觀測儀也在 1906 年 3 月 17 日的「嘉義梅山地震」發揮了記錄地震波形與餘震數據的作用,獲得的數據使大森房吉找出梅山地震與斷層的關係,並將之命名為「梅仔坑斷層」(後更名梅山斷層)。而後,大森房吉還將研究與近藤所著的說明書刊登於報紙,傳遞地震成因與餘震的科學知識,緩解民間傳說帶來的社會不安。時至1907年,在近藤的協助推動下,全臺共有七所測候所兼做地震觀測,當時的紀錄,也成為現代地震研究珍貴的早期觀測資料。

1924 年,近藤久次郎因病去職返回日本,1926年因胃癌而逝世。 1896 至 1924 年,近藤來臺近將三十年,他在擔任總督府測候所與臺北測候所所長期間,建制氣候所與觀測網絡、編輯並彙整氣象資料;開啟暴風雨警報、颱風預測等重要的氣象預報機制;也協助推動高山氣候觀測、天文觀測與地震研究,著實是臺灣近代氣象科學研究的先河。

-----廣告,請繼續往下閱讀-----

註解

  • 註 1:然而,由於當時日本與臺灣之間並無定期班船和通訊設備可供交通和信息的傳遞,使得測候所無法如期配備氣象觀測儀器並興建正式氣候站,故先以既有房舍作為臨時氣候所。而後各地氣候所材陸續興建並增添觀測設備:臺北測候所於 1897 年 12 月 19 日遷入臺北城內南門街三丁目;臺中測候所於 1901 年 5 月 20 日遷入臺中城內藍興堡台中街;台南測候所於 1898 年 3 月 1 日遷入台南城內太平境街第 216 號官有家敷地;恆春測候所於 1901 年 11 月 24 日遷入恆春縣前街四番地;澎湖測候所於 1898 年 3 月 1 日遷入澎湖島媽公城內西町。(資料來源:中央氣象局委由財團法人成大研究發展基金會、國立成功大學單位研究之《台灣氣象建築史料調查研究》, 2001 年 2 月出版。)
  • 註 2:資料參考徐明同〈台灣氣象業務簡史〉
-----廣告,請繼續往下閱讀-----
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。